首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The sex ratio of the pollinator fig wasp,Blastophaga nipponica Grandi (Agaonidae), was examined in an experiment manipulating the number of foundresses. The sex ratio ofB. nipponica was conditional on the number of foundresses and corresponded to the qualitative prediction of the local mate competition (LMC) theory that the proportion of males increases as foundress number increases. However, the sex ratio ofB. nipponica was consistently more female-biased than predicted by extended LMC theories that incorporated effects of inbreeding, and these deviations were statistically significant. Plausible factors that would make predictions more female-biased are discussed.  相似文献   

4.
Melittobia australica (Hymenoptera: Eulophidae) is a gregariousectoparasitoid of the prepupae and pupae of solitary wasps andbees. The males never disperse from their natal patch, and matingtakes place only on the host from which they emerged. We measuredthe offspring sex ratio of M. australica with differing foundressnumbers and examined combat between emerged males. The offspringsex ratios were extremely female biased and almost independentof foundress number in all cases. The population of M. australicaused in the experiment was infected with the cytoplasmicallyinherited symbiotic bacterium Wolbachia. However, although Wolbachiais a potential sex-ratio distorter, noninfected individualsshowed the same sex ratio patterns as the Wolbachia-infectedindividuals. An arena experiment showed that younger males werealmost always killed by older males that had eclosed earlier.These results suggested that lethal male–male combat isan additional factor distorting the sex ratio toward a morefemale-biased sex ratio. This provides a new perspective oncurrent local mate competition models.  相似文献   

5.
Pairs of females of the parasitoid waspNasonia vitripennis were videotaped with one or two hosts. The presence of an additional host decreased the number of interactions between females but had no measured effect on the nature of the interactions, i.e., on whether the interaction involved physical contact or occurred while one of the females was parasitizing a host. The number of hosts did not itself affect offspring sex ratios but did influence which other factors were correlated with sex ratio. When there was one host, the proportion of sons was more positively correlated with utilization of previously drilled holes than with female-female interactions, whereas when there were two hosts, the reverse was true. Parasitizing an already parasitized host appeared to affect a female's sex ratio beyond any effects of the physical presence of another female: When two hosts were present, the proportion of sons was greater from hosts parasitized by both females than from hosts parasitized by only one female. The observation that parasitizations in previously drilled holes and female-female interactions are correlated with sex ratios is consistent with previous studies; however, that these relationships are host density dependent is a new result and remains unexplained.  相似文献   

6.
Females of the parasitoid wasp Goniozus nephantidis paralyse host caterpillars and lay a clutch of up to 18 eggs onto the host integument. The known biology of G. nephantidis suggests that matings occur exclusively between siblings from the same brood. This leads to the prediction that brood sex ratios should be highly female-biased and have low variance. Sex ratios are indeed female-biased, with the mean proportion of males equal to 0.093. However, while sex ratio variance is significantly less than binomial, many broods contain no males at emergence. During development 28% of G. nephantidis offspring die. Male mortality offers a potential explanation for all-female (= virgin) broods. For the clutch sizes and mortality observed, theory predicts that <10% of females will emerge from all-female broods but the empirical value is much higher. The prediction that the prevalence of virginity decreases with increasing clutch size is, however, supported. We consider alternative explanations for the observed proportion of all-female broods, but this appears to be neither an artefact of the laboratory environment nor due to incorrect assumptions about G. nephantidis life history. Although its reproductive biology has been much investigated and its sex ratio matches some theoretical predictions, we conclude that a fuller understanding of G. nephantidis sex ratio requires a deeper knowledge of its field biology.  相似文献   

7.
Sex allocation theory provides excellent opportunities for testinghow behavior and life histories are adjusted in response toenvironmental variation. One of the most successful areas fromthis respect is Hamilton's local mate competition theory. Aspredicted by theory, a large number of animal species have beenshown to adjust their offspring sex ratios (proportion male)conditionally, laying less female-biased sex ratios as the numberof females that lay eggs on a patch increases. However, recentstudies have shown that this predicted pattern is not followedby 2 parasitoid species in the genus Melittobia, which alwaysproduce extremely female-biased sex ratios. A possible explanationfor this is that males fight fatally and that males producedby the first female to lay eggs on a patch have a competitiveadvantage over later emerging males. This scenario would negatethe advantage of later females producing a less female-biasedsex ratio. Here we examine fatal fighting and sex ratio evolutionin another species, Melittobia acasta. We show that femalesof this species also fail to adjust their offspring sex ratioin response to the number of females laying eggs on a patch.We then show that although earlier emerging males do have anadvantage in winning fights, this advantage 1) can be reducedby an interaction with body size, with larger males more likelyto win fights and 2) only holds for a brief period around thetime at which the younger males emerge from their pupae. Thissuggests that lethal male combat cannot fully explain the lackof sex ratio shift observed in Melittobia species. We discussalternative explanations.  相似文献   

8.
9.
Sex ratio theory provides a clear and simple way to test if nonsocial haplodiploid wasps can discriminate between kin and nonkin. Specifically, if females can discriminate siblings from nonrelatives, then they are expected to produce a higher proportion of daughters if they mate with a sibling. This prediction arises because in haplodiploids, inbreeding (sib-mating) causes a mother to be relatively more related to her daughters than her sons. Here we formally model this prediction for when multiple females lay eggs in a patch, and test it with the parasitoid wasp Nasonia vitripennis. Our results show that females do not adjust their sex ratio behaviour dependent upon whether they mate with a sibling or nonrelative, in response to either direct genetic or a range of indirect environmental cues. This suggests that females of N. vitripennis cannot discriminate between kin and nonkin. The implications of our results for the understanding of sex ratio and social evolution are discussed.  相似文献   

10.
The mechanism of sex ratio adjustment in a pollinating fig wasp   总被引:1,自引:0,他引:1  
Sex ratio strategies in species subject to local mate competition (LMC), and in particular their fit to quantitative theoretical predictions, provide insight into constraints upon adaptation. Pollinating fig wasps are widely used in such studies because their ecology resembles theory assumptions, but the cues used by foundresses to assess potential LMC have not previously been determined. We show that Liporrhopalum tentacularis females (foundresses) use their clutch size as a cue. First, we make use of species ecology (foundresses lay multiple clutches, with second clutches smaller than first) to show that increases in sex ratio in multi-foundress figs occur only when foundresses are oviposition site limited, i.e. that there is no direct response to foundress density. Second, we introduce a novel technique to quantify foundress oviposition sequences and show, consistent with the theoretical predictions concerning clutch size-only strategies, that they produce mainly male offspring at the start of bouts, followed by mostly females interspersed by a few males. We then discuss the implications of our findings for our understanding of the limits of the ability of natural selection to produce 'perfect' organisms, and for our understanding of when different cue use patterns evolve.  相似文献   

11.
Female wasps of the solitary egg parasitoid Gryon japonicum (Hymenoptera: Platygastridae) allocate male and female offspring in a particular sequence to successive hosts. Male eggs are typically laid in the second host, and the sex allocation sequence is reset after a certain period of time. The present study aimed to examine the underlying mechanism to hold information and reset the sequence by using eggs of Riptortus pedestris (Heteroptera: Alydidae) as hosts. After completion of initial oviposition, a female wasp was treated by cold anesthesia for 1 h, exposure to a parasitized host for 3 h, or being kept at 15°C in darkness for 24 h, and then presented with three host eggs. Cold‐anesthetized females did not reset the sex allocation sequence, indicating that cold anesthesia did not block the mechanism of holding information about oviposition order. Frequent encounters with parasitized hosts were also insufficient to reset the sequence. However, being kept in cool, dark conditions significantly affected resetting, suggesting that low temperature lengthened the time required to reset the sequence. This implies that it is probable that the mechanism to hold information and reset sex allocation sequence in G. japonicum involves metabolism.  相似文献   

12.
1. Parasitic wasps with structured populations are generally assumed to follow the local mate competition (LMC) model: females lay only the minimal number of sons necessary to inseminate all daughters in the emergence patch, and increase this number when faced with additional broods from unrelated females. After emergence, daughters mate with local males before dispersing for host location and oviposition. The main predictions from the model have been verified for many species. 2. Conflicting evidence exists on the status of the egg parasitoids Trichogramma regarding their on‐patch versus off‐patch mating. Although the life‐history traits of several species indicate that mating must occur on the emergence patch, recent data suggest that mating could occur outside the natal patch. 3. In this study, we measured the level of off‐patch mating in the egg parasitoid Trichogramma euproctidis using two isofemale lines in a greenhouse experiment. The impact of the sex ratio on the level of off‐patch mating was also tested. 4. The overall off‐patch mating proportion was 40.5% with a range between 0 and 85.7%, and was influenced by the sex ratio on the emergence patch: the more males available at emergence, the less off‐patch mating occurring. 5. The mating structure of this species can be described as partial LMC.  相似文献   

13.
Female-biased sex ratio in local mate competition has been well studied both theoretically and experimentally. However, some experimental data show more female-biased sex ratios than the theoretical predictions by Hamilton [1967. Science 156, 477-488] and its descendants. Here we consider the following two effects: (1) lethal male-male combat and (2) time-dependent control (or schedule) of sex ratio. The former is denoted by a male mortality being an increasing function of the number of males. The optimal schedule is analytically obtained as an evolutionarily stable strategy (ESS) by using Pontrjagin's maximum principle. As a result, an ESS is a schedule where only males are produced first, then the proportion of females are gradually increased, and finally only females are produced. Total sex ratio (sex ratio averaged over the whole reproduction period) is more female-biased than the Hamilton's result if and only if the two effects work together. The bias is stronger when lethal male combat is severer or a reproduction period is longer. When male-male combat is very severe, the sex ratio can be extraordinary female-biased (less than 5%). The model assumptions and the results generally agree with experimental data on Melittobia wasps in which extraordinary female-biased sex ratio is observed. Our study might provide a new basis for the evolution of female-biased sex ratios in local mate competition.  相似文献   

14.
寄生蜂性别分配行为   总被引:1,自引:2,他引:1  
寄生蜂是性比分配行为领域的研究热点对象,其性别决定方式为单双倍型,一般情况下,未受精的单倍型卵发育成雄蜂,受精的二倍型卵发育为雌蜂。局部配偶竞争和近交等因素使得偏雌性比成为这类生物的进化稳定策略;其性比具有可调节性,产卵个体可以根据对产卵环境的判定来调控后代性比,从而获得最大适合度。在此基础上形成的局部配偶竞争理论阐述了寄生蜂性比的这种可调节性,成为进化论的优秀论据。  相似文献   

15.
The parasitic wasp Nasonia vitripennis has been used extensively in sex allocation research. Although laboratory experiments have largely confirmed predictions of local mate competition (LMC) theory, the underlying assumptions of LMC models have hardly been explored in nature. We genotyped over 3500 individuals from two distant locations (in the Netherlands and Germany) at four polymorphic microsatellite loci to validate key assumptions of LMC theory, in terms of both the original models and more recent extensions to them. We estimated the number of females contributing eggs to patches of hosts and the clutch sizes as well as sex ratios produced by individual foundresses. In addition, we evaluated the level of inbreeding and population differentiation. Foundress numbers ranged from 1 to 7 (average 3.0 ± 0.46 SE). Foundresses were randomly distributed across the patches and across hosts within patches, with few parasitizing more than one patch. Of the hosts, 40% were parasitized by more than one foundress. Clutch sizes of individual foundresses (average 9.99 ± 0.51 SE) varied considerably between hosts. The time period during which offspring continued to emerge from a patch or host correlated strongly with foundress number, indicating that sequential rather than simultaneous parasitism is the more common. Genetic differentiation at the regional level between Germany and the Netherlands, as estimated by Slatkin's private allele method (0.11) and Hedrick's corrected G' LT (0.23), indicates significant substructuring between regions. The level of population inbreeding for the two localities ( F IL = 0.168) fitted the expectation based on the average foundress number per patch.  相似文献   

16.
We constructed a sex allocation model for local mate competition considering the asymmetry of competitive abilities among sons. This model assumes two females of a parasitoid wasp oviposit on the same host in sequential order. The evolutionarily stable strategy will be in either Stackelberg or Nash equilibrium, depending on whether the females can recognize their opponent's sex ratio or not, respectively. The Nash equilibrium predicts the second female produce more males than the first. If the second female is able to know and respond to the strategy of the first (a Stackelberg equilibrium), the first will decide an optimal sex ratio assuming that the second reply to it. Under such an assumption, our model predicts that not producing sons is adaptive for the second female when the sons she produces have low competitive ability. Males of parasitoid wasps Melittobia spp. are engaged in lethal male-male combat, indicating large asymmetry in mating success among sons. If females have the ability to recognize their opponent's sex ratio, our model suggests that the severe lethal male-male combat may be one factor explaining their extremely female-biased sex ratio that is unexplainable by pre-existent models.  相似文献   

17.
The influence of operational sex ratio on the mating behavior of female field crickets,Gryllus pennsylvanicus, was investigated. Females were predicted to be more discriminating under conditions of high mate availability and show less selectivity when males were rare. Such selectivity was indicated in this study with the proportion of courtships leading to a mating changing with sex ratio. Females accepted almost 70% of all courtships at the female-biased sex ratio, but only about half of all courtships were successful at even or male-biased sex ratios. Females moved least at the female-biased sex ratio. There was also a trend for females to be guarded more under male-biased conditions. Female weight did not influence any of the behaviors examined.  相似文献   

18.
Evolutionary theory predicts that levels of dispersal vary in response to the extent of local competition for resources and the relatedness between potential competitors. Here, we test these predictions by making use of a female dispersal dimorphism in the parasitoid wasp Melittobia australica. We show that there are two distinct female morphs, which differ in morphology, pattern of egg production, and dispersal behaviour. As predicted by theory, we found that greater competition for resources resulted in increased production of dispersing females. In contrast, we did not find support for the prediction that high relatedness between competitors increases the production of dispersing females in Melittobia. Finally, we exploit the close links between the evolutionary processes leading to selection for dispersal and for biased sex ratios to examine whether the pattern of dispersal can help distinguish between competing hypotheses for the lack of sex ratio adjustment in Melittobia.  相似文献   

19.
20.
Summary Experimental work of Nadel and Luck (1992) on a chalcidoid wasp provides a confirmation of sex ratio theory under local mate competition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号