首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of a temperature shift-up and various metabolic inhibitors on the protein synthesis of an endosymbiont isolated from the pea aphid were studied. The syntheses of at least three major polypeptides were stimulated transiently immediately after a temperature shift-up, and treatment with ethanol and heavy metals (Cd2+ and As2+). One of these proteins, the 63 kDa heat-shock protein (63-kDa HSP), was immunoprecipitated with antiserum raised against symbionin, which is selectively synthesized by the endosymbiont harbored by the aphid bacteriocytes. The 63 kDa heat-shock protein has a molecular mass of 800 kDa and is more acidic than symbionin. It was also shown that symbionin is subject to phosphorylation in vivo and in vitro after a temperature shift-up. It was thought likely that forms of environmental stress such as heat shock and metabolic inhibitors stimulate the synthesis of a phosphorylated form of symbionin. It was also suggested that the in vitro phosphorylation of symbionin is due to its own catalytic activity. Since symbionin is a homolog of the Escherichia coli groEL protein, a stress protein, it is likely that the endosymbiont suffers stress when harbored by the bacteriocytes and responds in a similar manner to environmental stress when outside these cells.  相似文献   

2.
Abiotic and biotic host-plant stress, such as desiccation and herbivory, may strongly affect sap-sucking insects such as aphids via changes in plant chemicals of insect nutritional or plant defensive value. Here, we examined (i) water deprivation and (ii) defoliation by the beetle Leptinotarsa decemlineata as stresses indirectly affecting the aphid Macrosiphum euphorbiae via its host plant Solanum tuberosum. For plant-induced stress, aphids were reared on healthy vs. continuously stressed potato for 14 days (no watering; defoliation maintained at approximately 40%). Aphid performance under stress was correlated with metabolic responses monitored by profiling of the aphid proteome. M. euphorbiae was strongly affected by water stress, as adult survival, total aphid number and biomass were reduced by 67%, 64%, and 79%, respectively. Aphids performed normally on defoliated potato, indicating that they were unaffected or able to compensate any stress induced by plant defoliation. Stressed aphid proteomes revealed 419-453 protein spots, including 27 that were modulated specifically or jointly under each kind of host-plant stress. Reduced aphid fitness on water-stressed plants mostly correlated with modulation of proteins involved in energy metabolism, apparently to conserve energy in order to prioritize survival. Despite normal performance, several aphid proteins that are known to be implicated in cell communication were modulated on defoliated plants, possibly suggesting modified aphid behaviour. The GroEL protein (or symbionin) of the endosymbiont Buchnera aphidicola was predominant under all conditions in M. euphorbiae. Its expression level was not significantly affected by aphid host-plant stresses, which is consistent with the high priority of symbiosis in stressed aphids.  相似文献   

3.
Molecular chaperon produced by an intracellular symbiont.   总被引:6,自引:0,他引:6  
Symbionin, that is selectively produced by an intracellular symbiont harbored by the aphid bacteriocyte, is structurally homologous to the Escherichia coli groEL protein, a heat shock protein functioning as a molecular chaperon. It was shown that symbionin has ATPase activity and, in the presence of Mg-ATP, is converted into lower molecular mass species. Like the groEL protein, symbionin was able to reconstitute dimeric ribulose 1,5-bisphosphate carboxylase/oxygenase holoenzyme from its unfolded subunits in vitro, suggesting that this protein functions as a molecular chaperon in the endosymbiont. The groES-homologous protein did exist in the endosymbiont, but its amount was small relative to that of symbionin.  相似文献   

4.
Summary All aphids harbor symbiotrophic prokaryotes (primary symbionts) in a specialized-abdominal cell, the bacteriocyte. Chaperonin 60 (Cpn60, symbionin) and chaperonin 10 (Cpn10), which are high and low molecular weight heatshock proteins, were sought in tissues of more than 60 aphid species. The endosymbionts were compared immunologically and histologically. It was demonstrated that (1) there are two types of aphids in terms of the endosymbiotic system: some with only primary symbionts and others with, in addition, secondary symbionts; (2) the primary symbionts of various aphids are quite similar in morphology whereas the secondary symbionts vary; and (3) irrespective of the aphid species, Cpn60 is abundant in both the primary and secondary symbionts, while Cpn10 is abundant in the secondary symbionts but present in small amounts in the primary ones. Based on these results, we suggest that the primary symbionts have been derived from a prokaryote that was acquired by the common ancestor of aphids whereas the secondary symbionts have been acquired by various aphids independently after divergence of the aphid species. In addition, we point out the possibility that the prokaryotes under intracellular conditions have been subject to some common evolutionary pressures, and as a result, have come to resemble cell organelles.  相似文献   

5.
H Ishikawa  M Yamaji 《Bio Systems》1985,17(4):327-335
An aphid endosymbiont in vivo synthesizes symbionin almost exclusively which is not produced in vitro by the same symbiont. While symbionin produced by the endosymbiont of the pea aphid is an acidic protein with a molecular weight of 63,000, that by the symbiont of the kondo aphid, the closest relative to the former, is a distinct, less acidic, molecule. While the two endosymbionts in vivo in old insects synthesize about 11 protein species in common, they produce many different proteins when incubated extracellularly.  相似文献   

6.
《Insect Biochemistry》1985,15(2):155-163
Pea aphids, Acyrthosiphon pisum, injected with rifampicin gave birth to extremely undersized insects (RF-insects). RF-insects born later were significantly smaller in size than those born earlier by the same parents both at birth and 20 days later. RF-insects never produced progeny. Upon separation of the proteins from 20 days RF-insects, it was demonstrated that these insects neither contained nor synthesized symbionin, a protein synthesized by the endosymbiont of the aphid. Gel electrophoresis of RNA from RF-insects suggested that no ribosomal RNA species of the endosymbiont was present. Based on these results, it was concluded that RF-insects do not contain the endosymbiont.  相似文献   

7.
The homopteran sucking insect, Lipaphis erysimi (mustard aphid) causes severe damage to various crops. This pest not only affects plants by sucking on the phloem, but it also transmits single-stranded RNA luteoviruses while feeding, which cause disease and damage in the crop. The mannose-binding Allium sativum (garlic) leaf lectin has been found to be a potent control agent of L. erysimi. The lectin receptor protein isolated from brush border membrane vesicle of insect gut was purified to determine the mechanism of lectin binding to the gut. Purified receptor was identified as an endosymbiotic chaperonin, symbionin, using liquid chromatography-tandem mass spectrometry. Symbionin from endosymbionts of other aphid species have been reported to play a significant role in virus transmission by binding to the read-through domain of the viral coat protein. To understand the molecular interactions of the said lectin and this unique symbionin molecule, the model structures of both molecules were generated using the Modeller program. The interaction was confirmed through docking of the two molecules forming a complex. A surface accessibility test of these molecules demonstrated a significant reduction in the accessibility of the complex molecule compared with that of the free symbionin molecule. This reduction in surface accessibility may have an effect on other molecular interactive processes, including "symbionin virion recognition", which is essential for such symbionin-mediated virus transmission. Thus, garlic leaf lectin provides an important component of a crop management program by controlling, on one hand, aphid attack and on the other hand, symbionin-mediated luteovirus transmission.  相似文献   

8.
Barley yellow dwarf virus (BYDV)-vector relationships suggest that there are specific interactions between BYDV virions and the aphid's cellular components. However, little is known about vector factors that mediate virion recognition, cellular trafficking, and accumulation within the aphid. Symbionins are molecular chaperonins produced by intracellular endosymbiotic bacteria and are the most abundant proteins found in aphids. To elucidate the potential role of symbionins in BYDV transmission, we have isolated and characterized two new symbionin symL genes encoded by the endosymbionts which are harbored by the BYDV aphid vectors Rhopalosiphum padi and Sitobion avenae. Endosymbiont symL-encoded proteins have extensive homology with the pea aphid SymL and Escherichia coli GroEL chaperonin. Recombinant and native SymL proteins can be assembled into oligomeric complexes which are similar to the GroEL oligomer. R. padi SymL protein demonstrates an in vitro binding affinity for BYDV and its recombinant readthrough polypeptide. In contrast to the R. padi SymL, the closely related GroEL does not exhibit a significant binding affinity either for BYDV or for its recombinant readthrough polypeptide. Comparative sequence analysis between SymL and GroEL was used to identify potential SymL-BYDV binding sites. Affinity binding of SymL to BYDV in vitro suggests a potential involvement of endosymbiotic chaperonins in interactions with virions during their trafficking through the aphid.  相似文献   

9.
《Insect Biochemistry》1986,16(2):299-306
Electron microscopic observations demonstrated that the male of the kondo aphid, A. kondoi harbors intracellular symbionts different in shape from those in the viviparous female. Two-dimensional gel electrophoresis indicated that the endosymbiont in the male is less active in synthesizing symbionin, an aphid endosymbiont-specific protein than that in the viviparous female. Symbionin was also found in the winter egg though it was much less in amount than proteins related to the yolk formation. In the fundatrix which hatches out of the fertilized winter egg, symbionin was the most abundant protein.  相似文献   

10.
An intracellular symbiont harbored by the aphid bacteriocyte, a specialized fat body cell, synthesizes in vivo substantially only one protein, symbionin, which is a member of the chaperonin-60 family of molecular chaperones. Nucleotide sequence determination of the symbionin region of the endosymbiont genome revealed that it contains the two-cistron operon sym. Just like the Escherichia coli groE operon, the sym operon was dually led by a heat shock and an ordinary promoter sequence. According to the nucleotide sequence, symbionin was 85.5% identical to GroEL of E. coli at the amino acid sequence level. SymS, another protein encoded in the sym operon, which is a member of chaperonin-10, was 79.6% identical to GroES. Complementation experiments with E. coli groE mutants showed that the chaperonin-10 and chaperonin-60 genes from the endosymbiont are expressed in E. coli and that they can function as molecular chaperones together with endogenous GroEL and GroES, respectively.  相似文献   

11.
The insecticidal activity of recombinant garlic lectins towards aphids   总被引:1,自引:0,他引:1  
The heterodimeric and homodimeric garlic lectins ASAI and ASAII were produced as recombinant proteins in the yeast Pichia pastoris. The proteins were purified as functional dimeric lectins, but underwent post-translational proteolysis. Recombinant ASAII was a single homogenous polypeptide which had undergone C-terminal processing similar to that occurring in planta. The recombinant ASAI was glycosylated and subject to variable and heterogenous proteolysis. Both lectins showed insecticidal effects when fed to pea aphids (Acyrthosiphon pisum) in artificial diet, ASAII being more toxic than ASAI at the same concentration. Acute toxicity (mortality at 3d exposure) was observed over the concentration range 0.125-2.0mgml(-1). The recombinant lectins caused mortality in both symbiotic and antibiotic-treated aphids, showing that toxicity is not dependent on the presence of the bacterial symbiont (Buchnera aphidicola), or on interaction with symbiont proteins, such as the previously identified lectin "receptor" symbionin. A pull-down assay coupled with peptide mass fingerprinting identified two abundant membrane-associated aphid gut proteins, alanyl aminopeptidase N and sucrase, as "receptors" for lectin binding.  相似文献   

12.
When aphids parasitize plants with extrafloral nectaries (EFNs) and aphid colony size is small, ants frequently use EFNs but hardly tend aphids. However, as the aphid colony size increases, ants stop using EFNs and strengthen their associations with aphids. Although the shift in ant behavior is important for determining the dynamics of the ant–plant–aphid interaction, it is not known why this shift occurs. Here, we test two hypotheses to explain the mechanism responsible for this behavioral shift: (1) Extrafloral nectar secretion changes in response to aphid herbivory, or (2) plants do not change extrafloral nectar secretion, but the total reward to ants from aphids will exceed that from EFNs above a certain aphid colony size. To judge which mechanism is plausible, we investigated secretion patterns of extrafloral nectar produced by plants with and without aphids, compared the amount of sugar supplied by EFNs and aphids, and examined whether extrafloral nectar or honeydew was more attractive to ants. Our results show that there was no inducible extrafloral secretion in response to aphid herbivory, but the sugar concentration in extrafloral nectar was higher than in honeydew, and more ant workers were attracted to an artificial extrafloral nectar solution than to an artificial aphid honeydew solution. These results indicate that extrafloral nectar is a more attractive reward than aphid honeydew per unit volume. However, even an aphid colony containing only two individuals can supply a greater reward to ants than EFNs. This suggests that the ant behavioral shift may be explained by the second hypothesis.  相似文献   

13.
Insecticide-resistant clones of the peach-potato aphid, Myzus persicae (Sulzer), have previously been shown to have a reduced response to aphid alarm pheromone compared to susceptible ones. The resulting vulnerability of susceptible and resistant aphids to attack by the primary endoparasitoid, Diaeretiella rapae (McIntosh), was investigated across three spatial scales. These scales ranged from aphids confined on individual leaves exposed to single female parasitoids, to aphids on groups of whole plants exposed to several parasitoids. In all experiments, significantly fewer aphids from insecticide-susceptible clones became parasitised compared to insecticide-resistant aphids. Investigations of aphid movement showed at the largest spatial scale that more susceptible aphids than resistant aphids moved from their inoculation leaves to other leaves on the same plant after exposure to parasitoids. The findings imply that parasitoids, and possibly other natural enemies, can influence the evolution and dynamics of insecticide resistance through pleiotropic effects of resistance genes on important behavioural traits.  相似文献   

14.
Aphids, through their close association with plants, cause systemic release of semiochemicals. These may have negative effects on subsequent aphid colonisation and can also have positive roles with insects that are antagonistic to aphid development, for example parasitoids. One of the semiochemicals involved in host selection by aphids is methyl salicylate, and since this compound was shown to have a role as a plant stress signal, the hypothesis that aphids might facilitate identification of new plant signals was examined. Confirmation was obtained during an investigation of avoidance of unsuitable hosts by the lettuce aphid, Nasonovia ribis-nigri. (Z)-Jasmone was identified as a plant-derived semiochemical acting negatively for a number of aphid species, and positively for insect antagonists such as parasitoids and predators. However, when the compound was employed at 0.1 ppm in air above intact plants, these plants then attracted aphid parasitoids long after the (Z)-jasmone itself was no longer detectable. A specific interaction was proposed, since the (Z)-jasmone appeared to be selectively taken up by the plants. Aerial interactions between intact barley plants from different cultivars, which may be differentially releasing stress associated signals, can also influence acceptability to aphids. Furthermore, it has been shown that exudates from the roots of aphid-infested plants, grown hydroponically or in soil, cause intact plants to become more attractive to parasitoids.  相似文献   

15.
Variation among aphid genotypes leads them to preferentially colonize different host-plant genotypes. In a natural community, different genotypes within a species are expected to coexist on a single host plant, and these aphids can interact, potentially, altering host-plant preferences. Using a model aphid (Sitobion avenae) and barley (Hordeum vulgare) system, we compared aphid preference and performance in one- or two-genotype colonies in pots with genetically diverse host plants (6 genotypes) or genetically uniform host plants (1 genotype per pot). Aphid host preference was shown to differ when a second aphid genotype was present, with one aphid genotype exhibiting a preference change due to the genotypic identity of the second aphid. The population growth rate of the aphids was not influenced by the competitor, and thus, we conclude that these effects are due to aphid distribution (preference) rather than effects through performance. Our work demonstrates that within a complex ecological community, an individual’s behavior can be influenced by interactions with other genotypes within the same species, as well as interactions with genotypes of other species.  相似文献   

16.
The facultative endosymbionts Hamiltonella defensa and Regiella insecticola are commonly found in aphids. They are linked with various ecological benefits but generally occur at low prevalence, which indicates a possible harbouring cost. Little is known about how the presence of facultative endosymbionts is reflected in honeydew composition. Honeydew is the key mediator of the mutualism between aphids and their tending ants. The present study examines whether endosymbionts have an influence on aphid honeydew quality by comparing the amino acid and carbohydrate concentrations between infected and uninfected aphids. To this end, two genetic lines of the aphid Aphis fabae Scopoli are experimentally infected with different strains of Hamiltonella and Regiella. Infected aphids are shown to have reduced concentrations of amino acids in the honeydew compared with uninfected aphids. However, the presence of endosymbionts has no effect on the absolute amount of carbohydrates produced. Nevertheless, interclonal variation in honeydew composition between aphid genotypes is observed for both carbohydrate and amino acid production. These results imply that the nutritional value of honeydew depends on aphid genotype, as well as on the presence of secondary bacterial endosymbionts, which suggests that there is a physiological cost of harbouring endosymbionts and which could also impact aphid attractiveness to tending ants.  相似文献   

17.
Exclusion barriers were used to manipulate numbers of polyphagous invertebrate predators so that their impact on cereal aphids and consequently wheat yield and quality could be examined. Experiments were conducted within the framework of the LINK Integrated Farming Systems Project which allowed comparisons to be made between the integrated and conventional farming systems under examination on a study farm in Hampshire, UK. Only in 1995 were the numbers of aphids per tiller, the aphid peak and rate of increase to the peak significantly greater in the exclusion areas where the density of polyphagous predators had been reduced. The maximum increase in aphids as a result of excluding polyphagous predators was 31%, which was equivalent to 130 aphid days. However, the polyphagous predators did not reduce the number of tillers infested. The relatively low impact of polyphagous predators was attributed to the aphid population phenology and greater effects may have been found had aphids infested the crops earlier in their development. Sowing date was shown to govern the time over which a crop may be susceptible to yield loss from aphids, with later-drilled crops being more susceptible to late-summer aphid infestations. Aphid numbers rarely affected grain yield but were found to be related to some grain quality parameters, but reducing polyphagous predators had no direct impact on grain yield or quality even where the aphid burden increased. The peak period of activity and density differed between the species of Carabidae, Staphylinidae and Araneae consequently influencing their relationship with the aphids. Some negative correlations were found between these groups of polyphagous predators and aphids. Species composition and abundance differed between fields thereby influencing the level of aphid predation. The exclusion barriers were most effective at reducing numbers of Carabidae although numbers of Staphylinidae and Araneae were also reduced. The consequences for Integrated Crop Management are discussed.  相似文献   

18.
Tuberaphis styraci is a social aphid that produces 2nd instar soldiers with morphological, behavioral and reproductive division. High aphid density was shown to induce soldier production in T. styraci, although direct cue of soldier induction associated with high density has been unknown. In order to identify the proximate environmental cue underlying the density-dependent soldier production, a series of experiments was conducted using an artificial diet rearing technique. When adult aphids were reared with live normal nymphs, live soldiers, dead normal nymphs, shed skins, honeydew globules and excreted wax, only live normal nymphs effectively induced soldier production. In order to gain insights into the nature of soldier-inducing cue associated with normal aphids, we performed artificial diet experiments using partitioned and non-partitioned chambers, in which direct contact between aphids was either inhibited or allowed. Induction of soldiers was observed only when direct contact was allowed. Therefore, it was shown that the soldier-inducing cue is neither volatile in the air nor diffusible through the diet, but is transmitted between normal non-soldier aphids via direct contact. On the basis of these results, we suggest that the soldier-inducing cue might be physical stimulus combined with non-volatile surface chemicals whose properties differ between normal aphids and soldiers.  相似文献   

19.
The synthetic aphid alarm pheromone (E)-beta-farnesene (EBF) is released by aphids in response to predation or other disturbances that occur in the colony. This is presumed to benefit the population by allowing increased survival of related individuals taking successful evasive action after perception of the pheromone. The effect of pheromone perception by aphids in the absence of real threats was investigated to determine the baseline effect of this communication on aphid survival, development, and fecundity in the laboratory. All four nymphal stages of cotton aphid, Aphis gossypii Glover (Homoptera: Aphididae), were stimulated with EBF. No significant difference in survival rates was observed in the aphids stimulated with EBF compared with the untreated control. Developmental times of the aphids were significantly prolonged in first and third instars when they were stimulated with EBF. Significantly lower fecundity and lighter weight of adult aphids were observed in aphids stimulated with EBF at as first instars compared with untreated controls and other instars. Results indicate that exposure of the first instar of A. gossipii to the synthetic alarm pheromone adversely affects subsequent development and fecundity of the population. This reduces aphid fitness that must be compensated by increased survival from predation for the pheromone to confer a selective advantage to the species.  相似文献   

20.
A thin layer of homologous antiserum (against the beet yellows virus - BYV) between the leaf surface and a Parafilm membrane totally inhibited the acquisition of BYV by aphidsMyzus persicae (Sulz.), but it did not affect the inoculation of BYV by infective aphids. BYV transmission decreased with aphids picking up the virus from leaves coated with a normal rabbit serum. Aphids sucking on purified BYV suspension through the Parafilm membrane as well as aphids allowed to probe into leaves of healthy plants spread with an infectious purified BYV suspension failed to transmit BYV. No BYV particles could be detected in eluates from stylets and labia cut off from aphids which had probed on BYV infected plants by electron microscopic examination. The acquisition seems to be the most important phase for the aphid transmission of BYV which is apparently carried on the stylet surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号