首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The initial step in the purification of Dictyostelium myosin 11 heavy chain kinase A (MHCK A) is chromatography over phosphocellulose. Fractions containing MHCK A are pooled and chromatographed over a Mono Q column (Pharmacia LKB Biotechnology) equilibrated in 0.15 M KCl. Under these conditions MHCK A and most of the contaminating proteins elute in the flowthrough. The addition of Mg2+ and ATP to the Mono Q flowthrough results in the phosphorylation, within 15 min, of MHCK A to a level of 10 mol of phosphate per mole of 130-kDa kinase subunit. The hyperphosphorylated MHCK A binds to Mono Q columns in the presence of 0.15 M KCl and can be eluted, as a single homogeneous band, by a salt gradient to 0.35 m KCl. A similar purification procedure may prove useful for other proteins which can be highly phosphorylated. Hyperphosphorylation is shown to have no effect on the position at which MHCK A elutes from gel filtration columns (apparent Mr greater than 700,000).  相似文献   

2.
A Dictyostelium discoideum myosin heavy chain kinase has been purified 14,000-fold to near homogeneity. The enzyme has a Mr = 130,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and greater than 700,000 as determined by gel filtration on Bio-Gel A-1.5m. The enzyme has a specific activity of 1 mumol/min X mg when assayed at a Dictyostelium myosin concentration of 0.3 mg/ml. A maximum of 2 mol of phosphate/mol of myosin is incorporated by the kinase, and the phosphorylated amino acid is threonine. Phosphate is incorporated only into the myosin heavy chains, not into the light chains. The actin-activated Mg2+-ATPase of Dictyostelium myosin is inhibited 70-80% following maximal phosphorylation with the kinase. The myosin heavy chain kinase requires 1-2 mM Mg2+ for activity and is most active at pH 7.0-7.5. The activity of the enzyme is not significantly altered by the presence of Ca2+, Ca2+ and calmodulin, EGTA, cAMP, or cGMP. When incubated with Mg2+ and ATP, phosphate is incorporated into the myosin heavy chain kinase, perhaps by autophosphorylation.  相似文献   

3.
Dictyostelium myosin II heavy chain kinase A (MHCK A), MHCK B, and MHCK C contain a novel type of protein kinase catalytic domain that displays no sequence identity to the catalytic domain present in conventional serine, threonine, and/or tyrosine protein kinases. Several proteins, including myelin basic protein, myosin regulatory light chain, caldesmon, and casein were phosphorylated by the bacterially expressed MHCK A, MHCK B, and MHCK C catalytic domains. Phosphoamino acid analyses of the proteins showed that 91 to 99% of the phosphate was incorporated into threonine with the remainder into serine. Acceptor amino acid specificity was further examined using a synthetic peptide library (MAXXXX(S/T)XXXXAKKK; where X is any amino acid except cysteine, tryptophan, serine, and threonine and position 7 contains serine and threonine in a 1.7:1 ratio). Phosphorylation of the peptide library with the three MHCK catalytic domains resulted in 97 to 99% of the phosphate being incorporated into threonine, while phosphorylation with a conventional serine/threonine protein kinase, the p21-activated kinase, resulted in 80% of the phosphate being incorporated into serine. The acceptor amino acid specificity of MHCK A was tested directly by substituting serine for threonine in a synthetic peptide and a glutathione S-transferase fusion peptide substrate. The serine-containing substrates were phosphorylated at a 25-fold lower rate than the threonine-containing substrates. The results indicate that the MHCKs are specific for the phosphorylation of threonine.  相似文献   

4.
Phosphorylation of the Dictyostelium myosin II heavy chain (MHC) has a key role in regulating myosin localization in vivo and drives filament disassembly in vitro. Previous molecular analysis of the Dictyostelium myosin II heavy chain kinase (MHCK A) gene has demonstrated that the catalytic domain of this enzyme is extremely novel, showing no significant similarity to the known classes of protein kinases (Futey, L. M., Q. G. Medley, G. P. Cote, and T. T. Egelhoff. 1995. J. Biol. Chem. 270:523-529). To address the physiological roles of this enzyme, we have analyzed the cellular consequences of MHCK A gene disruption (mhck A- cells) and MHCK A overexpression (MHCK A++ cells). The mhck A- cells are viable and competent for tested myosin-based contractile events, but display partial defects in myosin localization. Both growth phase and developed mhck A- cells show substantially reduced MHC kinase activity in crude lysates, as well as significant overassembly of myosin into the Triton-resistant cytoskeletal fractions. MHCK A++ cells display elevated levels of MHC kinase activity in crude extracts, and show reduced assembly of myosin into Triton-resistant cytoskeletal fractions. MHCK A++ cells show reduced growth rates in suspension, becoming large and multinucleated, and arrest at the mound stage during development. These results demonstrate that MHCK A functions in vivo as a protein kinase with physiological roles in regulating myosin II localization and assembly in Dictyostelium cells during both growth and developmental stages.  相似文献   

5.
Dictyostelium myosin light chain kinase. Purification and characterization   总被引:9,自引:0,他引:9  
A Dictyostelium myosin light chain kinase has been purified approximately 15,000-fold to near homogeneity. The purified kinase is a single polypeptide of approximately 34 kDa that phosphorylates only the 18-kDa Dictyostelium myosin regulatory light chain and itself among substrates tested. The enzyme was purified largely by ammonium sulfate fractionation and hydrophobic (butyl) interaction chromatography. Analysis using polyclonal antibodies raised against the purified 34-kDa protein confirms that this protein is responsible for myosin light chain kinase activity. Protein microsequence of the 34-kDa protein reveals conserved protein kinase sequences. The purified Dictyostelium myosin light chain kinase exhibits a Km for Dictyostelium myosin of 4 microM and a Vmax of 8 nmol/min/mg. Unlike other characterized myosin light chain kinases, this enzyme is not regulated by calcium/calmodulin. Western blot analysis demonstrates that the purified kinase is not a proteolytic fragment that has lost calcium/calmodulin regulation. The Dictyostelium myosin light chain kinase activity is not directly regulated by cyclic nucleotides. However, this kinase undergoes an intramolecular autophosphorylation that activates the enzyme.  相似文献   

6.
Nonmuscle myosin II plays fundamental roles in cell body translocation during migration and is typically depleted or absent from actin-based cell protrusions such as lamellipodia, but the mechanisms preventing myosin II assembly in such structures have not been identified [1-3]. In Dictyostelium discoideum, myosin II filament assembly is controlled primarily through myosin heavy chain (MHC) phosphorylation. The phosphorylation of sites in the myosin tail domain by myosin heavy chain kinase A (MHCK A) drives the disassembly of myosin II filaments in vitro and in vivo [4]. To better understand the cellular regulation of MHCK A activity, and thus the regulation of myosin II filament assembly, we studied the in vivo localization of native and green fluorescent protein (GFP)-tagged MHCK A. MHCK A redistributes from the cytosol to the cell cortex in response to stimulation of Dictyostelium cells with chemoattractant in an F-actin-dependent manner. During chemotaxis, random migration, and phagocytic/endocytic events, MHCK A is recruited preferentially to actin-rich leading-edge extensions. Given the ability of MHCK A to disassemble myosin II filaments, this localization may represent a fundamental mechanism for disassembling myosin II filaments and preventing localized filament assembly at sites of actin-based protrusion.  相似文献   

7.
Studies in Dictyostelium discoideum have established that the cycle of myosin II bipolar filament assembly and disassembly controls the temporal and spatial localization of myosin II during critical cellular processes, such as cytokinesis and cell locomotion. Myosin heavy chain kinase A (MHCK A) is a key enzyme regulating myosin II filament disassembly through myosin heavy chain phosphorylation in Dictyostelium. Under various cellular conditions, MHCK A is recruited to actin-rich cortical sites and is preferentially enriched at sites of pseudopod formation, and thus MHCK A is proposed to play a role in regulating localized disassembly of myosin II filaments in the cell. MHCK A possesses an aminoterminal coiled-coil domain that participates in the oligomerization, cellular localization, and actin binding activities of the kinase. In the current study, we show that the interaction between the coiled-coil domain of MHCK A and filamentous actin leads to an approximately 40-fold increase in the initial rate of kinase catalytic activity. Actin-mediated activation of MHCK A involves increased rates of kinase autophosphorylation and requires the presence of the coiled-coil domain. Structure-function analyses revealed that the coiled-coil domain alone binds to actin filaments (apparent K(D) = 0.9 microm) and thus mediates the direct interaction with F-actin required for MHCK A activation. Collectively, these results indicate that MHCK A recruitment to actin-rich sites could lead to localized activation of the kinase via direct interaction with actin filaments, and thus this mode of kinase regulation may represent an important mechanism by which the cell achieves localized disassembly of myosin II filaments required for specific changes in cell shape.  相似文献   

8.
In this study, we examined the activation mechanism of Dictyostelium myosin light chain kinase A (MLCK-A) using constitutively active Ca2+/calmodulin-dependent protein kinase kinase as a surrogate MLCK-A kinase. MLCK-A was phosphorylated at Thr166 by constitutively active Ca2+/calmodulin-dependent protein kinase kinase, resulting in an approximately 140-fold increase in catalytic activity, using intact Dictyostelium myosin II. Recombinant Dictyostelium myosin II regulatory light chain and Kemptamide were also readily phosphorylated by activated MLCK-A. Mass spectrometry analysis revealed that MLCK-A expressed by Escherichia coli was autophosphorylated at Thr289 and that, subsequent to Thr166 phosphorylation, MLCK-A also underwent a slow rate of autophosphorylation at multiple Ser residues. Using site-directed mutagenesis, we show that autophosphorylation at Thr289 is required for efficient phosphorylation and activation by an upstream kinase. By performing enzyme kinetics analysis on a series of MLCK-A truncation mutants, we found that residues 283-288 function as an autoinhibitory domain and that autoinhibition is fully relieved by Thr166 phosphorylation. Simple removal of this region resulted in a significant increase in the kcat of MLCK-A; however, it did not generate maximum enzymatic activity. Together with the results of our kinetic analysis of the enzymes, these findings demonstrate that Thr166 phosphorylation of MLCK-A by an upstream kinase subsequent to autophosphorylation at Thr289 results in generation of maximum MLCK-A activity through both release of an autoinhibitory domain from its catalytic core and a further increase (15-19-fold) in the kcat of the enzyme.  相似文献   

9.
A high salt extract of bovine brain was found to contain a protein kinase which catalyzed the phosphorylation of heavy chain of brain myosin. The protein kinase, designated as myosin heavy chain kinase, has been purified by column chromatography on phosphocellulose, Sephacryl S-300, and hydroxylapatite. During the purification, the myosin heavy chain kinase was found to co-purify with casein kinase II. Furthermore, upon polyacrylamide gel electrophoresis of the purified enzyme under non-denaturing conditions, both the heavy chain kinase and casein kinase activities were found to comigrate. The purified enzyme phosphorylated casein, phosvitin, troponin T, and isolated 20,000-dalton light chain of gizzard myosin, but not histone or protamine. The kinase did not require Ca2+-calmodulin, or cyclic AMP for activity. Heparin, which is known to be a specific inhibitor of casein kinase II, inhibited the heavy chain kinase activity. These results indicate that the myosin heavy chain kinase is identical to casein kinase II. The myosin heavy chain kinase catalyzed the phosphorylation of the heavy chains in intact brain myosin. The heavy chains in intact gizzard myosin were also phosphorylated, but to a much lesser extent. The heavy chains of skeletal muscle and cardiac muscle myosins were not phosphorylated to an appreciable extent. Although the light chains isolated from brain and gizzard myosins were efficiently phosphorylated by the same enzyme, the rates of phosphorylation of these light chains in the intact myosins were very small. From these results it is suggested that casein kinase II plays a role as a myosin heavy chain kinase for brain myosin rather than as a myosin light chain kinase.  相似文献   

10.
Dictyostelium discoideum myosin II heavy chain kinase A (MHCK A), a member of the atypical α-kinase family, phosphorylates sites in the myosin II tail that block filament assembly. Here we show that the catalytic activity of A-CAT, the α-kinase domain of MHCK A (residues 552-841), is severely inhibited by the removal of a disordered C-terminal tail sequence (C-tail; residues 806-841). The key residue in the C-tail was identified as Thr(825), which was found to be constitutively autophosphorylated. Dephosphorylation of Thr(825) using shrimp alkaline phosphatase decreased A-CAT activity. The activity of a truncated A-CAT lacking Thr(825) could be rescued by P(i), phosphothreonine, and a phosphorylated peptide, but not by threonine, glutamic acid, aspartic acid, or an unphosphorylated peptide. These results focused attention on a P(i)-binding pocket located in the C-terminal lobe of A-CAT. Mutational analysis demonstrated that the P(i)-pocket was essential for A-CAT activity. Based on these results, it is proposed that autophosphorylation of Thr(825) activates ACAT by providing a covalently tethered ligand for the P(i)-pocket. Ab initio modeling studies using the Rosetta FloppyTail and FlexPepDock protocols showed that it is feasible for the phosphorylated Thr(825) to dock intramolecularly into the P(i)-pocket. Allosteric activation is predicted to involve a conformational change in Arg(734), which bridges the bound P(i) to Asp(762) in a key active site loop. Sequence alignments indicate that a comparable regulatory mechanism is likely to be conserved in Dictyostelium MHCK B-D and metazoan eukaryotic elongation factor-2 kinases.  相似文献   

11.
We purified to homogeneity the Dictyostelium discoideum myosin heavy chain kinase that is implicated in the heavy chain phosphorylation increases that occur during chemotaxis. The kinase is initially found in the insoluble fraction of developed cells. The major purification step was achieved by affinity chromatography using a tail fragment of Dictyostelium myosin (LMM58) expressed in Escherichia coli (De Lozanne, A., Berlot, C. H., Leinwand, L. A., and Spudich, J. A. (1988) J. Cell Biol. 105, 2990-3005). The kinase has an apparent molecular weight of 84,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The apparent native molecular weight by gel filtration is 240,000. The kinase catalyzes phosphorylation of myosin heavy chain or LMM58 with similar kinetics, and the extent of phosphorylation for both is 4 mol of phosphate/mol. With both substrates the Vmax is about 18 mumol/min/mg and the Km is 15 microM. The myosin heavy chain kinase is specific to Dictyostelium myosin heavy chain, and the phosphorylated amino acid is threonine. The kinase undergoes autophosphorylation. Each mole of kinase subunit incorporates about 20 mol of phosphates. Phosphorylation of myosin by this kinase inhibits myosin thick filament formation, suggesting that the kinase plays a role in the regulation of myosin assembly.  相似文献   

12.
The alpha kinases are a widespread family of atypical protein kinases characterized by a novel type of catalytic domain. In this paper the peptide substrate recognition motifs for three alpha kinases, Dictyostelium discoideum myosin heavy chain kinase (MHCK) A and MHCK B and mammalian eukaryotic elongation factor-2 kinase (eEF-2K), were characterized by incorporating amino acid substitutions into a previously identified MHCK A peptide substrate (YAYDTRYRR) (Luo X. et al. (2001) J. Biol. Chem. 276, 17836-43). A lysine or arginine in the P+1 position on the C-terminal side of the phosphoacceptor threonine (P site) was found to be critical for peptide substrate recognition by MHCK A, MHCK B and eEF-2K. Phosphorylation by MHCK B was further enhanced 8-fold by a basic residue in the P+2 position whereas phosphorylation by MHCK A was enhanced 2- to 4-fold by basic residues in the P+2, P+3 and P+4 positions. eEF-2K required basic residues in both the P+1 and P+3 positions to recognize peptide substrates. eEF-2K, like MHCK A and MHCK B, exhibited a strong preference for threonine as the phosphoacceptor amino acid. In contrast, the Dictyostelium VwkA and mammalian TRPM7 alpha kinases phosphorylated both threonine and serine residues. The results, together with a phylogenetic analysis of the alpha kinase catalytic domain, support the view that the metazoan eEF-2Ks and the Dictyostelium MHCKs form a distinct subgroup of alpha kinases with conserved properties.  相似文献   

13.
Q G Medley  J Gariépy  G P C?té 《Biochemistry》1990,29(38):8992-8997
One of the major sites phosphorylated on the Dictyostelium myosin II heavy chain by the Dictyostelium myosin II heavy-chain kinase A (MHCK A) is Thr-2029. Two synthetic peptides based on the sequence of the Dictyostelium myosin II heavy chain around Thr-2029 have been synthesized: MH-1 (residues 2020-2035; RKKFGESEKTKTKEFL-amide) and MH-2 (residues 2024-2035). Both peptides are substrates for MHCK A and are phosphorylated to a level of 1 mol of phosphate/mol. Tryptic digests indicate that the peptides are phosphorylated on the threonine corresponding to Thr-2029. When assays are initiated by the addition of MHCK A, the rate of phosphate incorporation into the peptides increases progressively for 4-6 min. The increasing activity of MHCK A over this time period is a result of autophosphorylation. Although each 130-kDa subunit of MHCK A can incorporate up to 10 phosphate molecules, 3 molecules of phosphate per subunit are sufficient to completely activate the kinase. Autophosphorylated MHCK A displays Vmax values of 2.2 and 0.6 mumol.min-1.mg-1 and Km values of 100 and 1200 microM with peptides MH-1 and MH-2, respectively. Unphosphorylated MHCK A displays a 50-fold lower Vmax with MH-1 but only a 2-fold greater Km. In the presence of Dictyostelium myosin II, the rate of autophosphorylation of MHCK A is increased 4-fold. If assays are performed at 4 degrees C (to slow the rate of MHCK A autophosphorylation), autophosphorylation can be shown to increase the activity of MHCK A with myosin II.  相似文献   

14.
Dictyostelium myosin II is a conventional myosin consisting of two heavy chains of 243,000 Da and two pairs of light chains of 16,000 and 18,000 Da. In this paper, we show that the heavy chain of myosin II can be rapidly and selectively cleaved by chymotrypsin to yield two fragments with molecular weights of 195,000 and 38,000 Da as estimated from sodium dodecyl sulfate-polyacrylamide gels. Chymotryptic cleavage at this site occurs most readily in the absence of salt and is greatly inhibited as the salt concentration is increased from 0 to 60 mM. Amino acid sequence analysis of the small fragment demonstrates that its amino terminus corresponds to lysine 1826 of the myosin II heavy chain. If the fragment extends to the carboxyl terminus of the myosin II heavy chain, it would have a molecular weight of 33,700. Upon digestion of myosin II which has been phosphorylated with a high molecular weight Dictyostelium myosin heavy chain kinase (C?té, G.P., and Bukiejko, U. (1987) J. Biol. Chem. 262, 1065-1072), all of the phosphate is recovered on the 33,700-Da tail-end fragment. Chymotrypsin-cleaved myosin II is shown to be capable of forming filaments at salt concentrations between 20 and 100 mM as judged by its ability to be sedimented by centrifugation. Only the large fragment of myosin II is found in the pellet; the 33,700-dalton fragment remains soluble. Chymotrypsin-cleaved myosin II can bind to actin and displays a high Ca2+-activated ATPase activity but has very low actin-activated ATPase activity.  相似文献   

15.
In previous work from this laboratory, a partially purified protein kinase from the soil amoeba Acanthamoeba castellanii was shown to phosphorylate the heavy chain of the two single-headed Acanthamoeba myosin isoenzymes, myosin IA and IB, resulting in a 10- to 20-fold increase in their actin-activated Mg2+-ATPase activities (Maruta, H., and Korn, E.D. (1977) J. Biol. Chem. 252, 8329-8332). A myosin I heavy chain kinase has now been purified to near homogeneity from Acanthamoeba by chromatography on DE-52 cellulose, phosphocellulose, and Procion red dye, followed by chromatography on histone-Sepharose. Myosin I heavy chain kinase contains a single polypeptide of 107,000 Da by electrophoretic analysis. Molecular sieve chromatography yields a Stokes radius of 4.1 nm, consistent with a molecular weight of 107,000 for a native protein with a frictional ratio of approximately 1.3:1. The kinase catalyzes the incorporation of 0.9 to 1.0 mol of phosphate into the heavy chain of both myosins IA and IB. Phosphoserine has been shown to be the phosphorylated amino acid in myosin IB. The kinase has highest specific activity toward myosin IA and IB, about 3-4 mumol of phosphate incorporated/min/mg (30 degrees C) at concentrations of myosin I that are well below saturating levels. The kinase also phosphorylates histone 2A, isolated smooth muscle light chains, and, to a very small extent, casein, but has no activity toward phosvitin or myosin II, a third Acanthamoeba myosin isoenzyme with a very different structure from myosin IA and IB. Myosin I heavy chain kinase requires Mg2+ but is not dependent on Ca2+, Ca2+/calmodulin, or cAMP for activity. The kinase undergoes an apparent autophosphorylation.  相似文献   

16.
Two different Dictyostelium discoideum cell lines that lack myosin heavy chain protein (MHC A) have been previously described. One cell line (mhcA) was created by antisense RNA inactivation of the endogenous mRNA and the other (HMM) by insertional mutagenesis of the endogenous myosin gene. The two cell lines show similar developmental defects; they are delayed in aggregation and become arrested at the mound stage. However, when cells that lack myosin heavy chain are mixed with wild-type cells, some of the mutant cells are capable of completing development to form mature spores. The pattern of expression of a number of developmentally regulated genes has been examined in both mutant cell lines. Although morphogenesis becomes aberrant before aggregation is completed, all of the markers that we have examined are expressed normally. These include genes expressed prior to aggregation as well as prespore genes expressed later in development. It appears that the signals necessary for cell-type differentiation are generated in the aborted structures formed by cells lacking MHC A. The mhcA cells have negligible amounts of MHC A protein while the HMM cells express normal amounts of a fragment of the myosin heavy chain protein similar to heavy meromyosin (HMM). The expression of myosin light chain was examined in these two cell lines. HMM cells accumulate normal amounts of the 18,000-D light chain, while the amount of light chain in mhcA cells is dramatically reduced. It is likely that the light chains assemble normally with the HMM fragment in HMM cells, while in cells lacking myosin heavy chain (mhcA) the light chains are unstable.  相似文献   

17.
A tail fragment of Dictyostelium discoideum myosin has been cloned and expressed as a fusion protein with the N-terminal region of MS-2 polymerase. The cloned fragment was phosphorylated with myosin heavy chain kinase II from aggregation-competent D. discoideum cells that specifically phosphorylate threonine residues on the myosin tail. Phosphopeptide maps showed the same site specificity of phosphorylation with the fusion protein as a substrate as with native myosin. An improved assay for the kinase was developed in which the fusion protein is precipitated with a monoclonal antibody that inhibits polymerization of the myosin tails without preventing their phosphorylation. Sites of phosphorylation were tentatively localized to a sequence in the C-terminal region of the heavy chain where four threonine residues are found.  相似文献   

18.
Dictyostelium amebae have been engineered by homologous recombination of a truncated copy of the myosin heavy chain gene (heavy meromyosin (HMM) cells) and by transformation with a vector encoding an antisense RNA to myosin heavy chain mRNA (mhcA cells) so that they lack native myosin heavy chain protein. In the former case, cells synthesize only the heavy meromyosin portion of the protein and in the latter case they synthesize negligible amounts of the protein. Surprisingly, it was demonstrated that both cell lines are viable and motile. In order to compare the motility of these cells with normal cells, the newly developed computer-assisted Dynamic Morphology System (DMS) was employed. The results demonstrate that the average HMM or mhcA ameba moves at a rate of translocation less than half that of normal cells. It is rounder and less polar than a normal cell, and exhibits a rate of cytoplasmic expansion and contraction roughly half that of normal cells. In a spatial gradient of cAMP, the average ameba of HMM or mhcA exhibits a chemotactic index of +0.10 or less, compared to the chemotactic index of +0.50 exhibited by normal cells. Finally, the initial area, rate of expansion, and final area of pseudopods are roughly half that of normal cells. The five fastest HMM amebae (out of 35 analyzed in detail) moved at an average rate of translocation equal to that of normal amebae, and exhibited an average chemotactic index of +0.34. In addition, the average rate of cytoplasmic flow in fast HMM cells was equal to that of the average normal ameba. However, fast HMM amebae still exhibited the same defects in pseudopod formation that were exhibited by the entire HMM cell population. These results suggest that myosin heavy chain is involved in the "fine tuning" and efficiency of pseudopod formation, but is not essential for the basic behavior of pseudopod expansion.  相似文献   

19.
Myosin II heavy chain (MHC)-specific protein kinase C (MHC-PKC) isolated from the ameba, Dictyostelium discoideum, regulates myosin II assembly and localization in response to the chemoattractant cAMP (Abu- Elneel et al. 1996. J. Biol. Chem. 271:977- 984). Recent studies have indicated that cAMP-induced cGMP accumulation plays a role in the regulation of myosin II phosphorylation and localization (Liu, G., and P. Newell. 1991. J. Cell. Sci. 98: 483-490). This report describes the roles of cAMP and cGMP in the regulation of MHC-PKC membrane association, phosphorylation, and activity (hereafter termed MHC-PKC activities). cAMP stimulation of Dictyostelium cells resulted in translocation of MHC-PKC from the cytosol to the membrane fraction, as well as increasing in MHC-PKC phosphorylation and in its kinase activity. We present evidence that MHC is phosphorylated by MHC-PKC in the cell cortex which leads to myosin II dissociation from the cytoskeleton. Use of Dictyostelium mutants that exhibit aberrant cAMP- induced increases in cGMP accumulation revealed that MHC-PKC activities are regulated by cGMP. Dictyostelium streamer F mutant (stmF), which produces a prolonged peak of cGMP accumulation upon cAMP stimulation, exhibits prolonged increases in MHC-PKC activities. In contrast, Dictyostelium KI-10 mutant that lacks the normal cAMP-induced cGMP response, or KI-4 mutant that shows nearly normal cAMP-induced cGMP response but has aberrant cGMP binding activity, show no changes in MHC- PKC activities. We provide evidence that cGMP may affect MHC-PKC activities via the activation of cGMP-dependent protein kinase which, in turn, phosphorylates MHC-PKC. The results presented here indicate that cAMP-induced cGMP accumulation regulates myosin II phosphorylation and localization via the regulation of MHC-PKC.  相似文献   

20.
A calcium- and calmodulin-dependent kinase that represents the majority of the myosin heavy chain kinase activity in chicken intestinal brush borders has been highly purified. The purification steps include gel filtration, high performance chromatography on anion and cation exchangers, and affinity chromatography on calmodulin-Sepharose. The purified kinase consists of a single major, apparently autophosphorylatable polypeptide of 50,000 daltons. The Stokes radius (68 A) and sedimentation coefficient (17.5 S) indicate that it has a molecular weight of approximately 490,000. The kinase catalyzed the incorporation of a maximum of 0.8 mol of phosphate/mol of heavy chain, and essentially no phosphate was incorporated into the light chains. This kinase is distinct from other myosin kinases, but has a number of properties in common with the type II calmodulin-dependent protein kinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号