首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Dimopoulos N  Watson M  Green C  Hundal HS 《FEBS letters》2007,581(24):4743-4748
Peroxisome proliferator-activated receptor-delta (PPARdelta) activation enhances skeletal muscle fatty acid oxidation and improves whole body glucose homeostasis and insulin sensitivity. Recently, GW501516, a selective PPARdelta agonist, was reported to increase glucose uptake in human skeletal myotubes by an AMPK-dependent mechanism that may contribute to the improved glucose tolerance. Here, we demonstrate that whilst GW501516 increases expression of PGC-1alpha and CPT-1 and stimulates fatty-acid oxidation in L6 myotubes, it fails to enhance insulin sensitivity, AMPK activity or glucose uptake and storage. Our findings exclude sarcolemmal glucose transport as a potential target for the therapeutic action of PPARdelta agonists in skeletal muscle.  相似文献   

3.
4.
Apolipoprotein A-IV (apoA-IV) is a 46 kDa glycoprotein that associates with triglyceride-rich and high density lipoproteins. Blood levels of apoA-IV generally correlate with triglyceride levels and are increased in diabetic patients. This study investigated the mechanisms regulating the in vivo expression of apoA-IV in the liver and intestine of mice in response to changes in nutritional status. Fasting markedly increased liver and ileal apoA-IV mRNA and plasma protein concentrations. This induction was associated with increased serum glucocorticoid levels and was abolished by adrenalectomy. Treatment with dexamethasone increased apoA-IV expression in adrenalectomized mice. Marked increases of apoA-IV expression were also observed in two murine models of diabetes. Reporter gene analysis of the murine and human apoA-IV/C-III promoters revealed a conserved cooperative activation by the hepatic nuclear factor-4 alpha (HNF-4 alpha) and the peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1 alpha) but no evidence of a direct regulatory role for the glucocorticoid receptor. Consistent with these in vitro data, induction of apoA-IV in response to fasting was accompanied by increases in HNF-4 alpha and PGC-1 alpha expression and was abolished in liver-specific HNF-4 alpha-deficient mice. Together, these results indicate that the induction of apoA-IV expression in fasting and diabetes likely involves PGC-1 alpha-mediated coactivation of HNF-4 alpha in addition to glucocorticoid-dependent actions.  相似文献   

5.
6.
7.
The peroxisome proliferator-activated receptors (PPARs) are involved in the regulation of most of the pathways linked to lipid metabolism. PPARalpha and PPARbeta isotypes are known to regulate muscle fatty acid oxidation and a reciprocal compensation of their function has been proposed. Herein, we investigated muscle contractile and metabolic phenotypes in PPARalpha-/-, PPARbeta-/-, and double PPARalpha-/- beta-/- mice. Heart and soleus muscle analyses show that the deletion of PPARalpha induces a decrease of the HAD activity (beta-oxidation) while soleus contractile phenotype remains unchanged. A PPARbeta deletion alone has no effect. However, these mild phenotypes are not due to a reciprocal compensation of PPARbeta and PPARalpha functions since double gene deletion PPARalpha-PPARbeta mostly reproduces the null PPARalpha-mediated reduced beta-oxidation, in addition to a shift from fast to slow fibers. In conclusion, PPARbeta is not required for maintaining skeletal muscle metabolic activity and does not compensate the lack of PPARalpha in PPARalpha null mice.  相似文献   

8.
9.
Leucine is known to increase mTOR-mediated phosphorylation of 4EBP. In this study, leucine was administered to skeletal muscle-PGC-1α knockout mice. We observed attenuated 4EBP phosphorylation in the skeletal muscle, but not in the liver, of the PGC-1α knockout mice. These data suggest that skeletal muscle-PGC-1α is important for leucine-mediated mTOR activation and protein biosynthesis.  相似文献   

10.
Keshan disease (KD) is an endemic dilated cardiomyopathy with unclear etiology. In this study, we compared mitochondrial-related gene expression profiles of peripheral blood mononuclear cells (PBMCs) derived from 16 KD patients and 16 normal controls in KD areas. Total RNA was isolated, amplified, labeled and hybridized to Agilent human 4×44k whole genome microarrays. Mitochondrial-related genes were screened out by the Third-Generation Human Mitochondria-Focused cDNA Microarray (hMitChip3). Quantitative real-time PCR, immunohistochemical and biochemical parameters related mitochondrial metabolism were conducted to validate our microarray results. In KD samples, 34 up-regulated genes (ratios≥2.0) were detected by significance analysis of microarrays and ingenuity systems pathway analysis (IPA). The highest ranked molecular and cellular functions of the differentially regulated genes were closely related to amino acid metabolism, free radical scavenging, carbohydrate metabolism, and energy production. Using IPA, 40 significant pathways and four significant networks, involved mainly in apoptosis, mitochondrion dysfunction, and nuclear receptor signaling were identified. Based on our results, we suggest that PGC-1alpha regulated energy metabolism and anti-apoptosis might play an important role in the compensatory mechanism of KD. Our results may lead to the identification of potential diagnostic biomarkers for KD in PBMCs, and may help to understand the pathogenesis of KD.  相似文献   

11.
12.
Reue K  Zhang P 《FEBS letters》2008,582(1):90-96
  相似文献   

13.
We examined to determine whether hepatic gene expression is affected in mice in which blood lipid levels remain unchanged fed soy protein isolate (SPI) for a short time. We also examined SPI-mediated effects in farnesoid X receptor (FXR)-deficient mice. Compared with casein, SPI affected the expression of various hepatic genes related to lipid metabolism in the wild-type mice. No effects of SPI were observed in the FXR-deficient mice, suggesting the importance of FXR. Hepatic peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) gene expression was reduced by SPI, and this might be associated with a decrease in FXR expression. Decreased FXR led to decreased expression of its target, the bile-salt export pump necessary for bile acid secretion and dietary lipid absorption. The earliest response to SPI was a decrease in hepatic sterol regulatory element-binding protein (SREBP)-1c mRNA, on day 3. SPI activated hepatic adenosine monophosphate-activated protein kinase (AMPK), which can lead to a reduction in SREBP-1c mRNA. These data indicate the importance of SREBP-1c and PGC-1α/FXR in SPI-mediated alterations in hepatic gene expression.  相似文献   

14.
Rodents are able to lower fatty acid utilization in liver and muscle during lactation in order to spare fatty acids for the production of milk triacylglycerols, an effect which is mediated by a down-regulation of peroxisome proliferator-activated receptor α (PPARα). The present study was performed to investigate whether similar fatty acid sparing effects are developing in lactating sows. We considered PPARα and its target genes involved in fatty acid utilization in biopsy samples from muscle and adipose tissue of lactating compared to non-lactating sows. In muscle, PPARα target genes involved in fatty acid utilization were up-regulated during lactation indicating that the fatty acid utilization in muscle was increased. Activation of PPARα was probably due to increased concentrations of non-esterified fatty acids in plasma observed in the lactating sows. In contrast to muscle, PPARα and its target genes involved in β-oxidation in white adipose tissue were down-regulated in early lactation. Overall, the present study shows that sows, unlike rats, are not able to reduce the fatty acid utilization in muscle in order to spare fatty acids for milk production. However, fatty acid oxidation in adipose tissue is lowered during early lactation, an effect that might be helpful to conserve fatty acids released from adipose tissue for the delivery into other tissues, including mammary gland, via the blood.  相似文献   

15.
16.
17.
Robinson EK  Sneige N  Grimm EA 《Cytokine》1998,10(12):970-976
The authors hypothesized that IL-6 production by breast tumour tissues would correlate with OR-positivity, as only those tumours that contain oestrogen receptors (OR) and use oestrogen as a mitogen would benefit from locally increased oestrogen. IL-6 increases the activity of the 17beta-oxidoreductase, which converts oestrone to oestradiol, a process that may contribute to the increased concentration of oestrogen around breast tumours. IL-1alpha upregulates IL-6 production; therefore, the correlation between IL-1alpha and IL-6 immunoreactivity and OR-positivity in paraffin-embedded human breast tumours was further investigated.The results indicate IL-6 immunoreactivity in 40 of 66 paraffin embedded breast tumour specimens, a finding which did not correlate with the clinical evaluation of oestrogen receptor positivity (P=0.32 by Fisher's exact test). However, there was a correlation between IL-6 and IL-1alpha immunoreactivity (P<0.05). To study an in vitro model for this phenomenon, the IL-6 immunoreactivity in available cell lines was tested. Surprisingly, no production of IL-6 protein or mRNA could be detected in any of the cell lines, and this did not change with IL-1alpha stimulation. Therefore, none of the cell lines apparently reflected the immunological potential observed in the majority of surgical specimens.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号