首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
Honey bee, Apis mellifera, entrance guards use chemical cues to discriminate nestmates from non‐nestmates. Previous research has shown that when wax combs are reciprocally swapped between two colonies, guards become more accepting of workers from the swap partner. However, when combs were transferred only one way, guards in the comb‐receiver colony became more accepting of bees from the comb‐donor colony, but not vice versa. Hence, the increased acceptance of non‐nestmates caused by reciprocal comb swapping was not because of introduced bees acquiring odours from the transferred combs, which was surprising because comb wax was known to affect the odour of bees. In the current experiment, we caused workers to acquire either nestmate or non‐nestmate odours by holding them for 15 min in a tube, which had previously held nestmates or non‐nestmates and then measured their acceptance by entrance guards of nestmate or non‐nestmate hives. When transferred workers had acquired odours of non‐nestmates, acceptance by their own colony’s guards significantly decreased to 66% from 91%. Conversely, the acceptance of non‐nestmates that had acquired odours of the guards’ own nestmates was unchanged, 25% vs. 25%. These results show that when equivalent changes in the odour of introduced bees are made, guards are more sensitive to changes that cause nestmates to acquire non‐nestmate odours than vice versa. These results are also a likely explanation for the earlier and surprising results from the unidirectional comb swap experiment ( Couvillon et al. 2007 ). We make a hypothesis for the underlying mechanism in terms of a multidimensional recognition cue space.  相似文献   

2.
Context plays an important role in a discriminator's ability to make appropriate recognition decisions, such as accepting what is acceptable and rejecting what is not acceptable. Previously it was shown that in both honey bees and stingless bees, discriminating workers (guards) make more errors towards conspecific non‐nestmates when the guards are removed from the natural hive entrance. However, it may be that guards, in addition to making incorrect recognition decisions, also may adopt non‐guarding behaviours. Here, we tested honey bee guards in two contexts (natural versus unnatural) against five types of introduced arthropods (conspecific nestmates and non‐nestmates; allospecific wasps, beetles and woodlice), which should be rejected without error. We scored a guard's response as accept, reject, avoid and ignore. Total errors significantly increased from natural to unnatural contexts. Specifically, guards were significantly more likely to make an acceptance error, guarding and accepting both conspecific and allospecific non‐nestmates, in the unnatural context. Importantly, guards were significantly more likely to adopt a non‐guarding behaviour in the unnatural context, which usually involved ignoring or avoiding, where a guard makes contact but then immediately retreats, the introduced arthropod. Overall, these data demonstrate the context is important. Removing a guard from the home that it protects elicits either incorrect discrimination or, additionally, a complete lack of discriminator behaviour altogether.  相似文献   

3.
This study describes the tactics used by Cyprian honeybees (Apis mellifera cypria) to defend their colonies against hornet (Vespa orientalis orientalis) attacks. We use simulated hornet attacks and a combination of video recordings and image analysis to reveal, for the first time, contrasted intra-subspecies defensive tactics that operate at the colony level during predation. In some colonies, when attacked, the numbers of guards at the hive entrance increases rapidly to attack, engulf, and kill invading hornets. In other colonies, guards avoid conflicts with hornets by retreating gradually and by forming a defensive line of honeybees at the hive entrance. Retreater colonies have propolis walls at the hive entrances with small apertures that are too narrow to allow the hornet to access the hive and that therefore reinforces entrance protection. On the contrary, attacker colonies have propolis walls with large openings through which the hornet can pass; these bees block the hornet's access by intensively guarding the hive entrance. We experimentally destroy propolis walls to test whether colonies consistently rebuild walls with the same intrinsic characteristics and we also monitor the survival rate of each anti-predator tactic after massive natural predation by hornets.  相似文献   

4.
The acceptance threshold model predicts that in a fluctuatingenvironment a recognition system should be adaptive ratherthan fixed. In particular, discriminating individuals, suchas guards at a nest entrance, should be less permissive toconspecifics when both the frequency of non-nest-mate contact and the cost of accepting non-nest mates is high. We testedthese predictions by studying honey bee guarding during a periodin which nectar conditions changed from dearth to abundance.Initially, during nectar dearth, individual guards accepted80% of introduced nest mates and 25% of non-nest mates. As nectar conditions improved, both the intensity of robbing andguarding and the cost of non-nest-mate acceptance declined.In response, individual guards became more permissive to nestmates and non-nest mates until eventually an "accept-all" thresholdoccurred—all nest mates and non-nest mates were accepted.These data are consistent with a shifting acceptance thresholdand provide the first field data to support the model. A simple linear relationship occurred between the number of guards andthe number of fights, 9:1, observed at the hive entrance, suggestingthat guarding may be regulated by intruder intensity or otherwiseregulated in an adaptive manner.  相似文献   

5.
ABSTRACT. Worker bees recently denied access to their colony expose their Nasonov glands, thereby releasing pheromone, at the entrance to their hive. Odours of the following induced this response: empty comb, purified beeswax, honey, pollen, propolis, a live queen, the (E)-9-hydroxy-2-decenoic acid component of a queen's mandibular glands, live drones and workers, inert material on which workers had walked inside the hive, and synthetic Nasonov pheromone. The total odour of a foreign colony also induced worker bees to expose their Nasonov glands but was less effective than the odour of their own colony. Odours of the following were not effective: the (E)-9-oxo-2-decenoic acid component of a queen's mandibular glands, recently killed drones and workers, worker brood (eggs, larvae, pupae).  相似文献   

6.
Social learning of floral odours inside the honeybee hive   总被引:11,自引:0,他引:11  
A honeybee hive serves as an information centre in which communication among bees allows the colony to exploit the most profitable resources in a continuously changing environment. The best-studied communication behaviour in this context is the waggle dance performed by returning foragers, which encodes information about the distance and direction to the food source. It has been suggested that another information cue, floral scents transferred within the hive, is also important for recruitment to food sources, as bee recruits are more strongly attracted to odours previously brought back by foragers in both honeybees and bumble-bees. These observations suggested that honeybees learn the odour from successful foragers before leaving the hive. However, this has never been shown directly and the mechanisms and properties of the learning process remain obscure. We tested the learning and memory of recruited bees in the laboratory using the proboscis extension response (PER) paradigm, and show that recruits indeed learn the nectar odours brought back by foragers by associative learning and retrieve this memory in the PER paradigm. The associative nature of this learning reveals that information was gained during mouth-to-mouth contacts among bees (trophallaxis). Results further suggest that the information is transferred to long-term memory. Associative learning of food odours in a social context may help recruits to find a particular food source faster.  相似文献   

7.
We investigated the olfactory mechanism by which guard bees of Lasioglossum zephyrum decide whether to admit conspecifics to their nests. First we set up colonies of young bees, consisting of sisters from a single family or a mixture of bees from two distinct families. These bees were then introduced into colonies other than their own. Our experimental evidence shows that guards learn the odours of their nestmates, then accept or reject other bees on the basis of the similarity of the latters' odours to those of the guards' nestmates. Guards act as though they do not use their own odour as a reference for nestmate recognition. This recognition mechanism enables individuals with different odours to live together; it may also enhance the operation of kin selection by providing a more complete basis for discriminating relatives from non-relatives. No evidence was found that nestmates acquire one another's odours. Such lack of odour transfer may be characteristic of early stages in the evolution of recognition mechanisms.  相似文献   

8.
Fatty acids, normally found in comb wax, have a strong influence on nestmate recognition in honey bees, Apis mellifera L. Previous work has shown that bees from different colonies, when treated with 16- or 18-carbon fatty acids, such as oleic, linoleic, or linolenic acids, are much less likely to fight than bees from two colonies when only one of the two is treated. Previous work also shows that the influence of comb wax on recognition has practical applications; transfer of empty comb between colonies, before merger of those colonies, reduces fighting among workers within the merged colony. Flax oil contains many of the same fatty acids as beeswax. Here, we tested the hypothesis that treatment of individual bees with flax oil affects nestmate recognition; the results proved to be consistent with this hypothesis and showed that treated bees from different colonies were less likely to fight than untreated bees. These results suggest that flax oil may be useful in facilitating colony mergers.  相似文献   

9.
The stingless bee Tetragonsica angustula (Latreille) is the only social bee known that has two different types of nest entrance guards. As in other stingless bees and the honey bee one type stands on, in or near the nest entrance. The second type, so far only known in T. angustula, hovers near the nest entrance. In order to gain further understanding of this unique situation we studied guarding behaviour in both types of guards. Using marked bees, we found that individual worker bees guarded for a long time, up to 20 days, relative to their short, average c. 21 day, lifespan. Relatively few, 33%, individually marked guards were seen performing both types of guarding. The others only acted as standing guards. The bees that did perform both types did so over similar periods of their life. Hovering bouts were 57 min long, interrupted by breaks inside the hive of a few minutes (3.3 ± 1.5 min). Standing bouts were slightly longer (74 min) and also interrupted by short breaks (7.82 ± 6.45 min). Human breath, mimicking a vertebrate intruder, caused the guards to retreat into the nest rather than to attack the intruder. Some colonies protected themselves against intruders by closing the entrance during the night (32% and 56% of colonies during two nights). In summary, our results indicate that nest entrance guarding in T. angustula involves division of labour between the two types, in which most guarding individuals only act as standing guards.  相似文献   

10.
Nestmate recognition is the basic mechanism for rejecting foreign individuals and is essential for maintaining colony integrity in insect societies. However, in honeybees, Apis mellifera, both workers and males occasionally gain access to foreign colonies in spite of nest guards (=drifting). Instead of conducting direct behavioural observations, we inferred nestmate recognition for males and workers from the genotypes of naturally drifting individuals in honeybee colonies. We evaluated the degree of polyandry of the resident queens, because nestmate recognition theory predicts that the genotypic composition of insect colonies may affect the recognition precision of guards. Workers (N=1346) and drones (N=407) from 38 colonies were genotyped using four DNA microsatellite loci. Foreign bees were identified by maternity testing. The proportion of foreign individuals in a host colony was defined as immigration. Putative mother queens were identified if a queen's genotype corresponded with the genotype of a drifted individual. The proportion of a colony's individuals in the total number of drifted individuals was defined as emigration. Drones immigrated significantly more frequently than workers. The impact of polyandry was significantly different between drones and workers. Whereas drones immigrated more readily into less polyandrous colonies, worker immigration was not correlated with the degree of polyandry of the host colony. Furthermore, colonies with high levels of emigrated drones did not show high levels of emigration for workers, and colonies that adopted many workers did not adopt many foreign drones. Our data indicate that genetically derived odour cues are important for honeybee nestmate recognition in drones and show that different nestmate recognition mechanisms are used to identify drones and workers.  相似文献   

11.
In social insects, recognition of nestmates from aliens is based on olfactory cues, and many studies have demonstrated that such cues are contained within the lipid layer covering the insect cuticle. These lipids are usually a complex mixture of tens of compounds in which aliphatic hydrocarbons are generally the major components. The experiments described here tested whether artificial changes in the cuticular profile through supplementation of naturally occurring alkanes and alkenes in honeybees affect the behaviour of nestmate guards. Compounds were applied to live foragers in microgram quantities and the bees returned to their hive entrance where the behaviour of the guard bees was observed. In this fashion we compared the effect of single alkenes with that of single alkanes; the effect of mixtures of alkenes versus that of mixtures of alkanes and the whole alkane fraction separated from the cuticular lipids versus the alkene fraction. With only one exception (the comparison between n-C(19) and (Z)9-C(19)), in all the experiments bees treated with alkenes were attacked more intensively than bees treated with alkanes. This leads us to conclude that modification of the natural chemical profile with the two different classes of compounds has a different effect on acceptance and suggests that this may correspond to a differential importance in the recognition signature.  相似文献   

12.
Summary Upon entering a new home site a honeybee swarm is faced with the task of organizing the building activities of thousands of component bees so that several straight and parallel vertically oriented combs can be quickly and efficiently built. As a part of this organization process it is necessary for the bees to select and agree upon a planar orientation for the new combs.This paper presents evidence that memory of a previously used comb direction influences the building of the new set of combs. Swarms which have recently moved into bait-hives (empty boxes placed in trees to attract feral swarms) tend to maintain the previously used comb direction when removed and forced to build new combs, whereas swarms which have occupied the bait-hives for a longer period (over 9 days) do not.Recent swarms predictably alter their comb building direction within the influence of an applied earthstrength magnetic field, indicating that honey bees are able to use the earth's magnetic field as a reference at the commencement of comb construction in a new hive.  相似文献   

13.
A hopelessly queenless honeybee colony has only one reproductive option: some workers must produce sons before the colony dies. This requires the workers to curtail egg policing (removal of worker-produced eggs), rendering the colony vulnerable to non-natal reproductive parasitism. In the Western honeybee, Apis mellifera, guarding (prevention of foreign workers from entering a colony) increases in queenless colonies, providing a defence against non-natal parasitism. However, in the closely related Eastern honeybee A. cerana, queenless colonies appear to be more tolerant of bees from other colonies. We presented guards of four A. cerana colonies with three types of workers: nestmate returning foragers, non-nestmate returning foragers and non-nestmates from a laying-worker colony. The latter are likely to have active ovaries, allowing us to test whether guard bees can detect which potential invaders are more likely to be reproductive parasites. After assessing guards’ reactions, we recaptured test bees and dissected them to determine levels of ovary activation. We found that nestmates were accepted significantly more frequently than the other two types of workers. However, there was no difference in the overall acceptance rates of non-nestmate returning foragers and bees from within laying-worker colonies. In addition, ovary-activated workers were no less likely to be accepted than those with inactive ovaries. Interestingly, colonies were more accepting of all three types of test bee after being made queenless. We conclude that, as has been previously suggested, guarding has no specific role in the prevention of non-natal parasitism in A. cerana.  相似文献   

14.
How do flying insects monitor foraging efficiency? Honeybees (Apis mellifera) use optic flow information as an odometer to estimate distance travelled, but here we tested whether optic flow informs estimation of foraging costs also. Bees were trained to feeders in flight tunnels such that bees experienced the greatest optic flow en route to the feeder closest to the hive. Analyses of dance communication showed that, as expected, bees indicated the close feeder as being further, but they also indicated this feeder as the more profitable, and preferentially visited this feeder when given a choice. We show that honeybee estimates of foraging cost are not reliant on optic flow information. Rather, bees can assess distance and profitability independently and signal these aspects as separate elements of their dances. The optic flow signal is sensitive to the nature of the environment travelled by the bee, and is therefore not a good index of flight energetic costs, but it provides a good indication of distance travelled for purpose of navigation and communication, as long as the dancer and recruit travel similar routes. This study suggests an adaptive dual processing system in honeybees for communicating and navigating distance flown and for evaluating its energetic costs.  相似文献   

15.
Distinguishing nest-mates from non-nest-mates underlies key animal behaviours, such as territoriality, altruism and the evolution of sociality. Despite its importance, there is very little empirical support for such a mechanism in nature. Here we provide data that the nest-mate recognition mechanism in an ant is based on a colony-specific Z9-alkene signature, proving that surface chemicals are indeed used in ant nest-mate recognition as was suggested 100 years ago. We investigated the cuticular hydrocarbon profiles of 10 Formica exsecta colonies that are composed almost entirely of a Z9-alkene and alkane component. Then we showed that worker aggression is only elicited by the Z9-alkene part. This was confirmed using synthetic Z9-alkene and alkane blends matched to the individual colony profiles of the two most different chemical colonies. In both colonies, only glass beads with 'nest-mate' alkene profiles received reduced aggression. Finally, changing the abundance of a single Z9-alkene on live ants was shown to significantly increase the aggression they received from nest-mates in all five colonies tested. Our data suggest that nest-mate discrimination in the social insects has evolved to rely upon highly sensitive responses to relatively few compounds.  相似文献   

16.
Discriminating among individuals and rejecting non-group members is essential for the evolution and stability of animal societies. Ants are good models for studying recognition mechanisms, because they are typically very efficient in discriminating ‘friends’ (nest-mates) from ‘foes’ (non-nest-mates). Recognition in ants involves multicomponent cues encoded in cuticular hydrocarbon profiles. Here, we tested whether workers of the carpenter ant Camponotus herculeanus use the presence and/or absence of cuticular hydrocarbons to discriminate between nest-mates and non-nest-mates. We supplemented the cuticular profile with synthetic hydrocarbons mixed to liquid food and then assessed behavioural responses using two different bioassays. Our results show that (i) the presence, but not the absence, of an additional hydrocarbon elicited aggression and that (ii) among the three classes of hydrocarbons tested (unbranched, mono-methylated and dimethylated alkanes; for mono-methylated alkanes, we present a new synthetic pathway), only the dimethylated alkane was effective in eliciting aggression. Our results suggest that carpenter ants use a fundamentally different mechanism for nest-mate recognition than previously thought. They do not specifically recognize nest-mates, but rather recognize and reject non-nest-mates bearing odour cues that are novel to their own colony cuticular hydrocarbon profile. This begs for a reappraisal of the mechanisms underlying recognition systems in social insects.  相似文献   

17.
Social insect colonies face the challenge of adjusting the behavior of individuals performing various tasks to a changing environment. It has been shown in several species that characteristics of interaction patterns between nestmates provide social information that allows individuals to adjust their behavior in adaptive ways. A well-studied example is the modulation of recruitment by dancing in honeybees ( Apis mellifera ) in response to the time, the foragers have to search for unloading partners and the number of unloading bees. Here we tested if experiences that hive bees acquired during past social interactions affect interactions with the incoming foragers. Bees returning with food containing a floral scent that was familiar to the hive bees from previous interactions had more food receivers during unloading and more followers during dancing displays compared with foragers returning with food containing a novel scent or unscented food. We also confirm that the number of receivers during food unloading is positively related to the motivation to dance immediately after unloading. Our results show that prior social experiences affect the ways in which individuals interact in the context of honeybee nectar collection and, therefore, how learning in hive bees contributes to the organization of this collective task.  相似文献   

18.
Heritability and genetic correlations for honey (HP) and propolis production (PP), hygienic behavior (HB), syrup-collection rate (SCR) and percentage of mites on adult bees (PMAB) of a population of Africanized honeybees were estimated. Data from 110 queen bees over three generations were evaluated. Single and multi-trait models were analyzed by Bayesian Inference using MTGSAM. The localization of the hive was significant for SCR and HB and highly significant for PP. Season-year was highly significant only for SCR. The number of frames with bees was significant for HP and PP, including SCR. The heritability estimates were 0.16 for HP, 0.23 for SCR, 0.52 for HB, 0.66 for PP, and 0.13 for PMAB. The genetic correlations were positive among productive traits (PP, HP and SCR) and negative between productive traits and HB, except between PP and HB. Genetic correlations between PMAB and other traits, in general, were negative, except with PP. The study permitted to identify honeybees for improved propolis and honey production. Hygienic behavior may be improved as a consequence of selecting for improved propolis production. The rate of syrup consumption and propolis production may be included in a selection index to enhance honeybee traits.  相似文献   

19.
We developed a mathematical model and an algorithm for numerical treatment of a model of honeycomb construction in a beehive. The model contains essential features of the bee-bee and bee-wax interactions, and in a qualitative way captures the dynamics of parallel comb construction. The construction is represented by a set of dynamical coupled partial differential equations for the density of bees situated on the hive ceiling, and the quantity of wax distributed by the bees. A spectral algorithm is invented for treatment of these equations, based on a modified thin-sheet gain scheme and a fast Fourier transform technique.Work at City College supported in part by the Army Research Office and the Department of Energy  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号