首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The feasibility of biologically removing nitrate from groundwater was tested by using cyanobacterial cultures in batch mode under laboratory conditions. Results demonstrated that nitrate-contaminated groundwater, when supplemented with phosphate and some trace elements, can be used as growth medium supporting vigorous growth of several strains of cyanobacteria. As cyanobacteria grew, nitrate was removed from the water. Of three species tested, Synechococcus sp. strain PCC 7942 displayed the highest nitrate uptake rate, but all species showed rapid removal of nitrate from groundwater. The nitrate uptake rate increased proportionally with increasing light intensity up to 100 μmol of photons m−2 s−1, which parallels photosynthetic activity. The nitrate uptake rate was affected by inoculum size (i.e., cell density), fixed-nitrogen level in the cells in the inoculum, and aeration rate, with vigorously aerated, nitrate-sufficient cells in mid-logarithmic phase having the highest long-term nitrate uptake rate. Average nitrate uptake rates up to 0.05 mM NO3 h−1 could be achieved at a culture optical density at 730 nm of 0.5 to 1.0 over a 2-day culture period. This result compares favorably with those reported for nitrate removal by other cyanobacteria and algae, and therefore effective nitrate removal from groundwater using this organism could be anticipated on large-scale operations.  相似文献   

2.
The removal of nitrate from rinse wastewater generated in the stainless steel manufacturing process by denitrification in a sequential batch reactor (SBR) was studied. Two different inocula from wastewater treatment plants were tested. The use of an inoculum previously acclimated to high nitrate concentrations led to complete denitrification in 6h (denitrification rate: 22.8mg NO(3)(-)-N/gVSSh), using methanol as carbon source for a COD/N ratio of 4 and for a content of calcium in the wastewater of 150mg/L. Higher calcium concentrations led to a decrease in the biomass growth rate and in the denitrification rate. The optimum COD/N ratio was found to be 3.4, achieving 98% nitrate removal in 7h at a maximum rate of 30.4mg NO(3)(-)-N/gVSSh and very low residual COD in the effluent.  相似文献   

3.
In this paper we address the question why slow-growing grass species appear to take up nitrate with greater respiratory costs than do fast-growing grasses when all plants are grown with free access to nutrients. Specific costs for nitrate transport, expressed as moles of ATP per net mole of nitrate taken up, were 1.5 to 4 times higher in slow-growing grasses than in fast-growing ones (Scheurwater et al., 1998, Plant, Cell & Environ. 21, 995–1005). The net rate of nitrate uptake is determined by two opposing nitrate fluxes across the plasma membrane: influx and efflux. To test whether differences in specific costs for nitrate transport are due to differences in the ratio of nitrate influx to net rate of nitrate uptake, nitrate influx and the net rate of nitrate uptake were measured in the roots of two fast-growing ( Dactylis glomerata L. and Holcus lanatus L.) and two slow-growing (Deschampsia flexuosa L. and Festuca ovina L.) grass species at four points during the diurnal cycle, using 15NO3 -. Efflux was calculated by subtraction of net uptake from influx; it was assumed that efflux of nitrogen represents the flux of nitrate. Transfer of the plants to the solution containing the labelled nitrate did not significantly affect nitrate uptake in the present grass species. The net rate of nitrate uptake was highest during the middle of the light period in all species. Diurnal variation in the net rate of nitrate uptake was mostly due to variation in nitrate influx. Variation in nitrate efflux did not occur in all species, but efflux per net mole of nitrate taken up was higher during darkness than in the light in the slow-growing grasses. The two fast-growing species, however, did not show diurnal variation in the ratio of efflux to net nitrate uptake. Integrated over 24 hours, the slow-growing grasses clearly exhibited higher ratios of influx to net uptake than the fast-growing grass species. Our results indicate that the higher ratio of nitrate influx to net nitrate uptake can account for higher specific costs for nitrate transport in slow-growing grass species compared with those in their fast-growing counterparts, possibly in combination with greater activity of the non-phosphorylating alternative respiratory path. Therefore, under our experimental conditions with plants grown at a non-limiting nitrate supply, nitrate uptake is less efficient (from the point of ATP consumption) in slow-growing grasses than in fast-growing grass species. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
以纸为碳源去除地下水硝酸盐的研究   总被引:13,自引:0,他引:13  
研究了以纸为碳源和反应介质的生物反应器对水中硝酸盐的去除。结果表明,以纸为碳源的反应器启动快.反硝化反应受温度及水力停留时间影响大。25℃的反硝化速率是14℃的1.7倍。在室温25±1℃,进水硝酸盐氮浓度为45.2mg·L^-1、水力停留时间8.6h时,反应器对硝酸盐氮的去除率在99.6%以上,当水力停留时间为7.2h,氮去除率只有50%。反硝化反应受pH值和溶解氧的影响小,反应进行过程中,纸表面形成了生物膜,纸也被消耗了.采用反应器出水再经活性炭吸附的工艺流程处理高硝酸盐氮地下水,<33.9mg·L^-1的硝酸盐氮完全去除,没有出现NC2-N,最终出水水质DOC<11mg·L^-1。  相似文献   

5.
The effect of inoculum size, carbon sources (fructose, glucose, maltose, sucrose), nitrate and ammonia on solasodine production by Solanum eleagnifolium Cav. was studied. The specific growth rate was estimated to be 0.15–0.20 d-1 with all sugars tested at a concentration of 90 mM. Sucrose (180 mM) produced the highest biomass value (about 2.8 mg DW ml-1) while the lowest one was produced by maltose. Although solasodine productivity values after 11 days of culture were similar for all sugars tested, the maximum values of productivity (0.9 mg g-1 d-1) were achieved after 6 days of culture with sucrose (180 mM). Solasodine productivity of cultures conducted with a large inoculum (20% w/v fresh material) was double that with a small inoculum (10% w/v fresh material).  相似文献   

6.
Regulation of nitrate assimilation in cyanobacteria   总被引:1,自引:0,他引:1  
  相似文献   

7.
冬小麦等4种作物对铵,硝态氮的吸收能力   总被引:5,自引:1,他引:4  
采用水培试验探讨了冬小麦、大豆、油菜和莴笋4种作物对硝、铵态氮的相对吸收能力以及这两种氮源对它们生长发育的影响。试验表明:(1)不同氮源对供试作物的生长发育影响极大。供给硝态氮,这些作物生长发育良好,供给等量的NO^-3和NH^-4(1:1)时,蔬菜作物莴笋生长量下降幅度最大;供给铵态氨,莴笋和大豆极为敏感,供给NO^-3时莴笋吸氮量显著高于供给等氮量NO^-3和NH^+4,莴上麦供给等量NO^-  相似文献   

8.
Nitrifying bacteria, cyanobacteria, and algae are important microorganisms in open pond wastewater treatment systems. Nitrification involving the sequential oxidation of ammonia to nitrite and nitrate, mainly due to autotrophic nitrifying bacteria, is essential to biological nitrogen removal in wastewater and global nitrogen cycling. A continuous flow autotrophic bioreactor was initially designed for nitrifying bacterial growth only. In the presence of cyanobacteria and algae, we monitored both the microbial activity by measuring specific oxygen production rate (SOPR) for microalgae and cyanobacteria and specific oxygen uptake rate (SOUR) for nitrifying bacteria. The growth of cyanobacteria and algae inhibited the maximum nitrification rate by a factor of 4 although the ammonium nitrogen fed to the reactor was almost completely removed. Terminal restriction fragment length polymorphism (T‐RFLP) analysis indicated that the community structures of nitrifying bacteria remained unchanged, containing the dominant Nitrosospira, Nitrospira, and Nitrobacter species. PCR amplification coupled with cloning and sequencing analysis resulted in identifying Chlorella emersonii and an uncultured cyanobacterium as the dominant species in the autotrophic bioreactor. Notwithstanding their fast growth rate and their toxicity to nitrifiers, microalgae and cyanobacteria were more easily lost in effluent than nitrifying bacteria because of their poor settling characteristics. The microorganisms were able to grow together in the bioreactor with constant individual biomass fractions because of the uncoupled solids retention times for algae/cyanobacteria and nitrifiers. The results indicate that compared to conventional wastewater treatment systems, longer solids retention times (e.g., by a factor of 4) should be considered in phototrophic bioreactors for complete nitrification and nitrogen removal. Biotechnol. Bioeng. 2010;107: 1004–1011. © 2010 Wiley Periodicals, Inc.  相似文献   

9.
Fan XH  Tang C  Rengel Z 《Annals of botany》2002,90(3):315-323
Nitrate uptake, nitrate reductase activity (NRA) and net proton release were compared in five grain legumes grown at 0.2 and 2 mM nitrate in nutrient solution. Nitrate treatments, imposed on 22-d-old, fully nodulated plants, lasted for 21 d. Increasing nitrate supply did not significantly influence the growth of any of the species during the treatment, but yellow lupin (Lupinus luteus) had a higher growth rate than the other species examined. At 0.2 mM nitrate supply, nitrate uptake rates ranged from 0.6 to 1.5 mg N g(-1) d(-1) in the order: yellow lupin > field pea (Pisum sativum) > chickpea (Cicer arietinum) > narrow-leafed lupin (L angustifolius) > white lupin (L albus). At 2 mM nitrate supply, nitrate uptake ranged from 1.7 to 8.2 mg N g(-1) d(-1) in the order: field pea > chickpea > white lupin > yellow lupin > narrow-leafed lupin. Nitrate reductase activity increased with increased nitrate supply, with the majority of NRA being present in shoots. Field pea and chickpea had much higher shoot NRA than the three lupin species. When 0.2 mM nitrate was supplied, narrow-leafed lupinreleased the most H+ per unit root biomass per day, followed by yellow lupin, white lupin, field pea and chickpea. At 2 mM nitrate, narrow-leafed lupin and yellow lupin showed net proton release, whereas the other species, especially field pea, showed net OH- release. Irrespective of legume species and nitrate supply, proton release was negatively correlated with nitrate uptake and NRA in shoots, but not with NRA in roots.  相似文献   

10.
A simple three equation model is proposed for the feedback regulation of nitrate uptake and N2 fixation, based on the concentration of the organic N substrate pool within the plant and two parameters denoting the N substrate concentrations at which half-maximal inhibition occurs. This model simulated three contrasting phenotypes of white clover (Trifolium repens L.) inbred lines with (1) normal rates of nitrate uptake and N2 fixation (NNU); (2) low rates of nitrate uptake (LNU); and (3) very low rates of N2 fixation (VLF). The LNU phenotype was simulated by a decrease in the value of the inhibition parameter for nitrate uptake and the VLF phenotype was simulated by a decrease in the value of the N2 fixation inhibition parameter. The model was tested against nitrate uptake data obtained from white clover plants growing in flowing nutrient culture. There was an accurate prediction of the increase in nitrate uptake caused by N2 fixation activity of the NNU and LNU inbred lines being interrupted by a switch in gas phase from air to Ar : O2. The model was also tested against data for nitrate uptake, N2 fixation and %N from fixation for the three inbred clover lines grown in flowing nutrient culture at 0, 5 or 20 mmol m(-3) N(3-). Again there was accurate prediction of nitrate uptake, although simulated values for N2 fixation were more variable. The simple model has potential use as a sub-routine in larger models of legume growth under field conditions.  相似文献   

11.
Six Argentinian wheat ( Triticum aestivum L.) cultivars grown in nutrient solutions in controlled environment were compared for their nitrate uptake rates on a root dry weight basis. Up to 3-fold differences were observed among the cultivars at 16, 20 and 24 days from germination, either when measured by depletion from the nutrient solution in short-term experiments, or by total N accumulation in the tissue during 8 days.
No differences in total N concentration in root or shoots were found among cultivars. Although the different cultivars showed significant differences in shoot/root ratio and nitrate reductase activity (EC 1.6.6.1) in the roots, none of these parameters was correlated with the nitrate uptake rate. However, nitrate uptake was found to be positively correlated (r = 0.99) with the shoot relative growth rate of the cultivars. The three cultivars with the highest nitrate uptake rates and relative growth rates showed a positive correlation between root nitrate concentration and uptake. However, this correlation was not found in the cultivars with the lowest growth and uptake rates.
Our results indicate that the difference in nitrate uptake rate among these cultivars may only be a consequence of their differences in growth rate, and it is suggested that at least two mechanisms regulate nitrate uptake, one working when plant demand is low and another when plant demand is high.  相似文献   

12.
13.
Response of conifer seedlings to nitrate and ammonium sources of nitrogen   总被引:3,自引:0,他引:3  
Summary Differences in growth responses of Douglas fir, western hemlock, Sitka spruce, and white spruce to nitrate and ammonium N sources were examined in sand culture and artificial soil culture. Effects of the two forms of N on growth, needle area, and N uptake of three Douglas fir halb-sib progenies were examined in a second sand culture. Response of Douglas fir to the two forms of N was followed over two years in nursery soil of different pH levels. In sand culture 1 mean seedling dry weight of all species, except hemlock, was greatest when ammonium N and nitrate N were provided in equal amounts. In all species, except Sitka spruce, ammonium alone resulted in greater growth than nitrate alone. Use of ammonium N resulted in greater growth of all species, than was obtained with nitrate N, at pH values in the region 5.4 and 7.5 in artificial soil culture. Only Douglas fir showed substantial differences due to N source below pH 5. Growth of all species was greater at pH 5.4 than at 7.5 in each N source treatment. Growth of Douglas fir seedlings was greatest with ammonium N and least with nitrate N in sand culture 2. Supply of nitrate and ammonium in equal proportions resulted in intermediate growth. Leaf area/plant weight ratio was unaffected by N source. Analysis of nutrient solutions showed appreciable nitrification of ammonium N during the 7 days between solution changes. In the three greenhouse experiments, with little exception, increase in proportion of ammonium in N supply resulted in increase of seedling tissue N concentration. This effect was more pronounced in roots than shoots. Total N uptake by ammonium fed seedlings was about double the N uptake of nitrate fed seedlings in sand culture 2. Nursery grown Douglas fir seedlings showed greater growth response to ammonium sulphate than to calcium nitrate, and this appeared due entirely to form of N supply in the first year. A similar response in the second year was partly due to greater soil acidification by ammonium sulphate. Compared with calcium nitrate, ammonium sulphate increased N concentration of one-year old shoots, but this difference was not detected by foliar analysis of two-year old seedlings.  相似文献   

14.
An autotrophic denitrification process using reduced sulfur compounds (thiosulfate and sulfide) as electron donor in an activated sludge system is proposed as an efficient and cost effective alternative to conventional heterotrophic denitrification for inorganic (or with low C/N ratio) wastewaters and for simultaneous removal of sulfide or thiosulfate and nitrate. A suspended culture of sulfur-utilizing denitrifying bacteria was fast and efficiently established by bio-augmentation of activated sludge with Thiobacillus denitrificans. The stoichiometry of the process and the key factors, i.e. N/S ratio, that enable combined sulfide and nitrogen removal, were determined. An optimum N/S ratio of 1 (100% nitrate removal without nitrite formation and low thiosulfate concentrations in the effluent) has been obtained during reactor operation with thiosulfate at a nitrate loading rate (NLR) of 17.18 mmol N L(-1) d(-1). Complete nitrate and sulfide removal was achieved during reactor operation with sulfide at a NLR of 7.96 mmol N L(-1) d(-1) and at N/S ratio between 0.8 and 0.9, with oxidation of sulfide to sulfate. Complete nitrate removal while working at nitrate limiting conditions could be achieved by sulfide oxidation with low amounts of oxygen present in the influent, which kept the sulfide concentration below inhibitory levels.  相似文献   

15.
Amino compounds (1 mM, pH 5) were given prior to, together with, or after the addition of nitrate to study their effect on nitrate uptake and in vivo nitrate reductase activity (NRA) in roots of Phaseolus vulgaris. The effect of amino compounds varied with the amino species, the nitrate status of the plant (induced vs uninduced) and the aspect of nitrate utilization. Cysteine inhibited the nitrate uptake rate and root NRA under all conditions tested. NRA in uninduced roots was stimulated by tryptophan, and arginine inhibited NRA under all conditions tested. Uptake was inhibited by aspartate and glutamate and stimulated by leucine when these amino compounds were given prior to or after completion of the apparent induction of nitrate uptake. In the presence of β-alanine and tryptophan, induction of uptake was accelerated.  相似文献   

16.
Growth and nitrate uptake were studied on free-living and immobilizedChlorella vulgaris cells cultivated in medium containing different nitrate concentrations. First, the effect of nitrate concentrations on growth indicated that cells can live in the presence of high concentrations as high as 97 mM. Although no lethal effect on cells was observed such concentration a slow down in growth and a decrease in biomass produced was observed. The rate of nitrate uptake increased with the nitrate concentration in the medium. The maximum uptake rate was reached in first days of culture in both free-living and immobilized cells. The rate dropped more rapidly for cells growing in 2 mM nitrate than for cells growing in higher nitrate concentration. The maximum rate was very much the same for free-living and immobilized and was within the order of 0.45 to 0.57 g NO3 h–1 10–6 cells. Immobilization modified the changes of nitrate uptake rate for concentration higher than 2 mM.  相似文献   

17.
The ability of individual amino acids to regulate nitrate uptakeand induction was studied in a Zea mays embryo cell line grownin suspension culture. The maize cells exhibited a marked preferencefor absorbing amino acids over nitrate when both were presentin culture medium. The addition of an individual amino acid(2 mM glutamine, glycine, aspartic acid, or arginine) to theculture medium with 1 mM nitrate completely inhibited nitrateuptake and resulted in a cycle of low levels of nitrate influxfollowed by efflux to the growth medium. Glutamine was readilyabsorbed by the cells and was particularly effective in supportingoptimum cell growth in the absence of an inorganic nitrogensource as compared to the three other amino acids evaluated.However, neither glutamine nor any of the remaining 19 proteinaceousamino acids appeared to be solely responsible for regulationof nitrate uptake and induction. The ability of amino acidsto regulate nitrate uptake and assimilation appears to be morerelated to their overall levels in the cell rather than to anaccumulation of a specific amino acid. Key words: Amino acids, nitrate uptake, maize, regulation, cell suspension culture  相似文献   

18.
Regulation of nitrate influx and efflux in spinach (Spinacia oleracea L., cv. Subito), was studied in short-term label experiments with 13N- and 15N-nitrate. Nitrate fluxes were examined in relation to the N demand for growth, defined as relative growth rate (RGR) times plant N concentration. Plants were grown at different nitrate concentrations (0.8 and 4 mM), with mineral composition of growth and uptake solutions identical. Nitrate influx, efflux and net nitrate uptake rate (NNUR) were independent of the external nitrate concentration, despite differences in internal nitrate concentration. At both N regimes, NNUR was adequate to meet the N demand for growth. RGR-related signals predominantly determined the nitrate fluxes. At high RGR (0.25 g g-1 day-1), nitrate influx was 20 to 40% lower and nitrate efflux was 50 to 70% lower than at lower RGR (0.17 g g-1 day-1); efflux:influx ratio (E:I) declined from 0.5 at low RGR to 0.2 at higher RGR. Thus, the efficiency of NNUR substantially increased with increasing RGR. Differences in nitrate translocation between morning and afternoon coincided with differences in nitrate efflux, which is in accordance with the suggested regulation of nitrate efflux by the root cytoplasmic nitrate concentration. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
A new model is presented to predict the plant uptake of nitrate supplied by diffusion and mass flow to its roots. Plant growth, root-shoot ratio and the plant's nitrate uptake capacity are all set dependent on the plant's N nutrition state. By thoroughly integrating processes occurring in both plant and soil, the model enables to control the relative importance of both under a wide range of different nutritional scenarios.Soil parameters D0 diffusion coefficient in water (m2 day-1) - De diffusion coefficient in soil (m2 day-1) - C nitrate concentration in soil (mol m-3) - f tortuosity (-) - volumetric moisture content (-) - R radial distance from root axis (m) Plant parameters b1, b2 parameters of biomass partitioning Equation (10) - IR interroot distance (m) - KmU Michaelis-Menten constant of the uptake system (mol m-3) - KmNRA Michaelis-Menten constant of nitrogen reduction system (mol g-1) - k1, k2, k3 parameters of growth model Equation (9) - Lv Root length density (m m-3) - NO3 set - Set point of the cytoplasmatic nitrate pool (mol g-1 dw) - NO3 c - cytoplasmatic nitrate concentration (mol g-1 dw) - NO3 v - vacuolar nitrate concentration (mol g-1 dw) - NRAmax maximum nitrate reductase activity (mol g-1 dw day-1) - Nre reduced nitrogen content (mol) - Nremax maximum reduced N concentration in the plant (mol g-1 dw) - P partitioning coefficient of nitrate between cyplasm and vacuole - R(1) root radius (m) - RGR relative growth rate (day-1) - U uptake rate (mol day-1 m-2) - Umax maximum uptake rate (Eq. 6) (day-1 m-2) - Vo water flux at root surface (m day-1) - Wr root dry weight (g) - Wsh shoot dry weight (g) - X model parameter: number of root compartments - Y model parameter: number of nodes  相似文献   

20.
Summary A method is described for culturing plants at extremely low nutrient concentrations. Using a Braun infusion pump, a fixed amount of nitrate or ammonium was supplied continuously to plants growing in a culture vessel at a rate limiting the uptake of the plants. At a very low nitrogen concentration an equilibrium was established where uptake rate of the plants is equal to the rate of supply by the infusion pump. The nitrogen concentrations reached appeared to be in the order of 1 μM. The method compared the nitrate uptake byHypochaeris radicata L.ssp.radicata, H. radicata ssp.ericetorum Van Soest andUrtica dioica L. and ammonium uptake byH. radicata ssp.radicata andH. radicata ssp.ericetorum. Plants were cultivated in monocultures or in mixed cultures (two species per culture vessel). For the mixed cultures competition for nitrate (or ammonium) between the species was maintained for long periods. The capacities of the uptake systems of two subspecies ofH. radicata from places different in nitrogen supply and pH were adapted equally well to both low nitrate and low ammonium concentrations. Apparently factors other than nitrogen uptake play a part in the distribution of the subspecies. The capacity of the uptake system ofU. dioica, a nitrophilous species, was lower than that ofH. radicata ssp.radicata, a species from places poorer in nitrogen. This difference is related to the different distribution of the two species in the field. The present results are compared with those of previous experiments where Km and Vmax were measured and the significance of both parameters is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号