首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
By comparing the relative sizes of anatomical structures among phenotypes, selective pressures that shape species' morphologies can be evaluated. Aphids emit droplets containing an alarm pheromone/defensive secretion from unique anatomical structures called cornicles, upon being attacked. As aphids live in colonies of high relatedness, it is uncertain whether direct or inclusive fitness benefits have chiefly promoted cornicle evolution. Morphological measurements for apterous parthenogen, alate parthenogen, female sexual and male sexual morphs of 43 species (21 genera, one subfamily) were assessed to distinguish between the hypotheses that: (1) cornicles evolved for mechanical defence against natural enemies (direct fitness); (2) cornicles evolved for alarm signalling (inclusive fitness); or (3) cornicle length has been largely constrained by flight aerodynamics. Our results generally support the inclusive fitness hypothesis; cornicle length decreases as the relative number and relatedness of offspring decreases. As cornicle length is greatest in apterous parthenogenetic morphs, inclusive fitness benefits of protecting highly related kin may have been a key factor selecting for cornicles, and increased cornicle length, in aphids.  相似文献   

2.
Cornicle length in Macrosiphini aphids: a comparison of ecological traits   总被引:1,自引:0,他引:1  
Abstract 1. Aphids often emit cornicle droplets when attacked by predators. While the function of cornicle droplets has long been debated (i.e. mechanical protection vs. chemical signalling), it is not understood why aphid species have cornicles of different lengths.
2. It was hypothesised that aphids living in more scattered colonies have longer cornicles to scent-mark predators with cornicle droplets containing alarm pheromone, so that clone-mates are provided with advanced warning of a threat, even if not at the predation site. To test this hypothesis, multiple regression analyses were used, due to a lack of phylogenetic information on these taxa, to address which ecological traits (amount of wax on an aphid, degree of colony aggregation, feeding shelter, ant attendance) are correlated with cornicle length.
3. Aphids living in dense colonies tended to have shorter cornicles than aphids living in more scattered colonies. Also, aphids with more protection (i.e. wax) on their bodies had shorter cornicles. Aphids also tended to have shorter cornicles when tended by ants. The presence of a feeding shelter was not a good predictor of cornicle length.
4. It is suggested that longer cornicles function to scent-mark predators with alarm pheromone to increase the inclusive fitness of a clone; however the negative correlation between the amount of individual protection, and also ant attendance, and cornicle length argues for a trade-off between different forms of defence.  相似文献   

3.
Direct mass spectrometry of extracts showed that body triglycerides from 30 species of aphids contained the same fatty acid radicals, C6 (hexanoyl), C6:2 (sorboyl), C14 (myristoyl), and C16 (palmitoyl) as did the cornicle secretions, but in many species the proportions of hexanoyl and/or palmitoyl triglycerides were greater in the body. When cornicle secretions were collected progressively so as to draw increasingly upon body fat reserves, their composition changed gradually towards that of the body extracts.All summer forms of Myzus persicae had similar body triglycerides, even when selected for resistance to organophosphorus insecticides, or bred for 3 months on an artificial diet. The composition of body triglycerides was also independent of colour in two aphid species in which pink and green forms were compared.Body extracts contain enough triglycerides for their composition to be determined in single aphids and the use of body extracts allows examination of aphids lacking cornicles and of specimens that do not give cornicle secretion because of low body turgor. Although, as in the case of cornicle secretions, the triglyceride composition of body extracts was not well correlated with taxonomic position, body extracts provide a second chemical characteristic that can be used to define a particular species.  相似文献   

4.
Aphids have evolved various defense strategies against natural enemies, including secretions from their cornicles. We assessed the defensive function of cornicle secretions by the goldenrod aphid, Uroleucon nigrotuberculatum (Olive), against larvae of the lady beetles Coccinella septempunctata bruckii Mulsant and Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). The aphid secreted red droplets from its cornicles when attacked by the larvae. Two‐thirds of the C. septempunctata bruckii larvae and 46.7% of the P. japonica larvae that preyed on the aphids died before reaching the pre‐pupal stage. The secretions caused molting failure when smeared on the larvae's heads or glued to the larvae's mouthparts, killing 56.7% of C. septempunctata bruckii larvae and 36.7% of P. japonica larvae. Second instar larvae were affected most. About 40% of third and fourth instar larvae of C. septempunctata bruckii vomited soon after ingesting the aphids. In the field, up to 40% of first and second instar larvae were smeared with red secretions. Our results show that these cornicle secretions are an effective and active defense against earlier instars of coccinellid larvae.  相似文献   

5.
When attacked by natural enemies some insect pests, including many aphid species, alert neighboring conspecifics with alarm pheromones. Cornicle secretions with pheromones benefit the attacked aphid but are costly to produce, while alarm pheromone benefits probably fall largely on alerted conspecifics. Given these variable benefits, the likelihood of a secretion may change depending on aphid density. Thus, we first hypothesized that the common alarm pheromone in aphids, E-ß-farnesene (EBF), was present in soybean aphid (Aphis glycines Matsumura) cornicle secretions and would elicit an alarm response in aphids exposed to it. Second, since aphids other than the secretor also benefit from cornicle secretions, we hypothesized that the likelihood of secretion would increase concurrently with the density of neighboring clonal conspecifics. Third, because alarm reaction behavior (e.g. feeding cessation) is probably costly, we hypothesized that alarm reaction behavior would decrease as conspecific density (i.e. alternative prey for an attacking natural enemy) increased. We found that soybean aphids 1) produce cornicle secretions using EBF as an alarm pheromone, 2) are less likely to release cornicle secretions when alone than in a small group (~10 individuals), but that the rate of secretion does not increase further with additional conspecific density, and 3) also exhibit alarm reaction behavior in response to cornicle secretions independent of aphid density. We show that soybean aphids can use their cornicle secretions to warn their neighbors of probable attack by natural enemies, but that both secretion and alarm reaction behavior does not change as density of nearby conspecifics rises above a few individuals.  相似文献   

6.
Brown citrus aphid Toxoptera citricida Kirkadly is considered as an important pest of citrus because it vectors citrus tristeza closterovirus. Aphids secrete a fluid from their cornicles as a defensive mechanism against natural enemies. Earlier studies on cornicle secretions of aphids focus only on triglycerides and fatty acids. In the present study, three different methods are used to investigate the chemical composition of the cornicle fluid of T. citricida. Gas chromatography with flame ionization detection is used to detect and quantify the triglycerides after trimethylsilyl derivatization, and gas chromatography‐mass spectrometry (GC‐MS) is used to determine the fatty acid composition after derivatization with boron trifluoride–methanol. Other compounds are detected using GC‐MS after methoxyamine hydrochloride and N‐methyl‐N‐(trimethylsilyl)trifluoroacetamide derivatization. The major fatty acid in the cornicle secretion of T. citricida is palmitic acid. Oleic, stearic, myristic, myristoleic and sorbic acids are also detected, although in low amounts. Sorboyl, dipalmitoyl (C6‐2, C16, C16) and disorboyl, stearoyl (C6‐2, C6‐2, C18) are the main triglycerides detected in cornicle secretion. Trehalose is the most predominant sugar (558.2 mm ), followed by glucose (92.0 mm ) and inositol (48.8 mm ). Many amino acids, including proline, glycine, alanine and serine, are also detected. In addition, the cornicle secretion is rich in many organic acids, including malic, citric, succinic and lactic acid. Information obtained from the present study improves our understanding of the chemical composition of the cornicle secretion of the brown citrus aphid.  相似文献   

7.
When attacked by a predator, aphids of many species secrete cornicle droplets, containing an alarm pheromone, that results in the dispersal of nearby conspecifics. As females are parthenogenetic, alarm signaling functions to enhance the survival of clone-mates. Enigmatically, however, aphids are physically able to, but usually do not emit alarm pheromone when initially detecting a predator, but rather signal only when captured by a predator. We hypothesized that cornicle droplets may be attractive to natural enemies and result in an increased risk of predation for the signaler, thereby selecting for prudent alarm signalers. We tested this hypothesis by investigating the olfactory cues that the multicolored Asian ladybird beetle, Harmonia axyridis Pallas, uses to locate pea aphids, Acyrthosiphon pisum. In choice tests, H. axyridis were attracted to odors from pea aphid colonies, whether feeding or not feeding on a host plant leaf, but were not attracted to cornicle droplets containing alarm pheromone. Further, individual pea aphids emitting cornicle droplets were not located more often or in a shorter period of time by beetles than aphids not emitting cornicle droplets. Thus, the cost of emitting early alarm signals is not prohibitively high in regards to the attraction of predators such as H. axyridis.  相似文献   

8.
Insects have evolved amazing methods of defense to ward off enemies. Many aphids release cornicle secretions when attacked by predators and parasitoids. These se cretions contain an alarm pheromone that alerts other colony members of danger, thereby providing indirect fitness benefits to the releaser. In addition, contact with cornicle se cretions could also threaten an attacker and could provide direct fitness to the releaser. However, cornicle secretions may also be recruited as a kairomonal cue by aphid natural enemies. In this study, we investigated the effect of the cornicle droplet volatiles of the cabbage aphid, Brevicoryne brassicae (L.), on the hostsearching behavior of naive and experienced female Diaeretiella rapae (M'Intosh) parasitoids in olfactometer studies. In addition, we evaluated the role ofB. brassicae cornicle droplets on the oviposition prefer ence of the parasitoid in a twochoice bioassay. Naive females did not exhibit any preference between volatiles from aphids secreting cornicle droplets over nonsecreting aphids, while experienced parasitoids exploited the secretions in their host location. Experienced females were also able to choose volatiles from both secreting and nonsecreting aphids over clean air, while this ability was not observed in naive females. Although secretion of cornicle droplets did not influence the percentage of first attack in either naive or experienced females, the success of attack (i.e. resulting in a larva) was significantly different between secreting and nonsecreting aphids in the case of experienced parasitoids.  相似文献   

9.
The cornicle secretion of Myzus persicae reared on artificial diet only elicits an alarm response in plant‐reared conspecifics after the young aphids have been transferred to plants for 7 days. Acetate in the form of 0.32% sodium acetate has been added to the diet as an early step in synthesis of the alarm pheromone, (E)‐β‐farnesene (EBF). The cornicle secretion of diet‐reared aphids then elicits an alarm response. However, there is no difference in internal EBF concentration between plant‐ and diet‐reared aphids. Puncturing aphids, either plant‐ or diet‐reared, with a pin shows that both can elicit an alarm response, whereas it is reduced by half with diet‐reared individuals. Although there is no significant difference in the concentration of EBF produced, the total amount in diet‐reared aphids is increased by acetate in the diet to a level similar to that in plant‐reared individuals: the size of aphids reared on an acetate‐supplemented diet is increased and comparable with the size of those that are plant‐reared. Bioassays with a range of EBF concentrations show a high threshold for the alarm response. It is concluded that the different size of aphids reared on plants and standard diet results in them secreting, respectively, above and below the response threshold.  相似文献   

10.

Background

Altruistic anti-predatory behaviours pose an evolutionary problem because they are costly to the actor and beneficial to the recipients. Altruistic behaviours can evolve through indirect fitness benefits when directed toward kin. The altruistic nature of anti-predatory behaviours is often difficult to establish because the actor can obtain direct fitness benefits, or the behaviour could result from selfish coercion by others, especially in eusocial animals. Non-eusocial parthenogenetically reproducing aphids form colonies of clone-mates, which are ideal to test the altruistic nature of anti-predatory defence behaviours. Many aphids release cornicle secretions when attacked by natural enemies such as parasitoids. These secretions contain an alarm pheromone that alerts neighbours (clone-mates) of danger, thereby providing indirect fitness benefits to the actor. However, contact with cornicle secretions also hampers an attacker and could provide direct fitness to the actor.

Results

We tested the hypothesis that cornicle secretions are altruistic by assessing direct and indirect fitness consequences of smearing cornicle secretions onto an attacker, and by manipulating the number of clone-mates that could benefit from the behaviour. We observed parasitoids, Aphidius rhopalosiphi, foraging singly in patches of the cereal aphid Sitobion avenae of varied patch size (2, 6, and 12 aphids). Aphids that smeared parasitoids did not benefit from a reduced probability of parasitism, or increase the parasitoids' handling time. Smeared parasitoids, however, spent proportionately more time grooming and less time foraging, which resulted in a decreased host-encounter and oviposition rate within the host patch. In addition, individual smearing rate increased with the number of clone-mates in the colony.

Conclusions

Cornicle secretions of aphids were altruistic against parasitoids, as they provided no direct fitness benefits to secretion-releasing individuals, only indirect fitness benefits through neighbouring clone-mates. Moreover, the use of cornicle secretions was consistent with their altruistic nature, because the occurrence of this behaviour increased with the size of indirect fitness benefits, the number of clone-mates that can benefit. This study provides evidence for a case of kin-directed altruistic defence outside eusocial animals.  相似文献   

11.
A laboratory study was made of the feeding behaviour of the ladybeetlePseudoscymnus kurohime (Miyatake) when attacking the sugar cane woolly aphidCeratovacuna lanigera Zehntner. The 1st-instar ladybeetle larva was smaller than the 1st instar aphid nymph. All larval stages of the ladybeetle sucked out the body fluids of aphids and left their emptied corpses. The 1st, 2nd, and 3rd instar ladybeetle larvae mostly attacked 1st instar aphids, whereas the 4th-instar ladybeetle larvae attacked all stages of aphids. Ladybeetle adults ate mostly 1st-instar aphids. Young larvae attacked aphids in several different ways: (1) They crawled under an aphid, seized it by its underside and lifted it up. (2) They attacked new born nymphs at birth or shortly afterwards. (3) They fed on an aphid that had been captured by an older larva. The larvae preferred to seize with their mandibles the head or thorax of an aphid, while adults seized their prey by the abdomen. When attacked by an adult, 82% of the aphids secreted droplets from their abdominal cornicles, whereas only 7.2–12% secreted droplets when attacked by larvae. The 4th instar larvae more voracious than the younger larvae.  相似文献   

12.
The lytic proteins mediating target cell killing are stored in the lysosomes of activated cytotoxic T lymphocytes (CTL) and are secreted upon recognition of a target cell. These secretory lysosomes cannot be detected in resting T lymphocytes. Interaction of a resting cell with a target cell activates de novo formation of secretory lysosomes. CTL clones in culture mimic this behaviour, and so provide an ideal system for studying secretory lysosome biogenesis and maturation. In the genetic disease, Chediak Higashi syndrome (CHS), all lysosomes in the cells are enlarged and reduced in number compared with wild-type (WT) cells. We have used CTL from this disease to study secretory lysosome biogenesis and maturation. We show that at early stages after activation the secretory lysosomes are identical in WT and mutant cells, and that delivery of proteins to the secretory lysosome along the biosynthetic and endocytic pathways is normal in the mutant cells. With time, the lysosomes in the mutant cells aggregate, become larger and fewer in number and eventually form giant structures. Our results show that the initial steps of secretory lysosome formation are normal in CHS, but that the organelles subsequently fuse together during cell maturation to form the giant secretory lysosomes.  相似文献   

13.
Summary Intraperitoneal injection of p-chlorophenylalanine (pCPA) methylester (100 mg/kg body weight) results in an activation of the lysosomal system of the secretory cells in the rat seminal vesicle and an elevation of the activities of lysosomal enzymes within 15 min following the injection. Large autophagic vacuoles are formed, sequestering rough endoplasmic reticulum and part of the Golgi apparatus within 2 h. Shortly after the activation of the lysosomal system an elevation of both DNA and protein synthesis is measured biochemically. 6 h subsequent to the injection a wave of mitoses of the secretory cells begins, reaching a maximum 6 h later and then declining within 3 h. About 12 h following the injection a second rise in lysosomal activity begins, declining within 24 h. The entire sequence of lysosomal and proliferative activities is inhibited in antiandrogen-pretreated rats. Deduced from these findings the following hypothesis of growth regulation of the accessory sex glands is advanced: enhanced loss of intracellular material during autophagocytosis diminishes the intracellular concentration of a substance curtailing cell division below its effective threshold resulting in division of the secretory cells. The prerequisites of this mechanism are (i) a sufficient distributive capacity of the stroma for hormones (androgens) and metabolic precursors, and (ii) sufficient capacity of the basal cells for transporting the precursors to the secretory cells. Sloughing of the secretory cells separates them from these auxiliary structures (stroma and basal cells) and enables the basal cells to divide.The financial support of the Deutsche Forschungsgemeinschaft is gratefully acknowledged  相似文献   

14.
The insecticides demeton-S-methyl and pirimicarb induced cornicle secretion, and thereby alarm pheromone release, in Myzus persicae. Secretion was earliest in young and insecticide-susceptible aphids. In laboratory experiments to assess the behavioural significance of this effect, demeton-S-methyl applied to colonies of R1 (moderately resistant) aphids killed the majority, but caused the remainder to disperse. The timing and degree of dispersal depended on the size and composition of the colonies. Beet yellows virus was transferred by dispersed aphids, but less frequently when recipient indicator seedlings were treated with demeton-S-methyl. R2 (strongly resistant) aphids soon dispersed from colonies containing susceptible nymphs (which secrete alarm pheromone early) and transmitted readily even to treated seedlings. The non-persistent potato virus Y was transferred by dispersed R: aphids and no protection was afforded by treatment of the seedlings.  相似文献   

15.
The stratified epithelium of the central collecting duct of the elasmobranch(Scylliorhinus canicula, Galeorhinus galeus andRaja batis) rectal gland consists of 3 to 6 layers of cells: one superficial, and several basal cell layers. In the superficial layer normally three different types of cells can be distinguished (a) goblet cells, (b) cells with apical secretory granules and (c) flask-shaped cells. The superficial layer ofScylliorhinus canicula reveals a further cell type, so-called mitochondria-rich cells. The epithelial areas built by these cells are always single-layered. The goblet-cells are very similar to goblet cells found in the intestine of vertebrates. Their dominant structures are a well developed ergastoplasm, a large Golgi-apparatus and mucous granules compactly filling the apical cell region. The cells with apical secretory granules are columnar or dumbbell shaped. They contain a rough-surfaced endoplasmic reticulum and a well developed Golgi-apparatus. The secretory granules are loosely distributed within the Golgi-field and are arranged in one or more rows just below the cell apex. The flask shaped cells are characterized by a cytoplasm rich in small vesicles. They posses few dictyosomes and several small mitochondria. There is some evidence for endocytotic activity. The mitochondria-rich cells are characterized by lateral cell interdigitations, by a basal labyrinth and by numerous mitochondria. They are similar to the excretory cells of rectal gland parenchyma. The cells of the basal epithelium layers are differenciated only to a small extent. They are joined in a loose formation with white blood cells often found in the intercellular spaces. The function of the elasmobranch rectal gland is not restricted to the excretion of concentrated salt solutions. There is also a significant secretion of mucous substances. The tubule glands are primarily excretory, the epithelium cells of the central collecting duct mainly secretory in function.  相似文献   

16.
A study of the histochemical reaction for acid phosphatase (AcPase) in venom gland secretory cells from Bothrops jararaca was done to investigate the distribution of lysosomes and related structures in stages of high- and low-protein synthesis. From this analysis, it was expected to gain insight into the cellular pathway by which AcPase is secreted into the venom. Two subtypes of AcPase reactivities were detected in the venom gland secretory cells: one was found in lysosomes and related structures and in some trans-Golgi network (TGN) elements and reacts with beta-glycerophosphate (betaGP) as substrate; the other was found in secretory vesicles, apical plasmalemma, lysosomes and related structures, and in some TGN elements, and reacts with cytidine monophosphate (CMP). The results are compatible with the possibility that there is a secretory via for AcPase in the venom gland of B. jararaca and that the elements composing this pathway are noted only when CMP is used as substrate. Large autophagosomes reactive to both betaGP and to CMP were commonly observed in the basal region of the secretory cells, and they were more abundant in the glands during the stage of low activity of protein synthesis.  相似文献   

17.
An essential feature of mammary gland differentiation during pregnancy is the formation of alveoli composed of polarized epithelial cells, which, under the influence of lactogenic hormones, secrete vectorially and sequester milk proteins. Previous culture studies have described either organization of cells polarized towards lumina containing little or no demonstrable tissue-specific protein, or establishment of functional secretory cells exhibiting little or no glandular architecture. In this paper, we report that tissue-specific vectorial secretion coincides with the formation of functional alveoli-like structures by primary mammary epithelial cells cultured on a reconstituted basement membrane matrix (derived from Engelbreth-Holm-Swarm murine tumour). Morphogenesis of these unique three-dimensional structures was initiated by cell-directed remodelling of the exogenous matrix leading to reorganization of cells into matrix-ensheathed aggregates by 24 h after plating. The aggregates subsequently cavitated, so that by day 6 the cells were organized into hollow spheres in which apical cell surfaces faced lumina sealed by tight junctions and basal surfaces were surrounded by a distinct basal lamina. The profiles of proteins secreted into the apical (luminal) and basal (medium) compartments indicated that these alveoli-like structures were capable of an appreciable amount of vectorial secretion. Immunoprecipitation with a broad spectrum milk antiserum showed that more than 80% of caseins were secreted into the lumina, whereas iron-binding proteins (both lactoferrin and transferrin) were present in comparable amounts in each compartment. Thus, these mammary cells established protein targeting pathways directing milk-specific proteins to the luminal compartment. A time course monitoring secretory activity demonstrated that establishment of tissue-specific vectorial secretion and increased total and milk protein secretion coincided with functional alveolar-like multicellular architecture. This culture system is unique among models of epithelial cell polarity in that it demonstrates several aspects of epithelial cell polarization: vectorial secretion, apical junctions, a sequestered compartment and formation of a basal lamina. These lumina-containing structures therefore reproduce the dual role of mammary epithelia to secrete vectorially and to sequester milk proteins. Thus, in addition to maintaining tissue-specific cytodifferentiation and function, a basement membrane promotes the expression of tissue-like morphogenesis.  相似文献   

18.
The ultrastructure of prostate gland of Lampito mauritii revealed two types of secretory cells. Type 1 cells with a broad basal region and a long apical region contain electron dense oval secretory granules with an increased density at the core region. Numerous electron lucent granules with fine filamentous and electron dense amorphous materials also occur at the basal region of these cells. Type 2 cells contain electron lucent mucous-like secretory granules. This cell type contains exceptionally large Golgi complexes having 20-23 stacked cisternae. Both cell types open into a common lumen and numerous microtubules are visible at the apical end. Junctional complexes, such as desmosomes and septate junctions, are observed in this glandular tissue.  相似文献   

19.
By means of electron microscopy cells in the human submandibular glands were studied. It was demonstrated that in acini two types of glandular cells were present: mucosal and seromucosal. In the latter, secretory granules are descrete with electron opaque cores in most of them. Mucocytes are filled with an electron transparent secrete; secretory granules often confluent and their membranes rupture. The acini are surrounded with myoepithelial cells. Intercalated ducts consist of cells with moderately electron opaque granules. In some granules there are dense bodies excentrically situated. In these cells there occur lipid inclusions. Striated ducts are composed of basal (electron transparent) and high cylindric (light and dark) cells. The cylindrical cells have a large amount of mitochondria, deep folds in their basal plasmolemma protruding into cytoplasma. Most of the cells in these parts contain small apically accumulated secretory granules with a dense matrix and separate larger ones scattered in the cell. It is possible to suggest that some secretory granules of ductal or, perhaps, acinar origin contain hormonal products.  相似文献   

20.
This study tested effects of maternal body size on foraging behavior and progeny development in a thelytokous population of Lysiphlebus fabarum (Marshall) (Hymenoptera: Braconidae). Small and large wasps were reared from first and second instar hosts [black bean aphid, Aphis fabae Scopoli (Hemiptera: Aphididae)], respectively, and each was provided with a patch (bean leaf disk) containing either 15 small (second instar) or 15 large (fourth instar) hosts for a 30‐min foraging period. Neither body size nor host size affected time allocation to various behaviors within a patch, but second instar aphids produced significantly more mummies than fourth instars. The preferred attack orientation was from the side of the aphid, suggesting wasps were sensitive to the risk of smearing with cornicle secretions. Few wasps developed in fourth instar hosts, suggesting later host instars were somewhat resistant to parasitism. Second instar hosts, the most suitable stage for L. fabarum development, relied more on defensive behavior, specifically kicking and secreting cornicle droplets. Large wasps were more likely to elicit a double cornicle secretion, indicating that aphids graded their response to the size of the attacker. Larger wasps were also more likely to be smeared with cornicle secretion, suggesting they were more vulnerable than small wasps. Although small wasps had smaller eggs than large wasps, there was no effect of maternal egg size on the size of progeny. However, daughters of small females emerged with larger egg loads than daughters of large mothers, and their eggs tended to be slightly smaller, although not significantly. Regression analysis revealed a positive correlation between maternal egg size and progeny developmental time for small and large wasps, and between maternal egg size and progeny egg load for small wasps. These results confirm maternal effects of body size in an aphid parasitoid, and reveal that vulnerability to host behavioral defenses is also body size dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号