首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lin S  Wei X  Xu Y  Yan C  Dodel R  Zhang Y  Liu J  Klaunig JE  Farlow M  Du Y 《Life sciences》2003,72(14):1635-1641
Neurotoxicity induced by 6-hydroxydopamine (6-OHDA) is believed to be due, in part, to the production of reactive oxygen species (ROS). Anti-oxidants by inhibiting free radical generation, protect neurons against 6-OHDA-induced neurotoxicity. In this study, we investigated whether or not minocycline, a neuroprotective compound, could directly protect neurons against 6-OHDA-induced neurotoxicity and inhibit 6-OHDA-induced free radical production in cultured rat cerebellar granule neurons (CGN). We now report that exposure of CGN to 6-OHDA (100 microM) resulted in a significant increase in free radical production with death of 86% of CGN. Pretreatment with minocycline (10 microM) for 2 h prevented 6-OHDA-induced free radical generation and neurotoxicity. Furthermore, minocycline also attenuated H(2)O(2)-induced neurotoxicity. Our results suggest that minocycline blocks 6-OHDA-induced neuronal death possibly by inhibiting 6-OHDA-induced free radical generation in CGN. Both the antioxidative and neuroprotective effects of minocycline may be beneficial in the therapy of Parkinson's disease and other neurodegenerative diseases.  相似文献   

2.
The neurotoxin 6-hydroxydopamine (6-OHDA) has been widely used to generate an experimental model of Parkinson's disease. It has been reported that reactive oxygen species (ROS), such as the superoxide anion and hydrogen peroxide (H2O2), generated from 6-OHDA are involved in its cytotoxicity; however, the contribution and role of ROS in 6-OHDA-induced cell death have not been fully elucidated. In the present study using PC12 cells, we observed the generation of 50 microM H2O2 from a lethal concentration of 100 microM 6-OHDA within a few minutes, and compared the sole effect of H2O2 with 6-OHDA. Catalase, an H2O2-removing enzyme, completely abolished the cytotoxic effect of H2O2, while a significant but partial protective effect was observed against 6-OHDA. 6-OHDA induced peroxiredoxin oxidation, cytochrome c release, and caspase-3 activation. Catalase exhibited a strong inhibitory effect against the peroxiredoxin oxidation, and cytochrome c release induced by 6-OHDA; however, caspase-3 activation was not effectively inhibited by catalase. On the other hand, 6-OHDA-induced caspase-3 activation was inhibited in the presence of caspase-8, caspase-9, and calpain inhibitors. These results suggest that the H2O2 generated from 6-OHDA plays a pivotal role in 6-OHDA-induced peroxiredoxin oxidation, and cytochrome c release, while H2O2- and cytochrome c-independent caspase activation pathways are involved in 6-OHDA-induced neurotoxicity. These findings may contribute to explain the importance of generated H2O2 and secondary products as a second messenger of 6-OHDA-induced cell death signal linked to Parkinson's disease.  相似文献   

3.
Pyrroloquinoline quinone (PQQ), which is an essential nutrient, has been shown to act as an antioxidant. Reactive oxygen species (ROS) are thought to be responsible for neurotoxicity caused by the neurotoxin 6-hydroxydopamine (6-OHDA). In this study, we investigated the ability of PQQ to protect against 6-OHDA-induced neurotoxicity using human neuroblastoma SH-SY5Y. When SH-SY5Y cells were exposed to 6-OHDA in the presence of PQQ, PQQ prevented 6-OHDA-induced cell death and DNA fragmentation. Flow cytometry analysis using the ROS-sensitive fluorescence probe, dihydroethidium, revealed that PQQ reduced elevation of 6-OHDA-induced intracellular ROS. In contrast to PQQ, antioxidant vitamins, ascorbic acid and α-tocopherol, had no protective effect. Moreover, we showed that PQQ effectively scavenged superoxide, compared to the antioxidant vitamins. Therefore, our results suggest the protective effect of PQQ on 6-OHDA-induced neurotoxicity is involved, at least in part, in its function as a scavenger of ROS, especially superoxide.  相似文献   

4.
6-Hydroxydopamine (6-OHDA) neurotoxicity has often been related to the generation of free radicals. Here we examined the effect of the presence of iron (Fe(2+) and Fe(3+)) and manganese and the mediation of ascorbate, L-cysteine (CySH), glutathione (GSH), and N-acetyl-CySH on hydroxyl radical (*OH) production during 6-OHDA autoxidation. In vitro, the presence of 800 nM iron increased (> 100%) the production of *OH by 5 microM 6-OHDA while Mn(2+) caused a significant reduction (72%). The presence of ascorbate (100 microM) induced a continuous generation of *OH while the presence of sulfhydryl reductants (100 microM) limited this production to the first minutes of the reaction. In general, the combined action of metal + antioxidant increased the *OH production, this effect being particularly significant (> 400%) with iron + ascorbate. In vivo, tyrosine hydroxylase immunohistochemistry revealed that intrastriatal injections of rats with 6-OHDA (30 nmol) + ascorbate (600 nmol), 6-OHDA + ascorbate + Fe(2+) (5 nmol), and 6-OHDA + ascorbate + Mn(2+) (5 nmol) caused large striatal lesions, which were markedly reduced (60%) by the substitution of ascorbate by CySH. Injections of Fe(2+) or Mn(2+) alone showed no significant difference to those of saline. These results clearly demonstrate the role of ascorbate as an essential element for the neurotoxicity of 6-OHDA, as well as the diminishing action of sulfhydryl reductants, and the negligible effect of iron and manganese on 6-OHDA neurotoxicity.  相似文献   

5.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson's disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

6.
Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

7.
6-Hydroxydopamine (6-OHDA) causes selective degeneration of dopaminergic neurons in the rat brain and has been used to produce an animal model of Parkinsonism. Recently, a clonal line of immortalized dopamine (DA) neurons (1RB3AN27), which expresses varying levels of tyrosine hydroxylase, dopamine transporter, neuron specific enolase, and nestin, was established. These DA neurons reduce behavioral deficits in 6-OHDA-lesioned rats. The relative sensitivity of fetal and adult neurons to potential neurotoxins is not well defined. The availability of immortalized DA neurons provides a unique opportunity to compare the relative neurotoxicity of 6-OHDA in differentiated and undifferentiated DA neurons in vitro and identify neuroprotective agents. Our results showed that 6-OHDA treatment for 24 hr decreased the viability of undifferentiated and differentiated immortalized DA neurons in vitro, as determined by the MTT assay, and increased the rate of apoptosis in differentiated DA neurons. The differentiated DA neurons (IC50 = 33 microM) were about 2-fold more sensitive to 6-OHDA than undifferentiated DA neurons (IC50 = 75 microM) in cell culture. Similarly, the differentiated DA neurons were more sensitive to another neurotoxin, 1-methyl-4-phenylpyridinium (MPP+), which is commonly used to induce Parkinsonism in animal models, than were the undifferentiated DA neurons in culture. Among growth factors tested, only glial cell line-derived neurotrophic factor (GDNF) partially protected differentiated DA neurons against 6-OHDA-induced toxicity. These results suggest that undifferentiated and differentiated immortalized DA neurons can be a useful experimental model to study relative sensitivity to neurotoxins and neuroprotective agents that could have relevance to fetal and adult neurons.  相似文献   

8.
Past studies have shown the protective effects of tea catechins on oxidative cell damage induced by 6-OHDA in PC12 cells. In this study we verified whether or not catechin prevents 6-OHDA-induced oxidative cell damage in primary cultures of rat mesencephalic cells. On exposure to 6-OHDA (200 microM), the cultures showed a marked decrease in cell viability, disturbances in lipid peroxidation, and an increased generation of NO, as assayed by MTT, TBARS and nitrite assays, respectively. Introduction of catechin significantly attenuated the cell death caused by 6-OHDA at concentrations of 3.4, 34 and 340 microM in a dose-related manner. Catechin produced no marked changes on 6-OHDA-induced increases in NO, but caused a significant inhibition of lipid peroxidation. These results suggest that catechins offer similar cytoprotection against 6-OHDA-induced oxidative cell damage in mesencephalic cell cultures, as previously described in PC12 cells. The cytoprotective function of catechin results from its antioxidant property and is not due to the inhibition of nitric oxide synthase. These findings further support and substantiate traditional consumption of catechin rich green/black tea as protection against neurodegenerative diseases like Parkinsonism.  相似文献   

9.
The aim of this study was to investigate changes in protein profiles during the early phase of dopaminergic neuronal death using two-dimensional gel electrophoresis in conjunction with mass spectrometry. Several protein spots were identified whose expression was significantly altered following treatment of MN9D dopaminergic neuronal cells with 6-hydroxydopamine (6-OHDA). In particular, we detected oxidative modification of thioredoxin-dependent peroxidases (peroxiredoxins; PRX) in treated MN9D cells. Oxidative modification of PRX induced by 6-OHDA was blocked in the presence of N-acetylcysteine, suggesting that reactive oxygen species (ROS) generated by 6-OHDA induce oxidation of PRX. These findings were confirmed in primary cultures of mesencephalic neurons and in rat brain injected stereotaxically. Overexpression of PRX1 in MN9D cells (MN9D/PRX1) exerted neuroprotective effects against death induced by 6-OHDA through scavenging of ROS. Consequently, generation of both superoxide anion and hydrogen peroxide following 6-OHDA treatment was decreased in MN9D/PRX1. Furthermore, overexpression of PRX1 protected cells against 6-OHDA-induced activation of p38 MAPK and subsequent activation of caspase-3. In contrast, 6-OHDA-induced apoptotic death signals were enhanced by RNA interference-targeted reduction of PRX1 in MN9D cells. Taken together, our data suggest that the redox state of PRX may be intimately involved in 6-OHDA-induced dopaminergic neuronal cell death and also provide a molecular mechanism by which PRX1 exerts a protective role in experimental models of Parkinson disease.  相似文献   

10.
Parkinson's disease (PD) is caused by a progressive degeneration of dopaminergic neurons in the substantia nigra. Oxidative stress and neural degeneration are suggested to be involved in the pathogenesis of Parkinson's disease. In the present study, Astragaloside IV (AS-IV) extracted from the dried root of Astragalus membranaceus, a well-known Chinese medicine used for the treatment of neurodegenerative diseases, was investigated for its capacity to protect dopaminergic neurons in experimental Parkinson's disease. By examining the effect of AS-IV on 6-hydroxydopamine (6-OHDA)-induced loss of dopaminergic neurons in primary nigral culture, we found that AS-IV pretreatment significantly and dose-dependently attenuated 6-OHDA-induced loss of dopaminergic neurons. Neuronal fiber length studies showed that massive neuronal cell death with degenerated neurons was observed in those cultures incubated with 6-OHDA, whereas in AS-IV co-treatments most dopaminergic neurons were seen to be intact and sprouting. In flow cytometric analysis, AS-IV resulted in a marked and dose-dependent rescue in tyrosine hydrolase (TH)-immunopositive cells from 6-OHDA-induced degeneration of dopaminergic neurons. Double immunofluorescence revealed that AS-IV treatment alone at concentrations of 100 and 200 μM increased the level of TH and NOS (nitrite oxide synthase) immunoreactivities; however, the protective effect of AS-IV on TH and NOS immunopositive cells in 6-OHDA treated nigral cell cultures was only seen at a concentration of 100 μM. These findings show that AS-IV can protect dopaminergic neurons against 6-OHDA-induced degeneration. Besides the neuroprotective effect, AS-IV alone promoted neurite outgrowth and increased TH and NOS immunoreactive of dopaminergic neurons. The neuroprotective and neurosprouting effects of AS-IV are specific for dopaminergic neurons and it has therapeutic potential in the treatment of PD.  相似文献   

11.
In the present work, we showed that a chalcone-enriched fraction (CEF) isolated from the stem bark of a Brazilian medicinal plant, Myracrodruon urundeuva, presents neuroprotective actions on 6-hydroxydopamine (6-OHDA)-induced neuronal cell death, in rat mesencephalic cells. In the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium] assay, which is an index of cell viability, CEF (1–100 μg/ml) reversed in a concentration-dependent manner the 6-OHDA-induced cell death. While cells exposed to 6-OHDA (40 μM) showed an increased concentration of thiobarbituric acid reactive substances (TBARS), the pretreatment with CEF (10–100 μg/ml) significantly decreased the 6-OHDA-induced TBARS formation, indicative of a neuroprotection against lipoperoxidation. Furthermore, the drastic increase of nitrite levels induced by 6-OHDA, indicative of nitric oxide formation and free radicals production, was prevented by CEF. Double staining with acridine orange/ethidium bromide showed that cultures exposed to 6-OHDA (40 and 200 μM) presented an increase of apoptotic and necrotic cell numbers in a concentration-dependent manner. CEF (100 μg/ml) protected cells from apoptosis and necrosis and increased number of cells presenting a normal morphology. The immunohistochemical analysis for tyrosine hydroxylase (TH) positive neurons indicated that 6-OHDA (40 and 200 μM) caused a concentration-dependent loss of TH+ and TH− neurons. CEF protected both cells types from 6-OHDA-induced cell death. All together, our results demonstrated neuroprotective effects of chalcones, which are able to reduce oxidative stress and apoptotic injury caused by 6-OHDA. Our findings suggest that chalcones could provide benefits, along with other therapies, in neurodegenerative injuries, such as Parkinson’s disease.  相似文献   

12.
Oxidative stress has been shown to mediate neuron damage in Parkinson's disease (PD). In the present report, we intend to clarify the intracellular pathways mediating dopaminergic neuron death after oxidative stress production using post-mitotic PC12 cells treated with the neurotoxin 6-hydroxydopamine (6-OHDA). The use of post-mitotic cells is crucial, because one of the suggested intracellular pathways implicated in neuron death relates to the re-entry of neurons (post-mitotic cells) in the cell cycle. We find that 6-OHDA sequentially increases intracellular oxidants, functional cell damage and caspase-3 activation, leading to cell death after 12 h of incubation. Prevention of cell damage by different antioxidants supports the implication of oxidative stress in the observed neurotoxicity. Oxidative stress-dependent phosphorylation of the MAPK JNK and oxidative stress-independent PKB/Akt dephosphorylation are involved in 6-OHDA neurotoxicity. Decrease in p21(WAF1/CIP1) and cyclin-D1 expression, disappearance of the non-phosphorylated band of retinoblastoma protein (pRb), and expression of proliferating cell nuclear antigen, not present in PC12 post-mitotic cells, suggest a re-entry of differentiated cells into cell cycle. Our results indicate that such a re-entry is mediated by oxidative stress and is involved in 6-OHDA-induced cell death. We conclude that at least three intracellular pathways are involved in 6-OHDA-induced cell death in differentiated PC12 cells: JNK activation, cell cycle progression (both oxidative stress-dependent), and Akt dephosphorylation (not related to the increase of oxidants); the three pathways are necessary for the cells to die, since blocking one of them is sufficient to keep the cells alive.  相似文献   

13.

Background

Parkinson's disease (PD) is characterized by the selective loss of dopaminergic neurons in the substantia nigra (SN), resulting in tremor, rigidity, and bradykinesia. Although the etiology is unknown, insight into the disease process comes from the dopamine (DA) derivative, 6-hydroxydopamine (6-OHDA), which produces PD-like symptoms. Studies show that 6-OHDA activates stress pathways, such as the unfolded protein response (UPR), triggers mitochondrial release of cytochrome-c, and activates caspases, such as caspase-3. Because the BH3-only protein, Puma (p53-upregulated mediator of apoptosis), is activated in response to UPR, it is thought to be a link between cell stress and apoptosis.

Results

To test the hypothesis that Puma serves such a role in 6-OHDA-mediated cell death, we compared the response of dopaminergic neurons from wild-type and Puma-null mice to 6-OHDA. Results indicate that Puma is required for 6-OHDA-induced cell death, in primary dissociated midbrain cultures as well as in vivo. In these cultures, 6-OHDA-induced DNA damage and p53 were required for 6-OHDA-induced cell death. In contrast, while 6-OHDA led to upregulation of UPR markers, loss of ATF3 did not protect against 6-OHDA.

Conclusions

Together, our results indicate that 6-OHDA-induced upregulation of Puma and cell death are independent of UPR. Instead, p53 and DNA damage repair pathways mediate 6-OHDA-induced toxicity.  相似文献   

14.
Abstract

Enhanced oxidative stress is implicated in the pathogenesis of Parkinson's disease. The catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) induces the production of reactive oxygen species (ROS), leading to neuronal cell death. On the other hand, apomorphine, a dopamine D1/D2 receptor agonist and known as a potent antioxidant, has been reported to have a neuroprotective effect. In the present study, we investigated the effect of apomorphine on 6-OHDA-induced apoptotic cell death using the human dopaminergic neuroblastoma cell line, SH-SY5Y. The co-treatment of cells with apomorphine significantly attenuated 6-OHDA-induced ROS generation, the phosphorylation of c-Jun N-terminal kinase (JNK), DNA fragmentation and subsequent apoptotic cell death. In addition, pretreatment with apomorphine for 24 h and the following concomitant treatment enhanced the protective effects against 6-OHDA-induced toxicity except for the attenuation of JNK phosphorylation. We also demonstrated that pretreatment alone with apomorphine for 24 h prior to the exposure confers resistance against 6-OHDA-induced cell toxicity. These findings suggested that apomorphine acts principally as a radical scavenger to suppress the level of ROS and ROS-stimulated apoptotic signaling pathway, whereas the other mechanisms might be involved in the protective effects.  相似文献   

15.
Licorice (Glycyrrhiza uralensis) is a medicinal herb containing various bioactive components implicated in antioxidative, anti-inflammatory, antiviral, and neuroprotective effects, but the effects of licorice against Parkinson’s disease (PD)-related dopaminergic cell death have not been studied. In this study, we investigated the protective effects of isoliquiritigenin (ISL) isolated from Glycyrrhiza uralensis on 6-hydroxydopamine (6-OHDA)-induced neurotoxicity in a dopaminergic cell line, SN4741. ISL (1 μM) significantly attenuated 6-OHDA (50 μM)-induced reactive oxygen species (ROS) and nitric oxide (NO) generation and apoptotic cell death. ISL pretreatment effectively suppressed 6-OHDA-mediated upregulation of Bax, p-c-Jun N-terminal kinase (JNK), p-p38 mitogen-activated protein (MAP) kinase, cytochrome c release, and caspase 3 activation. In addition, ISL significantly attenuated 6-OHDA-induced Bcl-2, brain-derived neurotrophic factor (BDNF), and mitochondrial membrane potential (MMP) reduction. Pharmacological inhibitors of the phosphatidylinositol 3-kinase (PI3K)-Akt/protein kinase B (PKB) pathway reversed ISL-mediated neuroprotection against 6-OHDA toxicity in SN4741 cells. These results provide the first evidence that ISL can protect dopaminergic cells under oxidative stress conditions by regulating the apoptotic process.  相似文献   

16.
Oxidative stress caused by dopamine (DA) may play an important role in the pathogenesis of Parkinson's disease (PD). (+/-) Isoborneol is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and is a known antioxidant. In this study, we investigated the neuroprotective effect of isoborneol against 6-hydroxydopamine (6-OHDA)-induced cell death in human neuroblastoma SH-SY5Y cells. Pretreatment of SH-SY5Y cells with isoborneol significantly reduced 6-OHDA-induced generation of reactive oxygen species (ROS) and 6-OHDA-induced increases in intracellular calcium. Furthermore, apoptosis induced by 6-OHDA was reversed by isoborneol treatment. Isoborneol protected against 6-OHDA-induced increases in caspase-3 activity and cytochrome C translocation into the cytosol from mitochondria. Isoborneol prevented 6-OHDA from decreasing the Bax/Bcl-2 ratio. We also observed that isoborneol decreased the activation of c-Jun N-terminal kinase and induced activation of protein kinase C (PKC) which had been suppressed by 6-OHDA. Our results indicate that the protective function of isoborneol is dependent upon its antioxidant potential and strongly suggest that isoborneol may be an effective treatment for neurodegenerative diseases associated with oxidative stress.  相似文献   

17.
6-Hydroxydopamine (6-OHDA), one of the most investigated Parkinson's disease neurotoxins, is widely used to study mechanisms of cell death in dopaminergic neurons. In the present study, we demonstrated that SCM198, a new compound based on the active component of Herba leonuri, significantly reduced 6-OHDA-induced cell death in dopaminergic SH-SY5Y cells and attenuated apomorphine-elicited rotational behavior in 6-OHDA-lesioned rats. Pretreatment with SCM198 (0.001, 0.01, 0.1, 1, and 10 μM) concentration-dependently increased the cell viability as measured in MTT and LDH leakage assays compared with 6-OHDA-injured cells. Tocopherol, an antioxidant used as positive control, had similar effect at 10 μM to SCM198 1 μM. Furthermore, we assessed oxidative stress and subsequent apoptosis, the critical players in dopaminergic neurodegeneration, with 0.1, 1, and 10 μM of SCM198 in SH-SY5Y cells exposed to 6-OHDA. Pretreatment with SCM198 significantly increased antioxidant enzyme superoxide dismutase activity, ameliorated intracellular reactive oxygen species generation, prevented the dissipation of mitochondrial membrane potential, decreased apoptotic cell death in Hoechst 33258 staining, as well as down-regulated Bax and up-regulated Bcl-2 in both mRNA and protein levels compared with 6-OHDA damaged cells. Moreover, intragastrical administration of SCM198 (18 or 60 mg kg?1 day?1) for 4 weeks significantly ameliorates apomorphine-induced contralateral rotations in 6-OHDA-lesioned rats. These results support the neuroprotective effects of SCM198 against 6-OHDA-induced toxicity in vivo and in vitro with the underlying mechanisms of inhibiting oxidative stress and apoptosis. Therefore we suggest that SCM198 might provide a useful therapeutic strategy for neurodegenerative diseases such as Parkinson's disease.  相似文献   

18.
LJ Zhang  YQ Xue  C Yang  WH Yang  L Chen  QJ Zhang  TY Qu  S Huang  LR Zhao  XM Wang  WM Duan 《PloS one》2012,7(7):e41226
Human albumin has recently been demonstrated to protect brain neurons from injury in rat ischemic brain. However, there is no information available about whether human albumin can prevent loss of tyrosine hydroxylase (TH) expression of dopaminergic (DA) neurons induced by 6-hydroxydopamine (6-OHDA) toxicity that is most commonly used to create a rat model of Parkinson's disease (PD). In the present study, two microliters of 1.25% human albumin were stereotaxically injected into the right striatum of rats one day before or 7 days after the 6-OHDA lesion in the same side. D-Amphetamine-induced rotational asymmetry was measured 7 days, 3 and 10 weeks after 6-OHDA lesion. We observed that intrastriatal administration of human albumin significantly reduced the degree of rotational asymmetry. The number of TH-immunoreactive neurons present in the substantia nigra was greater in 6-OHDA lesioned rats following human albumin-treatment than non-human albumin treatment. TH-immunoreactivity in the 6-OHDA-lesioned striatum was also significantly increased in the human albumin-treated rats. To examine the mechanisms underlying the effects of human albumin, we challenged PC12 cells with 6-OHDA as an in vitro model of PD. Incubation with human albumin prevented 6-OHDA-induced reduction of cell viability in PC12 cell cultures, as measured by MTT assay. Furthermore, human albumin reduced 6-OHDA-induced formation of reactive oxygen species (ROS) and apoptosis in cultured PC12 cells, as assessed by flow cytometry. Western blot analysis showed that human albumin inhibited 6-OHDA-induced activation of JNK, c-Jun, ERK, and p38 mitogen-activated protein kinases (MAPK) signaling in PC12 cultures challenged with 6-OHDA. Human albumin may protect against 6-OHDA toxicity by influencing MAPK pathway followed by anti-ROS formation and anti-apoptosis.  相似文献   

19.
Several mechanisms are thought to be involved in the progressive decline in neurons of the substantia nigra pars compacta (SNpc) that leads to Parkinson's disease (PD). Neurotoxin 6-hydroxydopamine (6-OHDA), which induces parkinsonian symptoms in experimental animals, is thought to be formed endogenously in patients with PD through dopamine (DA) oxidation and may cause dopaminergic cell death via a free radical mechanism. We therefore investigated protection against 6-OHDA by inhibiting oxidative stress using a gene transfer strategy. We overexpressed the antioxidative Cu/Zn-superoxide dismutase (SOD1) enzyme in primary culture dopaminergic cells by infection with an adenovirus carrying the human SOD1 gene (Ad-hSOD1). Survival of the dopaminergic cells exposed to 6-OHDA was 50% higher among the SOD1-producing cells than the cells infected with control adenoviruses. In contrast, no significant increased survival of (6-OHDA)-treated dopaminergic cells was observed when they were infected with an adenovirus expressing the H(2) O(2) -scavenging glutathione peroxidase (GPx) enzyme. These results underline the major contribution of superoxide in the dopaminergic cell death process induced by 6-OHDA in primary cultures. Overall, this study demonstrates that the survival of the dopaminergic neurons can be highly increased by the adenoviral gene transfer of SOD1. An antioxidant gene transfer strategy using viral vectors expressing SOD1 is therefore potentially beneficial for protecting dopaminergic neurons in PD.  相似文献   

20.
In this study, the cytoprotective effects of caffeine (CAF) and 8-(3-chlorostyryl)-caffeine (CSC), A2A receptor antagonists, were tested against 6-OHDA-induced cytotoxicity, in rat mesencephalic cells. Both drugs significantly increased the number of viable cells, after their exposure to 6-OHDA, as measured by the MTT assay. While nitrite levels in the cells were drastically increased by 6-OHDA, their concentrations were brought toward normality after CAF or CSC, indicating that both drugs block 6-OHDA-induced oxidative stress which leads to free radicals generation. A complete blockade of 6-OHDA-induced lipid peroxidation, considered as a major source of DNA damage, was observed after cells treatment with CAF or CSC. 6-OHDA decreased the number of normal cells while increasing the number of apoptotic cells. In the CAF plus 6-OHDA group, a significant recover in the number of viable cells and a decrease in the number of apoptotic cells were seen, as compared to the group treated with 6-OHDA alone. A similar effect was observed after cells exposure to CSC in the presence of 6-OHDA. Unexpectedly, while a significant lower number of activated microglia was observed after cells exposure to CAF plus 6-OHDA, this was not the case after cells exposure to CSC under the same conditions. While CAF lowered the percentage of reactive astrocytes increased by 6-OHDA, CSC presented no effect. The effects of these drugs were also examined on the releases of myeloperoxidase (MPO), an inflammatory marker, and lactate dehydrogenase (LDH), a marker for cytotoxicity, in human neutrophils, in vitro. CSC and CAF (0.1, 1 and 10 μg/ml) produced inhibitions of the MPO release from PMA-stimulated cells, ranging from 45 to 83%. In addition, CSC and CAF (5, 50 and 100 μg/ml) did not show any cytotoxicity in the range of concentrations used, as determined by the LDH assay. All together, our results showed a strong neuroptrotection afforded by caffeine or CSC, on rat mesencephalic cells exposed to 6-OHDA. Furthermore, CSC and caffeine actions, inhibiting MPO as well as LDH releases, would contribute to their possible benefit in the treatment of neurodegenerative diseases, including DP. These effects are partially due to the ability of these A2A antagonists to decrease the cells free radicals production and oxidative stress, that are major components of 6-OHDA-induced cytotoxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号