首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seventeen amino acids were fed singly to small caimans and the rates of their disappearance from the gut lumen, and of their appearance in intestinal mucosa, whole intestine, whole stomach, and plasma were determined. The results were compared with those in which massive amounts of protein were fed. When single amino acids were fed, only traces of arginine, ornithine, lysine, aspartate and asparagine were absorbed intact. Glycine, alanine and serine were absorbed rapidly reaching mucosal concentrations as high as 40 mM. The others were not concentrated as highly and most were absorbed by the mucosa more slowly than the glycine group. Protein feeding did not result in high amino acid concentrations in the mucosa. Whether amino acids were ingested as protein or in the free state, glycine, alanine and glutamine increased in the mucosa, suggesting these three incorporate nitrogen released from the others. It appeared that several transport systems operate if amino acids are given singly, and that a different more efficient transport system operates during protein digestion.  相似文献   

2.
3.
An isotope dilution model for partitioning leucine uptake by the liver of the lactating dairy cow is constructed and solved in the steady state. If assumptions ae made, model solution permits calculation of the rate of leucine uptake from portal and hepatic arterial blood supply, leucine export into the hepatic vein, leucine oxidation and transamination, and synthesis and degradation of hepatic constitutive and export proteins. The model requires the measurement of plasma flow rate through the liver in combination with leucine concentrations and plateau isotopic enrichments in arterial, portal and hepatic plasma during a constant infusion of [1-13C]leucine tracer. The model can be applied to other amino acids with similar metabolic fates and will provide a means for assessing the impact of hepatic metabolism on amino acid availability to peripheral tissues. This is of particular importance when considering the dairy cow and the requirements of the mammary gland for milk protein synthesis.  相似文献   

4.
1. Inter-organ relationships between glucose, lactate and amino acids were studied by determination of plasma concentrations in different blood vessels of anaesthetized rats fed on either a high-carbohydrate diet [13% (w/w) casein, 79% (w/w) starch] or a high-protein diet [50% (w/w) casein, 42% (w/w) starch]. The period of food intake was limited (09:00-17:00h), and blood was collected 4h after the start of this period (13:00h). 2. Glucose absorption was considerable only in rats fed on a high-carbohydrate diet. Portal-vein-artery differences in plasma lactate concentration were higher in rats fed on this diet, but not proportional to glucose absorption. Aspartate, glutamate and glutamine were apparently converted into alanine, but when dietary protein intake was high, a net absorption of glutamine occurred. 3. The liver removed glucose from the blood in rats fed on a high-carbohydrate diet, but glucose was released into the blood in rats fed on the high-protein diet, probably as a result of gluconeogenesis. Lactate uptake was very low when amino acid availability was high. 4. In rats on a high-protein diet, increased uptake of amino acids, except for ornithine, was associated with a rise in portal-vein plasma concentrations, and in many cases with a decrease in hepatic concentrations. 5. Hepatic concentrations of pyruvate and 2-oxo-glutarate decreased without a concomitant change in the concentrations of lactate and malate in rats fed on the high-protein diet, in spite of an increased supply of pyruvate precursors (e.g. alanine, serine, glycine), suggesting increased pyruvate transport into mitochondria. 6. High postprandial concentrations of plasma glucose and lactate resulted in high uptakes of these metabolites in peripheral tissues of rats on both diets. Glutamine was released peripherally in both cases, whereas alanine was taken up in rats fed on a high-carbohydrate diet, but released when the amino acid supply increased. 7. It is concluded that: the small intestine is the main site of lactate production, and the peripheral tissues are the main site for lactate utilization; during increased ureogenesis in fed rats, lactate is poorly utilized by the liver; the gut is the main site of alanine production in rats fed on a high-carbohydrate diet and the liver utilizes most of the alanine introduced into the portal-vein plasma in both cases.  相似文献   

5.
Three preruminant calves were fitted with catheters in portal and hepatic veins and in a mesenteric artery. Two electromagnetic flowmeter probes were clipped around the portal vein and the hepatic artery. The calves were fed either a diet with a low (L) or a high (R) abomasal emptying rate for dietary proteins. Blood flow and free amino acid levels in plasma (P) and blood (S) were determined before the morning meal and during the following 7 h. In the portal vein, for most amino acids P/S ratios were correlated to the net amino acid balance of the digestive tract measured in plasma. By contrast in the hepatic vein, these ratios were mainly correlated to hepatic balance measured in whole blood. Correlations between digestive tract and hepatic balance calculated using either plasma or whole blood pool were different for some amino acids. This suggests that amino acid exchange between plasma and blood cells is low and absorbed amino acids are mainly transported to the liver by plasma, whereas whole blood rather than plasma is concerned in amino acid exchanges in the liver.  相似文献   

6.
Studies were undertaken to define the changes in protein metabolism that result from stimulation of the immune system by noninfectious inflammatory agents. Chicks were injected with inflammatory agents and metabolite concentrations were determined between 4 and 48 hr postchallenge. Inflammatory agents resulted in a generalized decrease in the concentration of plasma nitrogen metabolites, including ammonia, uric acid, urea, and several amino acids. Escherichia coli and sheep red blood cell (SRBC) injections induced changes in the concentrations of tissue-free amino acids at 16 hr postchallenge. After E. coli injections, free amino acid concentrations were increased by 175% in muscle and decreased by approximately 25% in liver, spleen, and bursa. A SRBC challenge resulted in similar decreases in free amino acid concentrations in the spleen and bursa as did E. coli; however, muscle and liver free amino acid concentrations were mostly unchanged. Urinary ammonia was increased, urinary uric acid was decreased, and urinary amino acids were not affected by E. coli injection. These findings indicate that stimulation of the immune system by noninfectious inflammatory agents induces tissue-specific changes in nitrogen metabolism. Changes in amino acid pool sizes in various tissues suggest alterations in rates of protein synthesis or degradation.  相似文献   

7.
Acetate absorption in the hind-gut of anaesthetized rabbits was evaluated by measuring variations in the concentration of acetate in caecocolonic loops and in arterial and venous plasma. In vivo metabolism in gut and liver tissues was studied using [1-14C]acetate. Interrelations between acetate absorption and metabolism and both phases of the excretory cycle of the rabbit were examined. The disappearance rate from the caecocolonic loop was quantitatively significant. The gut tissue metabolized acetate, and the intensity of utilization varied with the segment studied; the distal position of the large intestine showed by far the highest uptake of short-chain fatty acids (SCFAs). In addition, acetate absorption, like its metabolism in the hind-gut and liver tissues, differed in intensity according to the phase of the excretory cycle, i.e., both mechanisms were enhanced during hard faeces production. Radioactivity was found in free amino acids, organic acids and sugars. Irrespective of the location in the gut and the excretion pattern, acetate was rapidly converted into glutamate and aspartate; these nutrients were subsequently diverted towards either oxidative metabolism or biosyntheses (non essential free amino acids, proteins).  相似文献   

8.
We investigated amino acid metabolism in the Zucker diabetic fatty (ZDF Gmi fa/fa) rat during the prediabetic insulin-resistant stage and the frank type 2 diabetic stage. Amino acids were measured in plasma, liver, and skeletal muscle, and the ratios of plasma/liver and plasma/skeletal muscle were calculated. At the insulin-resistant stage, the plasma concentrations of the gluconeogenic amino acids aspartate, serine, glutamine, glycine, and histidine were decreased in the ZDF Gmi fa/fa rats, whereas taurine, alpha-aminoadipic acid, methionine, phenylalanine, tryptophan, and the 3 branched-chain amino acids were significantly increased. At the diabetic stage, a larger number of gluconeogenic amino acids had decreased plasma concentrations. The 3 branched-chain amino acids had elevated plasma concentrations. In the liver and the skeletal muscles, concentrations of many of the gluconeogenic amino acids were lower at both stages, whereas the levels of 1 or all of the branched-chain amino acids were elevated. These changes in amino acid concentrations are similar to changes seen in type 1 diabetes. It is evident that insulin resistance alone is capable of bringing about many of the changes in amino acid metabolism observed in type 2 diabetes.  相似文献   

9.
Conjugation of bile acids (BAs) to the amino acids taurine or glycine increases their solubility and promotes liver BA secretion. Supplementing diets with taurine or glycine modulates BA metabolism and enhances fecal BA excretion in rats. However, it is still unclear whether dietary proteins varying in taurine and glycine contents alter BA metabolism, and thereby modulate the recently discovered systemic effects of BAs. Here we show that rats fed a diet containing saithe fish protein hydrolysate (saithe FPH), rich in taurine and glycine, for 26 days had markedly elevated fasting plasma BA levels relative to rats fed soy protein or casein. Concomitantly, the saithe FPH fed rats had reduced liver lipids and fasting plasma TAG levels. Furthermore, visceral adipose tissue mass was reduced and expression of genes involved in fatty acid oxidation and energy expenditure was induced in perirenal/retroperitoneal adipose tissues of rats fed saithe FPH. Our results provide the first evidence that dietary protein sources with different amino acid compositions can modulate the level of plasma bile acids and our data suggest potential novel mechanisms by which dietary protein sources can affect energy metabolism.  相似文献   

10.
Summary Prealbumin plasma level is considered a good index of liver function in liver cirrhosis. However, plasma protein levels depend not only on liver function, but also on amino acid supply which is consequent to nutritional status.In 12 cirrhotics we measured prealbumin plasma levels and the lower limb venous-artero difference of amino acid plasma levels in blood samples taken from femoral vein and femoral artery in post-absorptive conditions considered as a direct index of protein release from peripheral tissues and an indirect index of protein nutritional status.In arterial and in venous plasma amino acid sum was 1.86±0.40 (mean + sd) and 2.00 ± 0.04 mMol/l respectively.Prealbumin plasma levels were found directly correlated with the venousartero difference of amino acid plasma levels (r = 0.57p < 0.05) and of glutamate + glutamine levels (r = 0.73p < 0.007).In conclusions, these data suggest that prealbumin plasma levels are linked to amino acid supply from peripheral tissues in cirrhotics.  相似文献   

11.
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver–skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.  相似文献   

12.
It is well established that bile acids play important roles in lipid metabolism. In recent decades, bile acids have also been shown to function as signaling molecules via interacting with various receptors. Bile acids circulate continuously through the enterohepatic circulation and go through microbial transformation by gut microbes, and thus bile acids metabolism has profound effects on the liver and intestinal tissues as well as the gut microbiota. Farnesoid X receptor and G protein-coupled bile acid receptor 1 are two pivotal bile acid receptors that highly expressed in the intestinal tissues, and they have emerged as pivotal regulators in bile acids metabolism, innate immunity and inflammatory responses. There is considerable interest in manipulating the metabolism of bile acids and the expression of bile acid receptors as this may be a promising strategy to regulate intestinal health and disease. This review aims to summarize the roles of bile acids and their receptors in regulation of gut health and diseases.  相似文献   

13.
The observed relation found in sheep between the flux rate of an amino acid and the proportion found in whole-body protein suggests that the major immediate fate of an amino acid is its incorporation into tissue protein. This may be true even for dispensable amino acids. In ruminants, there is substantial utilization of several amino acids (serine, glycine, threonine, histidine, and methionine) for the synthesis of methyl groups; the use of these amino acids for gluconeogenesis is limited. There is little evidence that demands of gluconeogenesis limit the availability of amino acids for protein synthesis. Most amino acids are catabolized in the liver but there may be significant catabolism of alanine, aspartate, and glutamate in peripheral tissues, especially muscle. Normally, peripheral catabolism of branched-chain amino acids is significantly less in ruminants than other species. Nevertheless, there is some oxidation of leucine by muscle and this may be substantially increased in the diabetic state. Catabolism of leucine (and perhaps isoleucine and valine) might be inversely related to use for protein synthesis, but there is no evidence of such a relation for other amino acids.  相似文献   

14.
Hierarchical modelling was applied in order to identify the organs that contribute to the levels of metabolites in plasma. Plasma and organ samples from gut, kidney, liver, muscle and pancreas were obtained from mice. The samples were analysed using gas chromatography time-of-flight mass spectrometry (GC TOF-MS) at the Swedish Metabolomics centre, Umeå University, Sweden. The multivariate analysis was performed by means of principal component analysis (PCA) and orthogonal projections to latent structures (OPLS). The main goal of this study was to investigate how each organ contributes to the metabolic plasma profile. This was performed using hierarchical modelling. Each organ was found to have a unique metabolic profile. The hierarchical modelling showed that the gut, kidney and liver demonstrated the greatest contribution to the metabolic pattern of plasma. For example, we found that metabolites were absorbed in the gut and transported to the plasma. The kidneys excrete branched chain amino acids (BCAAs) and fatty acids are transported in the plasma to the muscles and liver. Lactic acid was also found to be transported from the pancreas to plasma. The results indicated that hierarchical modelling can be utilized to identify the organ contribution of unknown metabolites to the metabolic profile of plasma.  相似文献   

15.
Kaplan B  Dinçer S  Babül A  Duyar I 《Amino acids》2004,27(2):225-228
Summary. Taurine (2-aminoethane sulphonic acid), a sulphur-containing beta amino acid, is the most prevalent free intracellular amino acid in many human and animal tissues. Vitamin C metabolism is also fluenced by sulphur-containing amino acids. The aim of this study is to investigate the effect of taurine administration on the vitamin C levels of plasma and several tissues (brain, liver, kidneys) in mice with incisional skin wounds. Animals were divided into two as control and taurine groups. Taurine was freshly dissolved in sterile saline and administered daily (60µl, ip) for five days in the taurine group. At the end of the fifth day, the animals were killed by decapitation. The brain, liver and kidneys were immediately removed. Vitamin C levels were measured in plasma and several tissues. The administration of taurine had no effect on the plasma vitamin C levels (P>0.05) but significantly increased in liver and kidneys (P<0.001). In conclusion, taurine may affect the vitamin C metabolism in tissues by different mechanisms.  相似文献   

16.
To investigate the relationship between hypogonadism and altered amino acid metabolism in patients with liver cirrhosis, we measured the basal levels of plasma testosterone, estradiol, and free amino acids, plus urinary 3-methylhistidine excretion, in 16 control and 19 cirrhotic patients. The concentration of plasma testosterone correlated significantly with that of plasma branched-chain amino acids, and inversely with urinary 3-methylhistidine excretion. This suggests that hypogonadism causes a disturbance in amino acid metabolism at least partly related to an augmented muscle protein turnover.  相似文献   

17.
18.
寄生于人体的肠道菌群是一个高度动态化和个体化的复杂生态系统,受遗传、环境、饮食、年龄和运动等因素的影响,并通过其产生的代谢物与机体众多组织器官产生广泛的应答效应。短链脂肪酸(short chain fatty acid, SCFA)主要是由位于盲肠和结肠内的菌群以膳食纤维为底物发酵产生,其被吸收进入肠系膜上下静脉,随后汇入门静脉至肝。部分短链脂肪酸被肝作为糖异生和脂质合成的底物,剩余的短链脂肪酸以游离脂肪酸的形式经肝静脉进入外周循环。研究发现,运动可使产生SCFA的肠道菌群组分的丰度提高和参与调控SCFA生成的相关基因表达增加,使肠道中短链脂肪酸含量增加。由短链脂肪酸刺激结肠内分泌细胞合成分泌的胰高血糖素样肽1(glucagon like peptide-1, GLP-1)可促使胰岛B细胞合成分泌胰岛素,进而调节骨骼肌的葡萄糖摄取与糖原合成。此外,短链脂肪酸通过提高骨骼肌胰岛素受体底物1(insulin receptor substrate 1,IRS1)基因转录起始位点附近的组蛋白乙酰化水平,增强骨骼肌的胰岛素敏感性。同时,短链脂肪酸通过激活腺苷酸活化蛋白质激酶(AMP-activated protein kinase, AMPK)促进骨骼肌的脂肪酸摄取、脂肪分解和线粒体生物发生,抑制脂肪合成。本文就肠道菌群代谢物——短链脂肪酸概述、运动对产生短链脂肪酸的肠道菌群的影响和运动介导肠道菌群代谢物——短链脂肪酸对骨骼肌代谢调控机制的最新研究进展进行综述,为骨骼肌运动适应的新机制研究提供理论依据。  相似文献   

19.
20.
It has been suggested that the molecular species or structure of the triglyceride, i.e. not only what fatty acids are present but also their relative order in the sn1, 2, or 3 position on the triglyceride, can influence the metabolism of the triglyceride and its fatty acids, including lipoprotein metabolism. One rationale for this possibility assumes that the fatty acid in the sn2 position can be absorbed intact, i.e. as the sn2 monoglyceride, whereas the sn1,3 fatty acids are absorbed as free fatty acids that metabolize independently. Some sn2 monoglyceride might ultimately serve as the backbone for gut or liver phospholipids, exerting downstream influence on lipid metabolism. Experiments that test this hypothesis directly by feeding triglycerides with modified structure during carefully controlled fat intake are few, particularly in humans, but their results tend to support the paradigm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号