首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium (Na+) is the major cation in extracellular space and, with its entry into cells, may act as a critical intracellular second messenger that regulates many cellular functions. Through our investigations of mechanisms underlying the activity-dependent regulation of N-methyl-d-aspartate (NMDA) receptors, we recently characterized intracellular Na+ as a possible signaling factor common to processes underlying the upregulation of NMDA receptors by non-NMDA glutamate channels, voltage-gated Na+ channels, and remote NMDA receptors. Furthermore, although Ca2+ influx during the activation of NMDA receptors acts as a negative feedback mechanism that downregulates NMDA receptor activity, Na+ influx provides an essential positive feedback mechanism to overcome Ca2+-induced inhibition, thereby potentiating both NMDA receptor activity and inward Ca2+ flow. NMDA receptors may be recruited to cause excitoxicity through a Na+-dependent mechanism. Therefore, the further characterization of mechanisms underlying the regulation of NMDA receptors by intracellular Na+ is essential to understanding activity-dependent neuroplasticity in the nervous system.  相似文献   

2.
Summary The strong excitatory activity of L-glutamic acid on central nervous system neurons is thought to be produced by interaction of this amino acid with specific neuronal plasma membrane receptors. The binding of L-glutamate to these surface receptors brings about an increase in membrane permeability to Na+ and Ca2+ ions presumably through direct activation of ion channels linked to the membrane receptors. The studies described in this paper represent attempts to define the subcellular distribution and pharmacological properties of the recognition site for L-glutamic acid in brain neuronal preparations, to isolate and explore the molecular characteristics of the receptor recognition site, and, finally, to demonstrate the activation of Na+ channels in synaptic membranes following the interaction of glutamate with its receptors.Radioligand binding assays with L-[3H] glutamic acid have been used to demonstrate a relative enrichment of these glutamate recognition sites in isolated synaptic plasma membranes. The specific binding of L-[3H] glutamate to these membrane sites exhibits rapid association and dissociation kinetics and rather complex equilibrium binding kinetics. The glutamate binding macromolecule from synaptic membranes has been solubilized and purified and was shown to be a small molecular weight glycoprotein (MT 13 000). This protein tends to form aggregates which have higher specific activity at low concentrations of glutamate than the MT 13 000 protein has. The overall affinity of the purified protein is lower than that of the high affinity sites in the membrane. Nevertheless, the purified protein exhibits pharmacological characteristics very similar to those of the membrane binding sites. On the basis of its pharmacological properties this protein belongs in the category of the physiologic glutamate preferring receptors.By means of differential solubilization of membrane proteins with Na-cholate, it was shown that this recognition site is an intrinsic synaptic membrane protein whose binding activity is enhanced rather than diminished by cholate extraction of the synaptic membranes. The role of membrane constituents in regulating the binding activity of this protein has been explored and a possible modulation of glutamate binding by membrane gangliosides has been demonstrated. Finally, this glutamate binding glycoprotein is a metalloprotein whose activity is dependent on the integrity of its metallic (Fe) center. This is a clear distinguishing characteristic of this protein vis-à-vis the glutamate transport carriers.The presence of functional glutamate receptors in synaptosomes and resealed synaptic plasma membranes has also been documented by the demonstration of glutamate-activated Na+ flux across the membrane of these preparations. The bidirectionality, temperature independence, and apparent desensitization of this stimulated flux following exposure to high concentrations of glutamate are properties indicative of a receptor-initiated ion channel activation. It would appear, then, that the synaptic membrane preparations provide a very useful system for the study of both recognition and effector function of the glutamate receptor complex.  相似文献   

3.
Four amphipathic molecules with known local anesthetic activity, dibucaine, tetracaine, chlorpomazine, and quinacrine, inhibited the binding ofl-[3H]glutamic acid to rat brain synaptic plasma membranes and to the purified glutamate binding protein. Neither haloperidol nor diphenylhydantoin had significant inhibitory effects on the glutamate binding activity of the membranes or of the purified protein. The amphipathic drugs apparently inhibitedl-[3H]glutamate binding to synaptic membranes by a mixed type of inhibition. The inhibitory activity of quinacrine on glutamate binding to the synaptic membranes was greater in a low ionic strength, Ca2+-free buffer medium, than in a physiologic medium (Krebs-Henseleit buffer). Removal of Ca2+ from the Krebs solution enhanced quinacrine's inhibition of glutamate binding. Quinacrine up to 1 mM concentration did not inhibit the high affinity Na+-dependentl-glutamate transport in these membrane preparations. The importance of Ca2+ in the expression of quinacrine's effects on the glutamate binding activity of synaptic membranes and the observed tetracaine and chlorpromazine-induced increases in the transition temperature for the glutamate binding process of these membranes, were indicative of an interaction of the local anesthetics with the lipid environment of the glutamate binding sites.  相似文献   

4.
We studied the release of [3H]d-aspartate evoked by glutamate receptor agonists from monolayer cultures of chick retina cells, and found that activation of the glutamate receptors can evoke both Ca2+-dependent and Ca2+-independent release of [3H]d-aspartate. In Ca2+-free (no added Ca2+) Na+ medium, the agonists of the glutamate receptors induced the release of [3H]d-aspartate with the following rank order of potency: kainate>α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)∼N-methyl-d-aspartate (NMDA). In media containing 1 mM CaCl2 the release of [3H]d-aspartate evoked by NMDA, kainate and AMPA was increased by about 112%, 20% and 39%, respectively, as compared to the release evoked by the same agonists in Ca2+-free medium. NMDA was the most potent agonist in stimulating the Ca2+-dependent release of [3H]d-aspartate, possibly by exocytosis, and AMPA was as potent as kainate. The Ca2+-dependent release of [3H]d-aspartate evoked by kainate was dependent on the influx of Ca2+ through the receptor associated channel, as well as through the N- (ω-Conotoxin GVIA-sensitive) and L- (nitrendipine-sensitive)type voltage-sensitive Ca2+ channels (VSCC). The exocytotic release of [3H]d-aspartate evoked by AMPA relied exclusively on Ca2+ entry through the L-type VSCC, whereas the effect of NMDA was partially mediated by the influx of Ca2+ through the receptor-associated channel, but not through L- or N-type VSCC. Thus, activation of these different glutamate receptors under physiological conditions is expected to cause the release of cytosolic and vesicular glutamate, and the routes of Ca2+ entry modulating vesicular release may be selectively recruited.  相似文献   

5.
NMDA receptors (NMDARs) are glutamate-gated ion channels involved in excitatory synaptic transmission and in others physiological processes such as synaptic plasticity and development. The overload of Ca2+ ions through NMDARs, caused by an excessive activation of receptors, leads to excitotoxic neuronal cell death. For this reason, the reduction of Ca2+ flux through NMDARs has been a central focus in finding therapeutic strategies to prevent neuronal cell damage.Extracellular H+ are allosteric modulators of NMDARs. Starting from previous studies showing that extracellular mild acidosis reduces NMDA-evoked whole cell currents, we analyzed the effects of this condition on the NMDARs Ca2+ permeability, measured as “fractional calcium current” (Pf, i.e. the percentage of the total current carried by Ca2+ ions), of human NMDARs NR1/NR2A and NR1/NR2B transiently transfected in HeLa cells. Extracellular mild acidosis significantly reduces Pf of both human NR1/NR2A and NR1/NR2B NMDARs, also decreasing single channel conductance in outside out patches for NR1/NR2A receptor. Reduction of Ca2+ flux through NMDARs was also confirmed in cortical neurons in culture. A comparative analysis of both NMDA evoked Ca2+ transients and whole cell currents showed that extracellular H+ differentially modulate the permeation of Na+ and Ca2+ through NMDARs.Our data highlight the synergy of two distinct neuroprotective mechanisms during acidosis: Ca2+ entry through NMDARs is lowered due to the modulation of both open probability and Ca2+ permeability. Furthermore, this study provides the proof of concept that it is possible to reduce Ca2+ overload in neurons modulating the NMDAR Ca2+ permeability.  相似文献   

6.
One of the pathways implicated in a fine-tuning control of synaptic transmission is activation of the receptors located at the presynaptic terminal. Here we investigated the intracellular events in rat brain cortical and hippocampal nerve terminals occurring under the activation of presynaptic glutamate receptors by exogenous glutamate and specific agonists of ionotropic receptors, NMDA and kainate. Involvement of synaptic vesicles in exocytotic process was assessed using [3H]GABA and pH-sensitive fluorescent dye acridine orange (AO). Glutamate as well as NMDA and kainate were revealed to induce [3H]GABA release that was not blocked by NO-711, a selective blocker of GABA transporters. AO-loaded nerve terminals responded to glutamate application by the development of a two-phase process. The first phase, a fluorescence transient completed in ∼1 min, was similar to the response to high K+. It was highly sensitive to extracellular Ca2+ and was decreased in the presence of the NMDA receptor antagonist, MK-801. The second phase, a long-lasting process, was absolutely dependent on extracellular Na+ and attenuated in the presence of CNQX, the kainate receptor antagonist. NMDA as well as kainate per se caused a rapid and abrupt neurosecretory process confirming that both glutamate receptors, NMDA and kainate, are involved in the control of neurotransmitter release. It could be suggested that at least two types ionotropic receptor are attributed to glutamate-induced two-phase process, which appears to reflect a rapid synchronous and a more prolonged asynchronous vesicle fusion.  相似文献   

7.
Summary The influence of Ca2+ and other cations on electrolyte permeability has been studied in isolated membrane vesicles from cat pancreas.Ca2+ in the micromolar to millimolar concentration range, as well as Mg2+, Sr2+, Mn2+ and La3+ at a tested concentration of 10–4 m, increased Na+ permeability when applied at the vesicle inside. When added to the vesicle outside, however, they decreased Na+ permeability. Ba2+ was effective from the outside but not from the vesicle inside.When Ca2+ was present at both sides of the membrane, Na+ efflux was not affected as compared to that in the absence of Ca2+. Monovalent cations such as Rb+, Cs+, K+, Tris+ and choline+ decreased Na+ permeability when present at the vesicle outside at a concentration range of 10 to 100mm. Increasing Na+ concentrations from 10 to 100mm at the vesicle inside increased Na+ permeability.The temperature dependence of Na+ efflux revealed that the activation energy increased in the lower temperature range (0 to 10°C) when Ca2+ was present at the outside or at both sides, but not when present at the vesicle inside only or in the absence of Ca2+.The results suggest that the Ca2+ outside effect is due to binding of calcium to negatively charged phospholipids with a consequent reduction of both fluidity and Na+ permeability of the membrane. The Ca2+-inside effect most likely involves interaction with proteins with consequent increase in Na+ permeability.The data are consistent with current hypotheses on secretagogue-induced fluid secretion in acinar cells of the pancreas according to which secretagogues elicit NaCl and fluid secretion by liberating Ca2+ from cellular membranes and by stimulating Ca2+ influx into the cell. The increased intracellular Ca2+ concentration in turn increases the contraluminal Na+ permeability which leads to NaCl influx. The luminal sodium pump finally transports Na+ ions into the lumen.  相似文献   

8.
The effects of ethanol on physicochemical and enzymatic perturbations of neuronal membranes were examined. Using synaptic plasma membrane (SPM) isolated from cerebral cortex of Sprague-Dawley rats, a biphasic mode of action for ethanol was observed with (Na++K+)-ATPase, but not with Ca2+-ATPase or acetylcholinesterase. (Na++K+)-ATPase was found to be more sensitive to low concentration of sodium deoxycholate treatment than Ca2+-ATPase. A sharp transition break of (Na++K+)-ATPase activity in response to temperature changes was found with SPM preparation. Arrhenius plots of the response also indicated that (Na++K+)-ATPase is more sensitive to temperature changes than Ca2+-ATPase. The fluorescence polarization of TNS-membrane complex decreases as ethanol concentration increases, indicating an increase in membrane fluidity. However, ethanol, at low concentration (<0.3%) appears to elevate TNS fluorescence, but a hhigher concentration (3%) ethanol tends to lower the intensity of maximal emission. The results of this study indicate that ethanol may interact with the synaptic plasma membranes and elicit specific biochemical responses depending on the concentration of the alcohol used.  相似文献   

9.
Ca2+ influx through an astrocyte plasma membrane is mediated by ionotropic receptors and Ca2+ channels according the electrochemical gradient. These conductances allow astrocytes to sense the levels of neuronal activity and environmental changes. Na+/Ca2+ exchanger (NCX) removes elevated Ca2+ from the cell but can reverse and bring Ca2+ in. Ca2+ entry through the plasma membrane produces local Ca2+ elevations that can be further amplified by Ca2+ induced activation of inositol-3-phosphate (IP3) receptors and subsequent Ca2+ release from intracellular Ca2+ stores. These Ca2+ stores are located in astrocytic processes called branchlets, while perisynaptic astrocytic processes are formed by organelle-free leaflets. Such morphological structure suggests separate synaptic and extrasynaptic mechanisms of Ca2+ signaling in astrocytes. Astrocytic leaflets sense synaptic activity, astrocytic branchlets integrate signals arriving from the leaflets and from extrasynaptic inputs. The surface-to-volume ratio (SVR) of the branchlets sets the threshold for generation of spreading Ca2+ events. Therefore, morphological remodeling of the processes is an important regulator of astrocytic Ca2+ activity. Ca2+ events can propagate beyond single astrocytes and form complex spatiotemporal patterns of Ca2+ activity in the astrocytic network. Ca2+ events spread intercellularly through gap-junctions and via extracellular ATP diffusion. Spatially and temporarily organized Ca2+ events in astrocytic network influence variable numbers of synapses and neuronal compartments, gate excitation flow and synaptic plasticity in the neuronal network through the release of gliotransmitters. Thus, multiple patterns of Ca2+ activity in the astrocytic network (guiding templates) determine multiple states of the neuronal network. This phenomenon may be linked to learning, memory and information processing in the brain.  相似文献   

10.
Protein kinase A (PKA) enhances synaptic plasticity in the central nervous system by increasing NMDA receptor current amplitude and Ca2+ flux in an isoform-dependent yet poorly understood manner. PKA phosphorylates multiple residues on GluN1, GluN2A, and GluN2B subunits in vivo, but the functional significance of this multiplicity is unknown. We examined gating and permeation properties of recombinant NMDA receptor isoforms and of receptors with altered C-terminal domain (CTDs) prior to and after pharmacological inhibition of PKA. We found that PKA inhibition decreased GluN1/GluN2B but not GluN1/GluN2A gating; this effect was due to slower rates for receptor activation and resensitization and was mediated exclusively by the GluN2B CTD. In contrast, PKA inhibition reduced NMDA receptor-relative Ca2+ permeability (PCa/PNa) regardless of the GluN2 isoform and required the GluN1 CTD; this effect was due primarily to decreased unitary Ca2+ conductance, because neither Na+ conductance nor Ca2+-dependent block was altered substantially. Finally, we show that both the gating and permeation effects can be reproduced by changing the phosphorylation state of a single residue: GluN2B Ser-1166 and GluN1 Ser-897, respectively. We conclude that PKA effects on NMDA receptor gating and Ca2+ permeability rely on distinct phosphorylation sites located on the CTD of GluN2B and GluN1 subunits. This separate control of NMDA receptor properties by PKA may account for the specific effects of PKA on plasticity during synaptic development and may lead to drugs targeted to alter NMDA receptor gating or Ca2+ permeability.  相似文献   

11.
The maximum rates (V max) of some enzymatic activities related to energy consumption (ATP-ases) were evaluated in two types of synaptic plasma membranes (SPM) isolated from cerebral cortex of rats subjected to in vivo treatment with l-acetylcarnitine at two different doses (30 and 60 mg kg−1 i.p., 28 days, 5 days/week). The following enzyme activities were evaluated: acetylcholinesterase (AChE); Na+, K+, Mg2+-ATP-ase; ouabain insensitive Mg2+-ATP-ase; Na+, K+-ATP-ase; direct Mg2+-ATP-ase; Ca2+, Mg2+-ATP-ase; Low- and High-affinity Ca2+-ATP-ase. Sub-chronic treatment with l-acetylcarnitine increased Na+, K+-ATP-ase activity on SPM 2 and Ca2+, Mg2+-ATP-ase activity on both SPM fractions. These results suggest (1) that the sensitivity to drug treatment is different between the two populations of SPM, confirming the micro-heterogeneity of these sub-fractions, probably originating from different types of synapses, (2) the specificity of the molecular site of action of the drug on SPM and (3) its interference on ion homeostasis at synaptic level.  相似文献   

12.
Naloxone is a specific competitive antagonist of morphine, acting on opiate receptors, located on neuronal membranes. The effects of in vivo administration of naloxone on energy-consuming non-mitochondrial ATP-ases were studied in two different types of synaptic plasma membranes from rat cerebral cortex, known to contain a high density of opiate receptors. The enzyme activities of Na+, K+-ATP-ase, Ca2+, Mg2+-ATP-ase and Mg2+-ATP-ase and of acetylcholinesterase (AChE) were evaluated on synaptic plasma membranes obtained from control and treated animals with effective dose of naloxone (12g · kg–1 i.m. 30 minutes). In control (vehicle-treated) animals specific enzyme activities assayed on these two types of synaptic plasma membranes are different, being higher on synaptic plasma membranes of II type than of I type, because the first fraction is more enriched in synaptic plasma membranes. The acute treatment with naloxone produced a significant decrease in Ca2+,Mg2+-ATP-ase activity and an increase in AChE activity, only in synaptic plasma membranes of II type. The decrease of Ca2+,Mg2+-ATP-ase enzymatic activity and the increased AChE activity are related to the interference of the drug on Ca2+ homeostasis in synaptosoplasm, that leads to the activation of calcium-dependent processes, i.e. the extrusion of neurotransmitter. These findings give further evidence that pharmacodynamic characteristics of naloxone are also related to increase [Ca2+] i , interfering with enzyme systems (Ca2+,Mg2+-ATP-ase) and that this drug increases acetylcholine catabolism in synaptic plasma membranes of cerebral cortex.  相似文献   

13.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   

14.
Summary Intracellular Ca2+ has been suggested to play an important role in the regulation of epithelial Na+ transport. Previous studies showed that preincubation of toad urinary bladder, a tight epithelium, in Ca2+-free medium enhanced Na+ uptake by the subsequently isolated apical membrane vesicles, suggesting the downregulation of Na+ entry across the apical membrane by intracellular Ca2+. In the present study, we have examined the effect of Ca2+-free preincubation on apical membrane Na+ transport in a leaky epithelium, i.e., brush border membrane (BBM) of rabbit renal proximal tubule. In contrast to toad urinary bladder, it was found that BBM vesicles derived from proximal tubules incubated in 1mm Ca2+ medium exhibited higher Na+ uptake than those derived from proximal tubules incubated in Ca2+-free EGTA medium. Such effect of Ca2+ in the preincubation medium was temperature dependent and could not be replaced by another divalent cation, Ba2+ (1mm). Ca2+ in the preincubation medium did not affect Na+-dependent BBM glucose uptake, and its effect on BBM Na+ uptake was pH gradient dependent and amiloride (10–3 m) sensitive, suggesting the involvement of Na+/H+ antiport system. Addition of verapamil (10–4 m) to 1mm Ca2+ preincubation medium abolished while ionomycin (10–6 m) potentiated the effect of Ca2+ to increase BBM Na+ uptake, suggesting that the effect of Ca2+ in the preincubation medium is likely to be mediated by Ca2+-dependent cellular pathways and not due to a direct effect of extracellular Ca2+ on BBM. Neither the proximal tubule content of cAMP nor the inhibitory effect of 8, bromo-cAMP (0.1mm) on BBM Na+ uptake was affected by the presence of Ca2+ in the preincubation medium, suggesting that Ca2+ in the preincubation medium did not increase BBM Na+ uptake by removing the inhibitory effect of cAMP. Addition of calmodulin inhibitor, trifluoperazine (10–4 m) to 1mm Ca2+ preincubation medium did not prevent the increase in BBM Na+ uptake. The effect of Ca2+ was, however, abolished when protein kinase C in the proximal tubule was downregulated by prolonged (24 hr) incubation with phorbol 12-myristate 13-acetate (10–6 m). In summary, these results show the Ca2+ dependency of Na+ transport by renal BBM, possibly through stimulation of Na+/H+ exchanger by protein kinase C.  相似文献   

15.
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.  相似文献   

16.
A voltage-dependent but Ca2+-independent regulation of N-methyl-D-aspartate (NMDA) receptor outward activity was studied at the single channel level using outside-out patches of cultured mouse cortical neurons. Unlike the inward activity associated with Ca2+ and Na+ influx, the NMDA receptor outward K+ conductance was unaffected by changes in Ca2+ concentration. Following a depolarizing pre-pulse, the single channel open probability (NP o), amplitude, and open duration of the NMDA inward current decreased, whereas the same pre-depolarization increased those parameters of the NMDA outward current (pre-pulse facilitation). The outward NP o was increased by the pre-pulse facilitation, disregarding Ca2+ changes. The voltage–current relationships of the inward and outward currents were shifted by the pre-depolarization toward opposite directions. The Src family kinase inhibitor, PP1, and the Src kinase antibody, but not the anti-Fyn antibody, blocked the pre-pulse facilitation of the NMDA outward activity. On the other hand, a hyperpolarizing pre-pulse showed no effect on NMDA inward currents but inhibited outward currents (pre-pulse depression). Application of Src kinase, but not Fyn kinase, prevented the pre-pulse depression. We additionally showed that a depolarization pre-pulse potentiated miniature excitatory synaptic currents (mEPSCs). The effect was blocked by application of the NMDA receptor antagonist AP-5 during depolarization. These data suggest a voltage-sensitive regulation of NMDA receptor channels mediated by Src kinase. The selective changes in the NMDA receptor-mediated K+ efflux may represent a physiological and pathophysiological plasticity at the receptor level in response to dynamic changes in the membrane potential of central neurons.  相似文献   

17.
Summary The permeability properties of the plasma membrane of intact rod outer segments purified from bovine retinas (ROS) were studied with the aid of the optical probe neutral red as described in the companion paper. The following observations were made: (1) Electrical shunting of ROS membranes greatly stimulated Na+ and K+ transport, suggesting that this transport reflects Na+ and K+ currents, respectively. The dissipation of a Na+ gradient across the plasma membrane occurred with a half-time of 30 sec at 25°C. (2) The Na+ permeability was progressively inhibited when the external Ca2+ concentration was raised from 1 m to 20mm. A similar Ca2+ dependence was observed for H+ and Li+ transport. The Na+ permeability was not affected when the total internal Ca2+ content of ROS was varied between 0.1 mol Ca2+/mol rhodopsin and 7 mol Ca2+/mol rhodopsin, or when the free internal Ca2+ concentration was varied between 0.1 and 50 m. (3) The K+ permeability was progressively stimulated when the external Ca2+ concentration was raised from 0.001 to 1 m, whereas a further increase to 20mm was without effect. A similar Ca2+ dependence was observed for Rb+ and Cs+ transport. (4) At an external Ca2+ concentration in the micromolar range the rate of transport decreased in the order: Na+>K+=H+>Cs+>Li+. (5) Na+ fluxes depended in a sigmoidal way on the external Na+ concentration, suggesting that sodium ions move in pairs. The concentration dependence of uniport Na+ transport and that of Na+-stimulated Ca2+ efflux (exchange or antiport transport) were very similar.  相似文献   

18.
Control of intracellular calcium signaling is essential for neuronal development and function. Maintenance of Ca2+ homeostasis depends on the functioning of specific transport systems that remove calcium from the cytosol. Na+/Ca2+ exchange is the main calcium export mechanism across the plasma membrane that restores resting levels of calcium in neurons after stimulation. Two families of Na+/Ca2+ exchangers exist, one of which requires the co-transport of K+ and Ca2+ in exchange for Na+ ions. The malfunctioning of Na+/Ca2+ exchangers has been related to the development of pathological conditions in the regulation of neuronal death after hypoxia–anoxia, brain trauma, and nerve injury. In addition, the Na+/Ca2+ exchanger function has been associated with impaired Ca2+ homeostasis during aging of the brain, as well as with a role in Alzheimer’s disease by regulating β-amyloid toxicity. In this review, we summarize the current knowledge about the Na+/Ca2+ exchanger families and their implications in neurodegenerative disorders.  相似文献   

19.
Abstract: Using fura-2 microfluorometry, I investigated the mechanism by which non-N-methyl-d -aspartate (NMDA) receptor agonists increase the cytosolic free calcium concentration ([Ca]in) in single cerebellar Purkinje cells isolated from 3–10-day-old rats. Kainate and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate dose-dependently increased the cytosolic free Na+ concentration, which was measured using sodium-binding benzofuran isophthalate microfluorometry, confirming the Na+ influx through ion channels linked to non-NMDA receptors. The [Ca2+] increases induced by relatively lower concentrations of agonists were entirely dependent on external Ca2+ and were reduced by removal of external Na+ or by addition of a Ca2+ channel blocker, D600. The results indicate that the non-NMDA agonist–induced [Ca]in increase was due mainly to Ca2+ influx through voltage-dependent Ca2+ channels, which were activated by a massive Na+ influx. On the other hand, higher concentrations of agonists dose-dependently increased [Ca]in under conditions in which activation of voltage-dependent Ca2+ channels were blocked by a combination of Na+ removal with D600. These [Ca]in increases were Ca2+ dependent and little affected by adding a competitive NMDA antagonist. Non-NMDA agonists also stimulated influxes of Mn2+ and Co2+, both of which can be monitored by quenching fura-2 fluorescence under the same conditions. These results suggest that ion channels linked to non-NMDA receptors on immature Purkinje cells are permeable to Ca2+, Mn2+, and Co2+.  相似文献   

20.
We have investigated the possible role of plasma membrane oxidoreductases in the Ca2+ export mechanisms in rat brain synaptic membranes. Ca2+ efflux in nerve terminals is controlled both by a high-affinity/low capacity Mg-dependent ATP-stimulated Ca2+ pump and by a low affinity/high capacity ATP-independent Na+-Ca2+ exchanger. Both Ca2+ efflux mechanisms were strongly inhibited by pyridine nucleotides, in the order NADP>NAD>NADPH>NADH with IC50 values of ca. 10 mM for NADP and ca. 3 mM for the other agents in the case of the ATP-driven Ca2+ pump and with IC50 values between 8 and 10 mM for the Na+-Ca2+ exchanger. Oxidizing agents such as DCIP and ferricyanide inhibited the ATP-driven Ca2+ efflux mechanism but not the Na+-Ca2+ exchanger. In addition, full activation of plasma membrane oxidoreductases requires both an acceptor and an electron donor; therefore the combined effects of both substrates added together were also studied. When plasma membrane oxidoreductases of the synaptic plasma membrane were activated in the presence of both NADH (or NADPH) and DCIP or ferricyanide, the inhibition of the ATP-driven Ca2+ pump was optimal; by contrast, the pyridine nucleotide-mediated inhibition of the Na+-Ca2+ exchanger was partially released when both substrates of the plasma membrane oxidoreductases were present together. Furthermore, the activation of plasma membrane oxidoreductases also strongly inhibited intracellular protein phosphorylation in intact synaptosomes, mediated by eithercAMP-dependent protein kinase, Ca2+ calmodulin-dependent protein kinases, or protein kinase C.Abbreviations Hepes 4-(2-hydroxyethyl)-1-piperazine ethanesulfonic acid - SDS sodium dodecyl sulfate - EGTA ethylenglycol-bis(-aminoethylether)-N,N,N,N-tetraacetic acid - DCIP dichlorophenol-indophenol  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号