首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The role of the forearm (extrinsic) finger flexor muscles in initiating rotation of the metacarpophalangeal (MCP) joint and in coordinating flexion at the MCP, the proximal interphalangeal (PIP), and distal interphalangeal (DIP) joints remains a matter of some debate. To address the biomechanical feasibility of the extrinsic flexors performing these actions, a computer simulation of the index finger was created. The model consisted of a planar open-link chain comprised of three revolute joints and four links, driven by the change in length of the flexor muscles. Passive joint characteristics, included in the model, were obtained from system identification experiments involving the application of angular perturbations to the joint of interest. Simulation results reveal that in the absence of passive joint torque, shortening of the extrinsic flexors results in PIP flexion (80°), but DIP (8°) and MCP (7°) joint extension. The inclusion of normal physiological levels of passive joint torque, however, results in simultaneous flexion of all three joints (63° for DIP, 75° for PIP, and 43° for MCP). Applicability of the simulation results was confirmed by recording finger motion produced by electrical stimulation of the extrinsic flexor muscles for the index finger. These findings support the view that the extrinsic flexor muscles can initiate MCP flexion, and produce simultaneous motion at the MCP, PIP, and DIP joints.  相似文献   

2.
For the extrinsic hand flexors (flexor digitorum profundus, FDP; flexor digitorum superficialis, FDS; flexor pollicis longus, FPL), moment arm corresponds to the tendon's distance from the center of the metacarpalphalangeal (MP), proximal interphalangeal (PIP), or distal interphalangeal (DIP) joint. The clinical value of establishing accurate moment arms has been highlighted for biomechanical modeling, the development of robotic hands, designing rehabilitation protocols, and repairing flexor tendon pulleys (Brand et al., 1975; An et al., 1983; Thompson and Giurintano, 1989; Deshpande et al., 2010; Wu et al., 2010). In this study, we define the moment arms for all of the extrinsic flexor tendons of the hand across all digital joints for all digits in cadaveric hands.  相似文献   

3.
This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done with finger postures ranging from very flexed to fully extended. The role of the finger extensor mechanism was investigated by using two alternative finger models, one which omitted the extensor mechanism and another which included it. A six-camera three-dimensional motion analysis system was used to capture the finger posture during maximum voluntary isometric pressing. The fingertip loads were recorded simultaneously using a force plate system. Two three-dimensional biomechanical finger models, a minimal model without extensor mechanism and a full model with extensor mechanism (tendon network), were used to calculate the joint bone-to-bone contact forces and the extrinsic and intrinsic muscle forces. If the full model is assumed to be realistic, then the results suggest some useful biomechanical advantages provided by the tendon network of the extensor mechanism. It was found that the forces in the intrinsic muscles (interosseus group and lumbrical) are significantly reduced by 22% to 61% due to the action of the extensor mechanism, with the greatest reductions in more flexed postures. The bone-to-bone contact force at the MCP joint is reduced by 10% to 41%. This suggests that the extensor mechanism may help to reduce the risk of injury at the finger joints and also to moderate the forces in intrinsic muscles. These apparent biomechanical advantages may be a result of the extensor mechanism''s distinctive interconnected fibrous structure, through which the contraction of the intrinsic muscles as flexors of the MCP joint can generate extensions at the DIP and PIP joints.  相似文献   

4.
Finger joint coordination during tapping   总被引:1,自引:0,他引:1  
We investigated finger joint coordination during tapping by characterizing joint kinematics and torques in terms of muscle activation patterns and energy profiles. Six subjects tapped with their index finger on a computer keyswitch as if they were typing on the middle row of a keyboard. Fingertip force, keyswitch position, kinematics of the metacarpophalangeal (MCP) and the proximal and distal interphalangeal (IP) joints, and intramuscular electromyography of intrinsic and extrinsic finger muscles were measured simultaneously. Finger joint torques were calculated based on a closed-form Newton–Euler inverse dynamic model of the finger. During the keystroke, the MCP joint flexed and the IP joints extended before and throughout the loading phase of the contact period, creating a closing reciprocal motion of the finger joints. As the finger lifted, the MCP joint extended and the interphalangeal (IP) joints flexed, creating an opening reciprocal motion. Intrinsic finger muscle and extrinsic flexor activities both began after the initiation of the downward finger movement. The intrinsic finger muscle activity preceded both the IP joint extension and the onset of extrinsic muscle activity. Only extrinsic extensor activity was present as the finger was lifted. While both potential energy and kinetic energy are present and large enough to overcome the work necessary to press the keyswitch, the motor control strategies utilize the muscle forces and joint torques to ensure a successful keystroke.  相似文献   

5.
The present work displayed the first quantitative data of forces acting on tendons and pulleys during specific sport-climbing grip techniques. A three-dimensional static biomechanical model was used to estimate finger muscle tendon and pulley forces during the "slope" and the "crimp" grip. In the slope grip the finger joints are flexed, and in the crimp grip the distal interphalangeal (DIP) joint is hyperextended while the other joints are flexed. The tendons of the flexor digitorum profundus and superficialis (FDP and FDS), the extensor digitorum communis (EDC), the ulnar and radial interosseus (UI and RI), the lumbrical muscle (LU) and two annular pulleys (A2 and A4) were considered in the model. For the crimp grip in equilibrium conditions, a passive moment for the DIP joint was taken into account in the biomechanical model. This moment was quantified by relating the FDP intramuscular electromyogram (EMG) to the DIP joint external moment. Its intensity was estimated at a quarter of the external moment. The involvement of this parameter in the moment equilibrium equation for the DIP joint is thus essential. The FDP-to-FDS tendon-force ratio was 1.75:1 in the crimp grip and 0.88:1 in the slope grip. This result showed that the FDP was the prime finger flexor in the crimp grip, whereas the tendon tensions were equally distributed between the FDP and FDS tendons in the slope grip. The forces acting on the pulleys were 36 times lower for A2 in the slope grip than in the crimp grip, while the forces acting on A4 were 4 times lower. This current work provides both an experimental procedure and a biomechanical model that allows estimation of tendon tensions and pulley forces crucial for the knowledge about finger injuries in sport climbing.  相似文献   

6.
Previous deterministic finger biomechanical models predicted that the flexor digitorum superficialis (FDS) was silent and the flexor digitorum profundus (FDP) was the only active flexor during finger flexion. Experimental studies in vivo, however, recorded activities of both flexors. In this study, in an attempt to elucidate the roles of the flexors, a probabilistic biodynamic model of the index finger was constructed to estimate the muscle–tendon forces during an experimentally measured index finger flexion movement.A Monte-Carlo simulation was performed with four model parameters, including moment arms, physiological cross sectional areas (PCSA), passive torques, and anthropometric measures as independent random variables. The muscle-tendon forces at each time point were determined using a nonlinear optimization technique. The model predicted that both FDS and FDP contributed to sustaining the movement and the FDS was not necessarily silent. The two distinct force patterns observed in vivo in experimental studies were also corroborated by the simulation. These findings, contrary to previous deterministic models’ predictions but in agreement with experimental measurements, explained the observed coactivation of FDS and FDP, and resolved the controversy regarding the roles of the flexors in finger movement dynamics.  相似文献   

7.
A method was developed to indirectly measure friction between the flexor tendons and pulleys of the middle and ring finger in vivo. An isokinetic movement device to determine maximum force of wrist flexion, interphalangeal joint flexion (rolling in and out) and isolated proximal interphalangeal (PIP) joint flexion was built. Eccentric and concentric maximum force of these three different movements where gliding of the flexor tendon sheath was involved differently (least in wrist flexion) was measured and compared. Fifty-one hands in 26 male subjects were evaluated. The greatest difference between eccentric and concentric maximum force (29.9%) was found in flexion of the PIP joint. Differences in the rolling in and out movement (26.8%) and in wrist flexion (14.5%) were significantly smaller. The force of friction between flexor tendons and pulleys can be determined by the greater difference between eccentric and concentric maximum force provided by the same muscles in overcoming an external force during flexion of the interphalangeal joints and suggests the presence of a non-muscular force, such as friction. It constitutes of 9% of the eccentric flexion force in the PIP joint and therefore questions the low friction hypothesis at high loads.  相似文献   

8.
Rock climbers are often using the unique crimp grip position to hold small ledges. Thereby the proximal interphalangeal (PIP) joints are flexed about 90 degrees and the distal interphalangeal joints are hyperextended maximally. During this position of the finger joints bowstringing of the flexor tendon is applying very high load to the flexor tendon pulleys and can cause injuries and overuse syndromes. The objective of this study was to investigate bowstringing and forces during crimp grip position. Two devices were built to measure the force and the distance of bowstringing and one device to measure forces at the fingertip. All measurements of 16 fingers of four subjects were made in vivo. The largest amount of bowstringing was caused by the flexor digitorum profundus tendon in the crimp grip position being less using slope grip position (PIP joint extended). During a warm-up, the distance of bowstringing over the distal edge of the A2 pulley increased by 0.6mm (30%) and was loaded about 3 times the force applied at the fingertip during crimp grip position. Load up to 116N was measured over the A2 pulley. Increase of force in one finger holds by the quadriga effect was shown using crimp and slope grip position.  相似文献   

9.
A novel technique to estimate the contribution of finger extensor tendons to joint moment generation was proposed. Effective static moment arms (ESMAs), which represent the net effects of the tendon force on joint moments in static finger postures, were estimated for the 4 degrees of freedom (DOFs) in the index finger. Specifically, the ESMAs for the five tendons contributing to the finger extensor apparatus were estimated by directly correlating the applied tendon force to the measured resultant joint moments in cadaveric hand specimens. Repeated measures analysis of variance revealed that the finger posture, specifically interphalangeal joint angles, had significant effects on the measured ESMA values in 7 out of 20 conditions (four DOFs for each of the five muscles). Extensor digitorum communis and extensor indicis proprius tendons were found to have greater MCP ESMA values when IP joints are flexed, whereas abduction ESMAs of all muscles except extensor digitorum profundus were mainly affected by MCP flexion. The ESMAs were generally smaller than the moment arms estimated in previous studies that employed kinematic measurement techniques. Tendon force distribution within the extensor hood and dissipation into adjacent structures are believed to contribute to the joint moment reductions, which result in smaller ESMA values.  相似文献   

10.
Kinetics of crimp and slope grip in rock climbing   总被引:1,自引:0,他引:1  
The aim was to investigate differences of the kinetics of the crimp and the slope grip used in rock climbing. Nine cadaver fingers were prepared and fixated with the proximal phalanx in a frame. The superficial (FDS) and deep (FDP) flexor tendons were loaded selectively and together with 40 N in the crimp grip (PIP joint flexed 90°/DIP joint hyperextended) and the slope grip position (<25° flexed/50° flexed respectively). Five different grip sizes were tested and the flexion force which was generated to the grip was measured. In the crimp grip the FDP generated more flexion force in small sized holds whereas the FDS generated more force in the larger holds. During the slope grip the FDP was more effective than the FDS. While both tendons were loaded, the flexion force was always greater during crimp grip compared with the slope grip. The FDP seems to be most important for very small holds using the crimp grip but also during slope grip holds whereas the FDS is more important for larger flat holds.  相似文献   

11.
A numerical optimization procedure was used to determine finger positions that minimize and maximize finger tendon and joint force objective functions during piano play. A biomechanical finger model for sagittal plane motion, based on finger anatomy, was used to investigate finger tendon tensions and joint reaction forces for finger positions used in playing the piano. For commonly used piano key strike positions, flexor and intrinsic muscle tendon tensions ranged from 0.7 to 3.2 times the fingertip key strike force, while resultant inter-joint compressive forces ranged from 2 to 7 times the magnitude of the fingertip force. In general, use of a curved finger position, with a large metacarpophalangeal joint flexion angle and a small proximal interphalangeal joint flexion angle, reduces flexor tendon tension and resultant finger joint force.  相似文献   

12.
Objective estimates of fingertip force reduction following peripheral nerve injuries would assist clinicians in setting realistic expectations for rehabilitating strength of grasp. We quantified the reduction in fingertip force that can be biomechanically attributed to paralysis of the groups of muscles associated with low radial and ulnar palsies. We mounted 11 fresh cadaveric hands (5 right, 6 left) on a frame, placed their forefingers in a functional posture (neutral abduction, 45° of flexion at the metacarpophalangeal and proximal interphalangeal joints, and 10° at the distal interphalangeal joint) and pinned the distal phalanx to a six-axis dynamometer. We pulled on individual tendons with tensions up to 25% of maximal isometric force of their associated muscle and measured fingertip force and torque output. Based on these measurements, we predicted the optimal combination of tendon tensions that maximized palmar force (analogous to tip pinch force, directed perpendicularly from the midpoint of the distal phalanx, in the plane of finger flexion–extension) for three cases: non-paretic (all muscles of forefinger available), low radial palsy (extrinsic extensor muscles unavailable) and low ulnar palsy (intrinsic muscles unavailable). We then applied these combinations of tension to the cadaveric tendons and measured fingertip output. Measured palmar forces were within 2% and 5° of the predicted magnitude and direction, respectively, suggesting tendon tensions superimpose linearly in spite of the complexity of the extensor mechanism. Maximal palmar forces for ulnar and radial palsies were 43 and 85% of non-paretic magnitude, respectively (p<0.05). Thus, the reduction in tip pinch strength seen clinically in low radial palsy may be partly due to loss of the biomechanical contribution of forefinger extrinsic extensor muscles to palmar force. Fingertip forces in low ulnar palsy were 9° further from the desired palmar direction than the non-paretic or low radial palsy cases (p<0.05).  相似文献   

13.
The aim of the study was to investigate the influence of a preceding flexion or extension movement on the static interaction of human finger flexor tendons and pulleys concerning flexion torque being generated. Six human fresh frozen cadaver long fingers were mounted in an isokinetic movement device for the proximal interphalangeal (PIP) joint. During flexion and extension movement both flexor tendons were equally loaded with 40 N while the generated moment was depicted simultaneously at the fingertip. The movement was stopped at various positions of the proximal interphalangeal joint to record dynamic and static torque. The static torque was always greater after a preceding extension movement compared to a preceding flexion movement in the corresponding same position of the joint. This applied for the whole arc of movement of 0–105°. The difference between static extension and flexion torque was maximal 11% in average at about 83° of flexion. Static torque was always smaller than dynamic torque during extension movement and always greater than dynamic torque during flexion movement. The kind of preceding movement therefore showed an influence to the torque being generated in the proximal interphalangeal joint. The effect could be simulated on a mechanical finger device.  相似文献   

14.
The human finger contains tendon/ligament mechanisms essential for proper control. One mechanism couples the movements of the interphalangeal joints when the (unloaded) finger is flexed with active deep flexor. This study’s aim was to accurately determine in a large finger sample the kinematics and variability of the coupled interphalangeal joint motions, for potential clinical and finger model validation applications. The data could also be applied to humanoid robotic hands. Sixty-eight fingers were measured in seventeen hands in nine subjects. Fingers exhibited great joint mobility variability, with passive proximal interphalangeal hyperextension ranging from zero to almost fifty degrees. Increased measurement accuracy was obtained by using marker frames to amplify finger segment motions. Gravitational forces on the marker frames were not found to invalidate measurements. The recorded interphalangeal joint trajectories were highly consistent, demonstrating the underlying coupling mechanism. The increased accuracy and large sample size allowed for evaluation of detailed trajectory variability, systematic differences between flexion and extension trajectories, and three trigger types, distinct from flexor tendon triggers, involving initial flexion deficits in either proximal or distal interphalangeal joint. The experimental methods, data and analysis should advance insight into normal and pathological finger biomechanics (e.g., swanneck deformities), and could help improve clinical differential diagnostics of trigger finger causes. The marker frame measuring method may be useful to quantify interphalangeal joints trajectories in surgical/rehabilitative outcome studies. The data as a whole provide the most comprehensive collection of interphalangeal joint trajectories for clinical reference and model validation known to us to date.  相似文献   

15.
The finger pads of eight subjects were loaded by tangential displacement (x-perpendicular to the long axis of the finger) of a contacted surface when the distal and proximal interphalangeal joints (DIP and PIP, respectively) were alternately constrained. The finger pad responded in a linearly viscoelastic manner during loading, but exhibited highly nonlinear behavior upon unloading. The observed tangential force (F(T)) relaxations were nonlinear and could be modeled well by a logarithmic function. The average F(T) relaxation duration (tau) was 11.8 s. Apparent tangential stiffness (kT), determined by F(T) after relaxation, varied linearly with normal force. With the DIP joints constrained the fingers showed significantly larger stiffness than with the PIP joints constrained (p<0.001). Implications for finger force coordination studies are discussed.  相似文献   

16.
The aim of the present study was to assess ultrasonography (US) for the detection of inflammatory and destructive changes in finger and toe joints, tendons, and entheses in patients with psoriasis-associated arthritis (PsA) by comparison with magnetic resonance imaging (MRI), projection radiography (x-ray), and clinical findings. Fifteen patients with PsA, 5 with rheumatoid arthritis (RA), and 5 healthy control persons were examined by means of US, contrast-enhanced MRI, x-ray, and clinical assessment. Each joint of the 2nd–5th finger (metacarpophalangeal joints, proximal interphalangeal [PIP] joints, and distal interphalangeal [DIP] joints) and 1st–5th metatarsophalangeal joints of both hands and feet were assessed with US for the presence of synovitis, bone erosions, bone proliferations, and capsular/extracapsular power Doppler signal (only in the PIP joints). The 2nd–5th flexor and extensor tendons of the fingers were assessed for the presence of insertional changes and tenosynovitis. One hand was assessed by means of MRI for the aforementioned changes. X-rays of both hands and feet were assessed for bone erosions and proliferations. US was repeated in 8 persons by another ultrasonographer. US and MRI were more sensitive to inflammatory and destructive changes than x-ray and clinical examination, and US showed a good interobserver agreement for bone changes (median 96% absolute agreement) and lower interobserver agreement for inflammatory changes (median 92% absolute agreement). A high absolute agreement (85% to 100%) for all destructive changes and a more moderate absolute agreement (73% to 100%) for the inflammatory pathologies were found between US and MRI. US detected a higher frequency of DIP joint changes in the PsA patients compared with RA patients. In particular, bone changes were found exclusively in PsA DIP joints. Furthermore, bone proliferations were more common and tenosynovitis was less frequent in PsA than RA. For other pathologies, no disease-specific pattern was observed. US and MRI have major potential for improved examination of joints, tendons, and entheses in fingers and toes of patients with PsA.  相似文献   

17.
LEARNING OBJECTIVES: After reviewing the article, the participant should be able to: (1) Describe the anatomy of the extensor tendons at the level of the forearm, wrist, hand, and fingers. (2) Recognize variations in the anatomy. (3) Master the hand examination and define the relevant findings in acute injuries of the extensor tendon(s). (4) Delineate the techniques for extensor repair in both acute and secondary (delayed) management. SUMMARY: Extension of the fingers is an intricate process that reflects the combined action of two independent systems. The interossei and lumbricals constitute the intrinsic musculature of the hand. These muscles innervated by the median and ulnar nerves extend the proximal interphalangeal and distal interphalangeal joints and flex the metacarpophalangeal joints. The extrinsic extensors are a group of muscles innervated by the radial nerve, originating proximal to the forearm. The extrinsic digital extensor muscles include the extensor digitorum communis, extensor indicis proprius, and extensor digiti quinti. The digital extensors function primarily to extend the metacarpophalangeal joints, but also extend the proximal interphalangeal and distal interphalangeal joints. Normal extensor physiology reflects a delicate balance between these two unique extensor systems. In the injured hand, a functioning intrinsic system may potentially compensate for an extrinsic deficit. An understanding of the relevant anatomy and an appreciation for the complex interplay involved in extensor physiology is necessary to recognize and manage these injuries.  相似文献   

18.
The interphalangeal (IP) finger joints coordinate as a mechanism when the deep flexor is active. This mechanism is created by the complex finger extensor apparatus (EA) - a confluence of end tendons of one or two extensors, radial and ulnar interossei, and lumbrical - which inserts as a single structure into both the middle and distal phalanges. Although the IP-coupling principle was well demonstrated more than half a century ago, the detailed relationship between EA morphology and IP coupling remains not well described. Main reasons are that by dissection the EA's fiber network loses functional consistency, while fibers becoming taut or slack beyond measuring resolutions complicate measuring functional fiber motions. To circumvent these difficulties, we present a two dimensional kinematic multi tendon-string EA model of fiber slackness and tautness through IP motion, including the retinacular and oblique retinacular EA ligaments. The model parameters were the strings' lengths and attachment points. The model's functional redundancies were resolved by individually interactively fitting model IP trajectories to previously measured IP trajectories of 68 fingers. All model trajectories accurately fitted their target IP trajectories for proximal interphalangeal (PIP) joint ranges smaller than 25° to 45°; about half accurately fitted over the entire IP range with the remaining half having maximum approximation errors between 3° to 12°, while all models again converged to target trajectories for full IP flexion. These accuracies suggest the model reflects real functional EA principles, with potential applications in biomechanical modeling, surgical reconstruction, rehabilitation, and prosthetic EA replacements.  相似文献   

19.
The postoperative outcome of hand flexor tendon repair remains limited by tendon adhesions that prevent normal range of motion. Recent studies using in situ hybridization techniques have implicated transforming growth factor beta-1 (TGF-beta1) in both intrinsic and extrinsic mechanisms of repair. TGF-beta1 is a growth factor that plays multiple roles in wound healing and has also been implicated in the pathogenesis of excessive scar formation. The purpose of this study was to examine the effect of neutralizing antibody to TGF-beta1 in a rabbit zone II flexor tendon wound-healing model. Twenty-two adult New Zealand White rabbits underwent complete transection of the middle digit flexor digitorum profundus tendon in zone II. The tendons were immediately repaired and received intraoperative infiltration of one of the following substances: (1) control phosphate-buffered saline; (2) 50 microg neutralizing antibody to TGF-beta1; (3) 50 microg each of neutralizing antibody to TGF-beta1 and to TGF-beta2. Eight rabbits that had not been operated on underwent analysis for determination of normal flexion range of motion at their proximal and distal interphalangeal joints, using a 1.2-N axial load applied to the flexor digitorum profundus tendon. All rabbits that had been operated on were placed in casts for 8 weeks to allow maximal tendon adhesion and were then killed to determine their flexion range of motion. Statistical analysis was performed using the Student's unpaired t test. When a 1.2-N load was used on rabbit forepaws that had not been operated on, normal combined flexion range of motion at the proximal and distal interphalangeal joints was 93+/-6 degrees. Previous immobilization in casts did not reduce the range of motion in these forepaws (93+/-4 degrees). In the experimental groups, complete transection and repair of the flexor digitorum profundus tendon with infiltration of control phosphate-buffered saline solution resulted in significantly decreased range of motion between the proximal and distal phalanges [15+/-6 degrees (n = 8)]. However, in the tendon repairs infiltrated with neutralizing antibody to TGF-beta1, flexion range of motion increased to 32+/-9 degrees (n = 7; p = 0.002). Interestingly, a combination of neutralizing antibody to TGF-beta1 and that to TGF-beta2 did not improve postoperative range of motion [18+/-4 degrees (n = 7; p = 0.234)]. These data demonstrate that (1) the rabbit flexor tendon repair model is useful for quantifying tendon scar formation on the basis of degrees of flexion between proximal and distal phalanges; (2) intraoperative infiltration of neutralizing antibody to TGF-beta1 improves flexor tendon excursion; and (3) simultaneous infiltration of neutralizing antibody to TGF-beta2 nullifies this effect. Because TGF-beta1 is thought to contribute to the pathogenesis of excessive scar formation, the findings presented here suggest that intraoperative biochemical modulation of TGF-beta1 levels limits flexor tendon adhesion formation.  相似文献   

20.
In the human hand, independent movement control of individual fingers is limited. One potential cause for this is mechanical connections between the tendons and muscle bellies corresponding to the different fingers. The aim of this study was to determine the tendon displacement of the flexor digitorum superficialis (FDS) of both the instructed and the neighboring, non-instructed fingers during single finger flexion movements. In nine healthy subjects (age 22–29 years), instructed and non-instructed FDS finger tendon displacement of the index, middle and ring finger was measured using 2D ultrasound analyzed with speckle tracking software in two conditions: active flexion of all finger joints with all fingers free to move and active flexion while the non-instructed fingers were restricted. Our results of the free movement protocol showed an average tendon displacement of 27 mm for index finger flexion, 21 mm for middle finger flexion and 17 mm for ring finger flexion. Displacements of the non-instructed finger tendons (≈12 mm) were higher than expected based of the amount of non-instructed finger movement. In the restricted protocol, we found that, despite minimal joint movements, substantial non-instructed finger tendon displacement (≈9 mm) was still observed, which was interpreted as a result of tendon strain. When this strain component was subtracted from the tendon displacement of the non-instructed fingers during the free movement condition, the relationship between finger movement and tendon displacement of the instructed and non-instructed finger became comparable. Thus, when studying non-instructed finger tendon displacement it is important to take tendon strain into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号