首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Regulation of programmed cell death in maize endosperm by abscisic acid   总被引:26,自引:0,他引:26  
Cereal endosperm undergoes programmed cell death (PCD) during its development, a process that is controlled, in part, by ethylene. Whether other hormones influence endosperm PCD has not been investigated. Abscisic acid (ABA) plays an essential role during late seed development that enables an embryo to survive desiccation. To examine whether ABA is also involved in regulating the onset of PCD during endosperm development, we have used genetic and biochemical means to disrupt ABA biosynthesis or perception during maize kernel development. The onset and progression of cell death, as determined by viability staining and the appearance of internucleosomal DNA fragmentation, was accelerated in developing endosperm of ABA-insensitive vp1 and ABA-deficient vp9 mutants. Ethylene was synthesized in vp1 and vp9 mutant kernels at levels that were 2–4-fold higher than in wild-type kernels. Moreover, the increase and timing of ethylene production correlated with the premature onset and accelerated progression of internucleosomal fragmentation in these mutants. Treatment of developing wild-type endosperm with fluridone, an inhibitor of ABA biosynthesis, recapitulated the increase in ethylene production and accelerated execution of the PCD program that was observed in the ABA mutant kernels. These data suggest that a balance between ABA and ethylene establishes the appropriate onset and progression of programmed cell death during maize endosperm development.  相似文献   

2.
Although maize endosperm undergoes programmed cell death during its development, it is not known whether this developmental feature is common to cereals or whether it arose inadvertently from the selection process that resulted in the enlarged endosperm of modern maize. Examination of wheat endosperm during its development revealed that this tissue undergoes a programmed cell death that shares features with the maize program but differs in some aspects of its execution. Cell death initiated and progressed stochastically in wheat endosperm in contrast to maize where cell death initiates within the upper central endosperm and expands outward. After a peak of ethylene production during early development, wheat endosperm DNA underwent internucleosomal fragmentation that was detectable from mid to late development. The developmental onset and progression of DNA degradation was regulated by the level of ethylene production and perception. These observations suggest that programmed cell death of the endosperm and regulation of this program by ethylene is not unique to maize but that differences in the execution of the program appear to exist among cereals.  相似文献   

3.
Multiparametric flow cytometry was used to analyze the development of the endosperm in Zea mays L. during the period from 8 to 20 days after pollination (dap). Nuclear size, DNA content per nucleus, and frequencies of nuclei with varying properties were measured in preparations that included all of the endosperm nuclei of single kernels of the inbred strain Al88. Characteristics of nuclear populations from different kernels on the same ear showed minimal variation. The dynamic changes of non-mitotic cells involved in endosperm development consisted of alternating periods of DNA replication with non-replication. Seven rounds of DNA replication had occurred in some nuclei in the later developmental stages with the rate averaging approximately one round per 24-hour period. Analysis of the DNA levels in the nuclei showed an exact doubling pattern indicating an endoreduplication process, that is, replication of the entire genome during each round. The loosely organized polytenization of the chromatin occurred to varying extents among the nuclei within an endosperm. A weak positive correlation existed between DNA content and size of nuclei suggesting that DNA increases and nuclear growth may not be highly coordinated in this tissue. Increased proportions of the larger nuclei occurred in the later stages of endosperm development. Considering the entire endosperm, the average DNA content per nucleus at the 15-dap peak level was approximately 12.8 C constituting a 2.7-fold overall increase from 8 dap.  相似文献   

4.
The maize endosperm undergoes programmed cell death late in its development so that, with the exception of the aleurone layer, the tissue is dead by the time the kernel matures. Although ethylene is known to regulate the onset of endosperm cell death, the temporal and spatial control of the ethylene biosynthetic and perception machinery during maize endosperm development has not been examined. In this study, we report the isolation of the maize gene families for ACC synthase, ACC oxidase, the ethylene receptor, and EIN2 and EIL, which act downstream of the receptor. We show that ACC oxidase is expressed primarily in the endosperm, and only at low levels in the developing embryo late in its development. ACC synthase is expressed throughout endosperm development but, in contrast to ACC oxidase, it is transiently expressed to a significantly higher level in the developing embryo at a time that corresponds with the onset of endosperm cell death. Only two ethylene receptor gene families were identified in maize, in contrast to the five types previously identified in Arabidopsis. Members of both ethylene receptor families were expressed to substantially higher levels in the developing embryo than in the endosperm, as were members of the EIN2 and EIL gene families. These results suggest that the endosperm and embryo both contribute to the synthesis of ethylene, and they provide a basis for understanding why the developing endosperm is especially sensitive to ethylene-induced cell death while the embryo is protected.Electronic Supplementary Material Supplementary material is available in the online version of this article at Communicated by G. Jürgens  相似文献   

5.
Programmed cell death during endosperm development   总被引:32,自引:0,他引:32  
The endosperm of cereals functions as a storage tissue in which the majority of starch and seed storage proteins are synthesized. During its development, cereal endosperm initiates a cell death program that eventually affects the entire tissue with the exception of the outermost cells, which differentiate into the aleurone layer and remain living in the mature seed. To date, the cell death program has been described for maize and wheat endosperm, which exhibits common and unique elements for each species. The progression of endosperm programmed cell death (PCD) in both species is accompanied by an increase in nuclease activity and the internucleosomal degradation of nuclear DNA, hallmarks of apoptosis in animals. Moreover, ethylene and abscisic acid are key to mediating PCD in cereal endosperm. The progression of the cell death program in developing maize endosperm follows a highly organized pattern whereas in wheat endosperm, PCD initiates stochastically. Although the essential characteristics of cereal endosperm PCD are now known, the molecular mechanisms responsible for its execution remain to be identified.  相似文献   

6.
7.
In maize kernel development, the onset of grain-filling represents a major developmental switch that correlates with a massive reprogramming of gene expression. We have isolated chromosomal linker histones from developing maize kernels before (11 days after pollination, dap) and after (16 dap) initiation of storage synthesis. Six linker histone gene products were identified by MALDI-TOF mass spectrometry. A marked shift of around 4 pH units was observed for the linker histone spot pattern after 2D-gel electrophoresis when comparing the proteins of 11 and 16 dap kernels. The shift from acidic to more basic protein forms suggests a reduction in the level of post-translational modifications of linker histones during kernel development. Analysis of their DNA-binding affinity revealed that the different linker histone gene products bind double-stranded DNA with similar affinity. Interestingly, the linker histones isolated from 16 dap kernels consistently displayed a lower affinity for DNA than the proteins isolated from 11 dap kernels. These findings suggest that the affinity for DNA of the linker histones may be regulated by post-translational modification and that the reduction in DNA affinity could be involved in a more open chromatin during storage synthesis.  相似文献   

8.
It was examined whether ethylene induces programmed cell death in a cell cycle-specific manner. Following synchronization of the tobacco TBY-2 cell line with aphidicolin and its subsequent removal, ethylene was injected into the head space of 300 cm(3) culture flasks at 0 h or 3.5 h later and cells were sampled for 26 h. There were significant increases in cell mortality at G(2)/M in both the 0 h and 3.5 h ethylene treatments, and for the latter treatment, another peak in S-phase. The effect at G(2)/M was greater in the 3.5 h treatment, but was ameliorated by the simultaneous addition of silver nitrate (1.2 microM). In addition, the 3.5 h ethylene treatment resulted in a 1 h delay in the characteristic rise in the mitotic index following aphidicolin-induced synchrony. The addition of silver nitrate alone (1.2 microM), also delayed the entry of cells into mitosis but had no effect on cell cycle length compared with the controls (14 h throughout all treatments) but it induced a peak of mortality 2.5 h after its addition. Nuclear shrinkage was also a characteristic feature of dying cells at G(2)/M. Using Apoptag, an in situ apoptosis detection kit, nuclear DNA fragmentation was observed in the TBY-2 cells which were often isolated on the end of a filament of normal cells. In the 3.5 h ethylene treatment, a marked increase was noted in the percentage of such cells at the G(2)/M transition compared with the controls. Hence, the data show cell death occurring at a major phase transition of the cell cycle and the observations of nuclear shrinkage, isolation of dying cells and nuclear DNA fragmentation suggest a programmed mechanism of cell death exacerbated by ethylene treatment.  相似文献   

9.
Over 40,000 species of plants accumulate fructan, [beta]-2-1- and [beta]-2-6-linked polymers of fructose as a storage reserve. Due to their high fructose content, several commercial applications for fructans have been proposed. However, plants that accumulate these polymers are not agronomically suited for large-scale cultivation or processing. This study describes the transformation of a Bacillus amyloliquefaciens SacB gene into maize (Zea mays L.) callus by particle bombardment. Tissue-specific expression and targeting of the SacB protein to endosperm vacuoles resulted in stable accumulation of high-molecular-weight fructan in mature seeds. Accumulation of fructan in the vacuole had no detectable effect on kernel development or germination. Fructan levels were found to be approximately 9-fold higher in sh2 mutants compared to wild-type maize kernels. In contrast to vacuole-targeted expression, starch synthesis and endosperm development in mature seeds containing a cytosolically expressed SacB gene were severely affected. The data demonstrate that hexose resulting from cytosolic SacB activity was not utilized for starch synthesis. Transgenic seeds containing a chimeric SacB gene provide further evidence that the dominant pathway for starch synthesis in maize endosperm is through uridine diphosphoglucose catalyzed by the enzyme sucrose synthase.  相似文献   

10.
Cobb BG  Hannah LC 《Plant physiology》1988,88(4):1219-1221
Kernels of wild-type maize (Zea mays L.) shrunken-1 (sh1), deficient in the predominant form of endosperm sucrose synthase and shrunken-2 (sh2), deficient in 95% of the endosperm ADP-glucose pyrophosphorylase were grown in culture on sucrose, glucose, or fructose as the carbon source. Analysis of the endosperm extracts by gas-liquid chromatography revealed that sucrose was present in the endosperms of all genotypes, regardless of carbon supply, indicating that all three genotypes are capable of synthesizing sucrose from reducing sugars. The finding that sucrose was present in sh1 kernels grown on reducing sugars is evidence that shrunken-1 encoded sucrose synthase is not necessary for sucrose synthesis. Shrunken-1 kernels developed to maturity and produced viable seeds on all carbon sources, but unlike wild-type and sh2 kernels grown in vitro, sucrose was not the superior carbon source. This latter result provides further evidence that the role of sucrose synthase in maize endosperm is primarily that of sucrose degradation.  相似文献   

11.
小麦淀粉胚乳发育期间的程序性细胞死亡   总被引:5,自引:0,他引:5  
小麦淀粉胚乳在发育过程中经历程序性细胞死亡(PCD).小麦淀粉胚乳的DNA在发育的特定阶段呈现梯状电泳条带,用乙烯处理使DNA片段化发生的时间提前,而且ABA处理虽然不能推迟DNA片段化的发生时间,但能减弱DNA片段化的程度.小麦淀粉胚乳细胞在PCD过程中出现某些动植物细胞凋亡的共同的结构变化特征,但也有一些独特的结构变化.如染色质凝聚后仅少数染色质块发生趋边化;细胞核在PCD过程中最先开始衰退,细胞核解体时胞质中有丰富的细胞器,细胞核解体后细胞并未死亡,在胞质中仍在合成和积累淀粉和储藏蛋白,直到细胞被淀粉充满,细胞才死亡;不形成凋亡小体,死亡的淀粉胚乳细胞成为营养物质的储藏库.因此小麦淀粉胚乳细胞的PCD是一种特殊形式的PCD.  相似文献   

12.
Shannon JC  Pien FM  Liu KC 《Plant physiology》1996,110(3):835-843
As part of an in vivo study of carbohydrate metabolism during development of Zea mays L. kernels, quantities of nucleotides and nucleotide sugars were measured in endosperm extracts from normal, the single-mutant genotypes shrunken-1 (sh1), shrunken-2 (sh2), and brittle-1 (btl}, and the multiple-mutant genotypes sh1bt1, sh2bt1, and sh1sh2bt1. Results showed that bt1 kernels accumulated more than 13 times as much adenosine 5[prime] diphospho-glucose (ADP-Glc) as normal kernels. Activity of starch synthase in bt1 endosperm was equal to that in endosperm extracts from normal kernels. Thus the ADP-Glc accumulation in bt1 endosperm cells was not due to a deficiency in starch synthase. ADP-Glc content in extracts of sh1bt1 endosperms was similar to that in bt1, but in extracts of the sh2bt1 mutant kernels ADP-Glc content was much reduced compared to bt1 (about 3 times higher than that in normal). Endosperm extracts from sh1sh2bt1, kernels that are deficient in both ADP-Glc pyrophosphorylase (AGPase) and sucrose synthase, had quantities of ADP-Glc much lower than in normal kernels. These results clearly indicate that AGPase is the predominant enzyme responsible for the in vivo synthesis of ADP-Glc in bt1 mutant kernels, but Suc synthase may also contribute to the synthesis of ADP-Glc in kernels deficient in AGPase.  相似文献   

13.
We studied the relationship between ethylene and gravity-induced upward bending of bermudagrass (Cynodon dactylon L. Pers.) stolons. Ethylene production begins within 3 hours of the onset of gravistimulation, and increases thereafter until the 15th hour, after which it declines. There is a close positive relationship between ethylene production and upward bending during the first 12 hours of gravistimulation. Incubation of stolons with AgNO3 did not prevent ethylene evolution but delayed upward bending. In addition, ethylene production was 10-fold greater and peaked earlier in gravistimulated nodes incubated with 1-aminocyclopropane 1-carboxylic acid. The gravitational stimulation could be due to an increase in both 1-aminocyclopropane 1-carboxylic acid synthase and the ethylene forming enzyme. The results suggest that ethylene promotes the activity of indoleacetic acid.  相似文献   

14.
DNA endoreduplication in Zea mays L. (cv. A619 × W64A) endosperm peaks between 16 and 18 d after pollination (DAP). The physiological function of DNA endoreduplication is not known but it is believed to be important in maize kernel development. In the present study, we investigated how 2, 4 or 6 d of high temperature (35 °C) affected DNA endoreduplication and maize kernel development in comparison with control kernels grown at 25 °C. Data were collected on fresh weight (FW), nuclei number, mitotic index, and DNA endoreduplication. Maize endosperm FW and nuclei number were reduced by exposure to 4 or 6 d of high temperature. At 18 DAP, the 2 d high temperature treatment (HTT) caused a reduction in FW and nuclei number, but had no effect on DNA endoreduplication and average DNA content per endosperm. However, when the exposure to high temperature was increased to 4 or 6 d, FW, nuclei number and the magnitude of DNA endoreduplication were progressively reduced, and the peak mitotic index was delayed compared with the control endosperm. At 18 DAP, the 4 d treatment showed 54·7% of the cells were 3 or 6 C, whereas only 41·2% were 12 C or higher. Six days of high temperature also resulted in a reduction in endosperm FW, nuclei number and a delay in the peak of mitotic index. DNA endoreduplication occurred in the kernels exposed to this treatment, although the magnitude was severely reduced compared with the control kernels. Nuclear DNA content was highly correlated (r = 0·93) with kernel FW, suggesting an important role of DNA endoreduplication in determining endosperm FW. The data suggest that high temperature during endosperm cell division exerted negative effects on DNA endoreduplication by dramatically reducing the nuclei number, leaving fewer nuclei available for DNA endoreduplication. However, the data also suggest that prolonged exposure to high temperature restricts entry of mitotic cells into the endoreduplication phase of the cell cycle.  相似文献   

15.
Quality protein maize (QPM) was created by selecting genetic modifiers that convert the starchy endosperm of an opaque2 (o2) mutant to a hard, vitreous phenotype. Genetic analysis has shown that there are multiple, unlinked o2 modifiers (Opm), but their identity and mode of action are unknown. Using two independently developed QPM lines, we mapped several major Opm QTLs to chromosomes 1, 7 and 9. A microarray hybridization performed with RNA obtained from true breeding o2 progeny with vitreous and opaque kernel phenotypes identified a small group of differentially expressed genes, some of which map at or near the Opm QTLs. Several of the genes are associated with ethylene and ABA signaling and suggest a potential linkage of o2 endosperm modification with programmed cell death.  相似文献   

16.
乙烯诱导胡萝卜原生质体凋亡   总被引:16,自引:0,他引:16  
乙烯是一种参与多种重要生理学过程的植物激素。用乙烯利在密闭条件下处理胡萝卜(DaucuscarotaL.)原生质体(在pH>4.1时释放乙烯),发现随着乙烯利浓度增加,细胞死亡率逐渐增高。经乙烯利处理的胡萝卜原生质体出现核内染色质固缩,形成凋亡小体等典型的细胞凋亡的形态学特征。用中性法彗星电泳观测到彗星状的核DNA片段的迁移。DNA电泳分析观察到细胞凋亡时产生的典型的核小体间DNA断裂所形成的梯状条带。结果表明,乙烯能诱导悬浮培养的胡萝卜原生质体凋亡  相似文献   

17.
18.
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.  相似文献   

19.
20.
During germination of barley grains, the appearance of DNA fragmentation started in aleurone cells near the embryo and extended to the distal end in a time-dependent manner. DNA fragmentation was demonstrated to occur only after the expression of -amylase mRNA in the aleurone layer. In addition, cell wall degradation started in cells near the embryo on the sides facing the endosperm. Subsequently cell wall degradation extended to the lateral cell walls and to cells more to the distal end of the grain. A typical alteration of the nucleus was observed by electron microscopy and an almost complete degradation of DNA was found in the nucleus while the nuclear envelope remained intact. The results indicate that programmed cell death occurred in aleurone cells during germination. A model is proposed for the regulation of programmed cell death in aleurone cells during germination involving ABA levels and cell wall degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号