首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
"Trophic" effect of transferrin on amphibian limb regeneration blastemas   总被引:2,自引:0,他引:2  
In light of the recent demonstration that one "neurotrophic factor" of peripheral nerves is the iron-transport glycoprotein transferrin, we tested the effects of heterologous transferrin on cellular events in cultured newt forelimb blastemas. Addition of transferrin to medium containing 1% fetal bovine serum resulted in DNA labeling and mitotic activity approximately twice as high as that of blastemas cultured in medium with 1% serum alone. Blastemas maintained for 24 hr in medium with 1% serum were stimulated to increased levels of DNA synthesis by the addition of transferrin, and this response was dose-dependent. Varying the concentrations of iron and transferrin in the medium gave results indicating that the glycoprotein's trophic effect is due to its ability to furnish iron to the cells in an appropriate manner. Results of the study are consistent with the hypothesis that blastema cell proliferation is promoted by transferrin or transferrin-like factors released from nerves.  相似文献   

2.
Cell proliferation during the early phase of growth in regenerating amphibian limbs requires a permissive influence of nerves. Based on analyses of proliferative activity in denervated blastemas, it was proposed that nerves provide factors important for cells to complete the proliferative cycle rather than for mitogenesis itself. One such factor, the iron-transport protein transferrin (Tf), is abundant in regenerating peripheral nerves where it is axonally transported and released at growth cones. Using blastemas in organ culture, which have been widely used in previous investigations of the neural effect on growth, it was shown here that the growth-promoting activity of neural extract was completely removed by immuno-absorption with antiserum against Tf and restored by addition of Tf. Purified Tf or a low molecular weight ferric ionophore were as active as the neural extract in this assay, indicating that the trophic effect of Tf involves its capacity for iron delivery. Both Tf and ferric ionophore also maintained DNA synthesis in denervated blastemas in vivo . A dose-response assay indicated that purified axolotl Tf stimulates growth of cultured blastemal cells at concentrations as low as 100 ng/mL. The Tf mRNA in axolotl nervous tissue was shown by northern analysis to be similar in size to that of liver. These results are discussed together with those from previous in vitro studies of blastemal growth and support the hypothesis that cell division in the blastema depends on axonally released Tf during the early, nerve-dependent phase of limb regeneration.  相似文献   

3.
To better characterize the cells involved in newt limb regeneration, blastemal cells from accumulation and differentiation phase blastemas were grown in dissociated cell culture, and their morphology and antigenic phenotype determined using a variety of antibodies directed against intermediate filaments, cell adhesion molecules, and extracellular matrix molecules. In addition to previously described blastemal cell morphologies, many of the cells in these cultures had a round cell body, with an eccentrically placed nucleus and a cytoplasm filled with autofluorescent granules. The majority of accumulation phase blastemal cells labeled with antibodies against GFAP, vimentin, 22/18 as well as with antibodies against NCAM, L-1, laminin, and fibronectin. The majority of differentiation phase blastemal cells had a similar phenotype but lacked expression of vimentin and fibronectin. Comparison of the blastemal phenotype in vitro and in vivo showed similar expression characteristics. However, in differentiation phase blastemas, laminin immunoreactivity was concentrated in specific locations. In addition, the proliferation of cultured blastemal cells is stimulated by the addition of a crude brain extract, consistent with previous studies in vivo and in vitro. Taken together, these observations suggest that dissociated cultures of newt limb blastemal cells provide a suitable model for the analysis of the cell and molecular mechanisms involved in limb regeneration.  相似文献   

4.
Regulation of blastema cell proliferation during amphibian limb regeneration is poorly understood. One unexplained phenomenon is the relatively low level of active cell cycling in the adult newt blastema compared to that of larval axolotls. In the present study, we used ganglia implantation as a means of "superinnervating" normally innervated adult newt blastemas to test whether blastema cell subpopulations are responsive to nerve augmentation. The effectiveness of implanted ganglia to provide neurotrophic stimulation was demonstrated in denervated blastemas. Blastemas implanted with 2 dorsal root ganglia and simultaneously denervated 14 days after amputation exhibited control levels of cell cycle activity 6 days later, as measured by 3H-thymidine pulse labeling. Denervated blastemas that were sham-operated or implanted with pituitary glands exhibited cell-cycle declines similar to those of denervated blastemas without implanted ganglia. Thus, 2 implanted ganglia provide neurotrophic stimulation equivalent to that of the normal nerve supply. Dorsal root ganglia implanted into normally innervated blastemas, which should effectively double neurotrophic activity to the blastema, had no effect on cell-cycle activity, innervated blastemas implanted with ganglia for 6 days exhibited pulse labeling indices similar to those of normally innervated blastemas. These data indicate that neurotrophic stimulation is not normally limiting in innervated limbs, and that some other factor, whether extrinsic or intrinsic to blastema cells, accounts for the relatively low level of active cell cycling in the adult newt blastema.  相似文献   

5.
J P Brockes  C R Kintner 《Cell》1986,45(2):301-306
After amputation of a limb from Urodele amphibians, division of the blastemal cells (the progenitor cells of the regenerate) depends on one or more unidentified growth factors provided by the nerve supply. Here we show that glial growth factor (GGF), a mitogenic protein previously purified from the bovine pituitary, is present in newt nervous system extracts. It is also detectable in extracts of the forelimb regeneration blastema, and its level there decreases after denervation. We have previously shown that blastemal cells dependent on the nerve for division are marked by a monoclonal antibody called 22/18. When denervated blastemas are cultured in the presence of partially purified GGF from newt brain, or pure GGF from the bovine pituitary, the thymidine labeling index of blastemal cells that are 22/18-positive is increased as much as sevenfold. These data indicate that GGF plays a role in nerve-dependent proliferation in the blastema.  相似文献   

6.
Abstract: Iron is essential in the cellular metabolism of all mammalian tissues, including the brain. Intracerebral iron concentrations vary with age and in several (neurological) diseases. Although it is evident that endothelial cells lining the capillaries in the brain are of importance, factors governing the regulation of intracerebral iron concentration are unknown. To investigate the role of blood-brain barrier endothelial cells in cerebral iron regulation, primary cultures of porcine blood-brain barrier endothelial cells were grown in either iron-enriched or iron-depleted medium. Iron-enriched cells showed a reduction in surface-bound and total transferrin receptor numbers compared with iron-depleted cells. Transferrin receptor kinetics showed that the transferrin receptor internalization rate in iron-enriched cultures was higher, whereas the transferrin receptor externalization rate in iron-enriched cultures was lower than the rate in iron-depleted cultures. Moreover, blood-brain barrier endothelial cells cultured in iron-enriched medium were able to accumulate more iron intracellularly, which underlines our kinetic data on transferrin receptors. Our results agree with histopathological studies on brain tissue of patients with hemochromatosis, suggesting that at high peripheral iron concentrations, the rate of iron transport across the blood-brain barrier endothelial cells is to some extent proportional to the peripheral iron concentration.  相似文献   

7.
8.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF-like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine-rich domain (CRD-NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD-NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve-dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve-dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response.  相似文献   

9.
Adult urodele amphibians possess the unique ability to regenerate amputated limbs and to re-innervate these regenerating structures; however, the factors involved in mediating this re-innervation are largely unknown. Here, we investigated the role of retinoic acid (RA) and one of its receptors, RARbeta, in the reciprocal neurotropic interactions between regenerating limb blastemas and spinal cord explants from the adult newt Notophthalmus viridescens. First, we showed that retinoic acid induced directed axonal outgrowth from cultured spinal cord tissue. This RA-induced outgrowth was significantly reduced when spinal cord explants were pre-treated with either the synthetic RAR pan antagonist, LE540, or the specific RARbeta antagonist, LE135. The role of RARbeta was also investigated using co-cultured regenerating limb blastemas and spinal cord explants. Blastemas induced significantly more axonal outgrowth from the near side of co-cultured explants, than from the far side (when cultured less than 1 mm apart). This blastema-induced directed outgrowth from co-cultured spinal cord explants was also abolished in the presence of the RARbeta antagonist, LE135. These data strongly suggest that endogenous retinoic acid is one of the tropic factors produced by the blastema and that it may be capable of guiding re-innervating axons to their targets. Moreover, this interaction is likely mediated by the retinoic acid beta nuclear receptor.  相似文献   

10.
Urodele amphibians are the only vertebrates that can regenerate their limbs throughout their life. The critical feature of limb regeneration is the formation of a blastema, a process that requires an intact nerve supply. Nerves appear to provide an unidentified factor, known as the neurotrophic factor (NTF), which stimulates cycling of blastema cells. One candidate NTF is glial growth factor (GGF), a member of the neuregulin (NRG) growth factor family. NRGs are both survival factors and mitogens to glial cells, including Schwann cells. All forms of NRGs contain an EGF‐like domain that is sufficient to activate NRG receptors erbB2, erbB3, and erbB4. To investigate the involvement of neuregulin in newt limb regeneration, we cloned and characterized one neuregulin isoform, a neuregulin with a cysteine‐rich domain (CRD‐NRG), from newt (Notophthalmus viridescens) spinal cord. Results of in situ hybridization showed that the newt CRD‐NRG is highly expressed in dorsal root ganglia and spinal cord neurons that innervate the limbs. We also demonstrated the biological activity of recombinant human GGF2 (rhGGF2) in urodele limb regeneration. When rhGGF2 was injected into denervated, nerve‐dependent axolotl blastemas, the labeling index (LI) of blastema cells was maintained at a level near to that of control, innervated blastemas, whereas without rhGGF2 the LI decreased significantly. In another experiment, rhGGF2 was delivered into denervated, nerve‐dependent blastemas either by direct infusion into blastemas or by injection into the intraperitoneal cavity. The denervated blastemas were rescued into a regeneration response. © 2000 John Wiley & Sons, Inc. J Neurobiol 43: 150–158, 2000  相似文献   

11.
Based on the well-confirmed roles of angiotensin II (ANGII) in iron transport of peripheral organs and cells, the causative link of excess brain iron with and the involvement of ANGII in neurodegenerative disorders, we speculated that ANGII might also have an effect on expression of iron transport proteins in the brain. In the present study, we investigated effects of ANGII on iron uptake and release using the radio-isotope methods as well as expression of cell iron transport proteins by Western blot analysis in cultured neurons. Our findings demonstrated for the first time that ANGII significantly reduced transferrin-bound iron and non-transferrin bound iron uptake and iron release as well as expression of two major iron uptake proteins transferrin receptor 1 and divalent metal transporter 1 and the key iron exporter ferroportin 1 in cultured neurons. The findings suggested that endogenous ANGII might have a physiological significance in brain iron metabolism.  相似文献   

12.
Abstract. The adult newt blastema cell-cycle time (cct) was measured by the percentage of labeled mitoses (PLM) method at the early-bud and mid-bud stages and was found to be 42.9 and 42.7 h, respectively. At both stages, the DNA synthetic phase (S) occupied the majority (75%) of the cct. However, the blastema labeling index (LI) after a 2-h pulse of 3H-thymidine was less than 30% i.e., considerably less than predicted from the ratio of the duration of S over the cct. Compared to that of controls, the PLM plot for partially denervated blastemas exhibited a coincident and equal-sized first peak of labeled mitoses and a coincident but smaller second peak of labeled mitoses. After 24 h of continuous labeling, the LI of control blastemas reached 53%, whereas the LIs of partially denervated and completely denervated blastemas reached only 33% and 20%, respectively. These results are consistent with the view that many cells of adult newt blastemas are not actively progressing through the cell cycle and that the number of noncycling cells is increased by partial or complete denervation. The noncycling cells are probably in the G1 phase of the cell cycle.  相似文献   

13.
Fibroblast growth factors (FGFs) have been previously implicated in urodele limb regeneration. Here, we examined expression of FGF-1 by blastema cells and neurons and investigated its involvement in wound epithelial formation and function and in the trophic effect of nerves. Neurons innervating the limb and blastema cells in vivo and in vitro expressed the FGF-1 gene. The peptide was present in blastemas in vivo. Wound epithelium thickened when recombinant newt FGF-1 was provided on heparin-coated beads, demonstrating that the FGF-1 was biologically active and that the wound epithelium is a possible target tissue of FGF. FGF-1 did not stimulate accessory limb formation. FGF-1 was as effective as 10% fetal bovine serum in maintaining proliferative activity of blastema cells in vitro but was unable to maintain growth of denervated, nerve-dependent stage blastemas when provided on beads or by injection. FGF-1 had a strong stimulating effect on blastema cell accumulation and proliferation of limbs inserted into the body cavity that were devoid of an apical epithelial cap (AEC). These results show that FGF-1 can signal wound epithelium cap formation and/or function and can stimulate mesenchyme accumulation/proliferation in the absence of the AEC but that FGF-1 is not directly involved in the neural effect on blastema growth.  相似文献   

14.
Iron is crucial for a variety of cellular functions in neuronal cells. Neuronal iron uptake is reflected in a robust and consistent expression of transferrin receptors and divalent metal transporter 1 (DMT 1). Conversely, the mechanisms by which neurons neutralize and possibly excrete iron are less clear. Studies indicate that neurons express ferroportin which could reflect a mechanism for iron export. We mapped the distribution of ferroportin in the adult mouse brain using an antibody prepared from a peptide representing amino acid sequences 223–303 of mouse ferroportin. The antibody specifically detected ferroportin in brain homogenates, whereas homogenates of cultured endothelial cells were devoid of immunoreactivity. In brain sections, ferroportin was confined to neuronal cell bodies and peripheral processes of cerebral cortex, hippocampus, thalamus, brain stem, and cerebellum. In brain stem ferroportin-labeling was particularly high in neurons of cranial nerve nuclei and reticular formation. Ferroportin was hardly detectable in striatum, pallidum, or hypothalamus. Among non-neuronal cells, ferroportin was detected in oligodendrocytes and choroid plexus epithelial cells. A comparison with previous studies on the distribution of transferrin receptors in neurons shows that many neuronal pools coincide with those expressing ferroportin. The data therefore indicate that neuronal iron homeostasis consists of a delicate balance between transferrin receptor-mediated uptake of iron-transferrin and ferroportin-related iron excretion. The findings also suggest a particular high turnover of iron in neuronal regions, such as habenula, hippocampus, reticular formation and cerebellum, as several neurons in these regions exhibit a prominent co-expression of transferrin receptors and ferroportin.  相似文献   

15.
Transferrin was not required for the short-term survival of cultured chick retinal neurons. Both human and chick transferrin failed to enhance the in vitro survival of 8- or 11-day embryonic chick retinal neurons when cultured in a defined medium. Furthermore, maintenance of neurons in the presence of chick transferrin antibody did not alter in vitro survival. Retinal neurons, however, could bind and internalize human or chick transferrin when assayed for by fluorescence immunohistochemical techniques. Binding and internalization of chick transferrin appeared to be greater than human transferrin. Iron uptake was measured in cultures maintained in the absence of transferrin. After incubation with 59FeCl3, iron uptake was 3.5 +/- 1.1 fmoles/cell. The presence of chick transferrin antibody did not significantly alter the amount of iron uptake occurring in this assay. In a comparison of human and chick transferrin mediated iron uptake, chick transferrin was 50% more effective than human transferrin in transporting iron. This study demonstrates that cultured embryonic retinal neurons are not dependent on transferrin for survival or iron uptake, although they actively bind and internalize transferrin. Results also demonstrate that whereas cultured chick retinal neurons can bind and utilize human transferrin, they do so with less efficiency than chick transferrin.  相似文献   

16.
Entamoeba histolytica trophozoites depend on iron for their growth; thus, they must use some host iron-containing molecules to fulfill this requirement. In this work we report that amoebas are able to utilize human holo-Tf as iron source and to recognize it through transferrin binding proteins. By use of an anti-human transferrin antiserum in an immunoblotting assay, two main polypeptides with apparent molecular masses of 70 and 140 kDa were found in total extract of trophozoites cultured in vitro. However, when a monoclonal anti-human transferrin receptor antibody was used, only one band with molecular mass of 140 kDa was observed. Both the human transferrin and the monoclonal antibody recognized a protein on the amoebic surface, demonstrated by confocal microscopy. Furthermore, the complex transferrin-transferrin binding protein was internalized by an endocytic process and probably dissociated inside the cell. This mechanism could be one manner in which E. histolytica acquires iron from the human host transferrin.  相似文献   

17.
Iron trafficking inside the brain   总被引:3,自引:0,他引:3  
Iron, an essential element for all cells of the body, including those of the brain, is transported bound to transferrin in the blood and the general extracellular fluid of the body. The demonstration of transferrin receptors on brain capillary endothelial cells (BCECs) more than 20 years ago provided the evidence for the now accepted view that the first step in blood to brain transport of iron is receptor-mediated endocytosis of transferrin. Subsequent steps are less clear. However, recent investigations which form the basis of this review have shed some light on them and also indicate possible fruitful avenues for future research. They provide new evidence on how iron is released from transferrin on the abluminal surface of BCECs, including the role of astrocytes in this process, how iron is transported in brain extracellular fluid, and how iron is taken up by neurons and glial cells. We propose that the divalent metal transporter 1 is not involved in iron transport through the BCECs. Instead, iron is probably released from transferrin on the abluminal surface of these cells by the action of citrate and ATP that are released by astrocytes, which form a very close relationship with BCECs. Complexes of iron with citrate and ATP can then circulate in brain extracellular fluid and may be taken up in these low-molecular weight forms by all types of brain cells or be bound by transferrin and taken up by cells which express transferrin receptors. Some iron most likely also circulates bound to transferrin, as neurons contain both transferrin receptors and divalent metal transporter 1 and can take up transferrin-bound iron. The most likely source for transferrin in the brain interstitium derives from diffusion from the ventricles. Neurons express the iron exporting carrier, ferroportin, which probably allows them to excrete unneeded iron. Astrocytes lack transferrin receptors. Their source of iron is probably that released from transferrin on the abluminal surface of BCECs. They probably to export iron by a mechanism involving a membrane-bound form of the ferroxidase, ceruloplasmin. Oligodendrocytes also lack transferrin receptors. They probably take up non-transferrin bound iron that gets incorporated in newly synthesized transferrin, which may play an important role for intracellular iron transport.  相似文献   

18.
When denervated at the medium bud stage, limb blastemas of the newt, Pleurodeles waltlii Michah, stop growing. In order to better understand the role of nerves in the cell cycle in blastemas, we studied the distribution of mesenchymal cells in the G0-1, G1, S, G2 and M phases 48 and 96 h after denervation. The cell-cycle phases were determined by examining Feulgen-stained nuclei using a SAMBA 200 (System for Analytical Microscopy in Biological Applications) cell image processor. The cell nuclei were automatically analyzed by calculating 18 parameters related to the densitometry and texture of chromatin, and the shape of each nucleus. Cell-cycle phases were classified according to the unsupervised recognition method using a SAMBA 200 system as proposed by Moustafa and Brugal for cell-kinetics analysis. The classification obtained was tested against the results of stepwise linear discriminant analysis performed according to the method of Giroud. Our results show that, in blastemas 96 h after denervation, the percentage of cells in the S, G2, and M phases decreases significantly, while the percentage of G1 and G0-1 cells increases (+ 51% for G1 cells; + 30% for G0-1 cells). Thus, it appears that denervation of medium-bud-stage limb blastemas promotes the lengthening of G1 and premature exiting of cells from the cycle into the G0-1 phase. These results show that nerves (i.e., neurotrophic factor) regulate cell kinetics during newt limb regeneration by maintaining blastema mesenchymal cells in the cell-cycle.  相似文献   

19.
Transferrin receptors have been previously found on human macrophages and it has also been shown that transferrin iron is taken up by these cells. It has therefore been inferred that the uptake is receptor mediated and involves an endocytic pathway. The subject was addressed directly in the present study in which the transferrin-iron-receptor interaction was characterized in cultured human blood monocytes. Specific, saturable diferric transferrin binding was demonstrated, with a kDa of 3.6 X 10(-8) M and a calculated receptor density of 1.25-2.5 X 10(5) receptors per cell. Incubation at 4 degrees C markedly reduced transferrin binding and completely inhibited iron uptake. Chase experiments confirmed progressive cellular loading of iron, with concomitant loss of transferrin. Inhibitors of endocytic vesicle acidification (ammonium chloride and 2,4-dinitrophenol) inhibited iron unloading from endocytosed diferric transferrin, while microtubular inhibitors (colchicine and vindesine) and a microfilament inhibitor (cytochalasin B) reduced diferric transferrin uptake but had little effect on the iron unloading pathway. A similar effect was noted with a calcium ion antagonist (verapamil) and with 2 calmodulin antagonists (chlorpromazine and imipramine). These latter findings suggest the importance of cytoskeleton-membrane interactions via a calcium, calmodulin and protein kinase C mediated system. Endocytosed iron accumulated progressively as ferritin within the cultured monocytes.  相似文献   

20.
The loss in protein synthesis which the regenerating forelimb of the newt suffers after denervation can be recovered by infusing into it an extract of newt soluble brain protein. Moreover, the synthesis of basic protein shows a greater response to the active brain principle than does that of acidic protein. The active agent of the nervous tissue is destroyed by heat and trypsin digestion. Extracts of liver and spleen, similarly prepared, do not evoke recovery of lost protein synthesis. Synaptosomal extracts of the frog brain also cause recovery of protein synthesis in the denervated regenerate, demonstrating the likelihood that the active agent is not species-specific within these amphibians, that it is a constituent of the neuronal fraction of nervous tissue, and that it is present in axonal terminals. Additional experiments showed that the nervous agent is likely a basic protein, and that the amount of protein infused is of the order of only 1.0% of the total regenerate protein. The significance of the findings is discussed in relation to the nature of the effect on protein synthesis and the nature of the active principle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号