首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron utilization and metabolism in plants   总被引:4,自引:0,他引:4  
The solubilization and long-distance allocation of iron between organs and tissues, as well as its subcellular compartmentalization and remobilization, involve various chelation and oxidation/reduction steps, transport activities and association with soluble proteins that store and buffer this metal. Maintaining iron homeostasis is an important determinant in building prosthetic groups such as heme and Fe-S clusters, and in assembling them into apoproteins, which are major components of plant metabolism. Such processes require complex protein machineries located in mitochondria and plastids. An essential role for iron metabolism and utilization in plant productivity is evidenced by the strong iron requirement for proper photosynthetic reactions.  相似文献   

2.
Nitrosative stress has become a usual term in the physiology of nitric oxide in mammalian systems. However, in plants there is much less information on this type of stress. Using olive leaves as experimental model, the effect of salinity on the potential induction of nitrosative stress was studied. The enzymatic l-arginine-dependent production of nitric oxide (NOS activity) was measured by ozone chemiluminiscence. The specific activity of NOS in olive leaves was 0.280nmol NOmg(-1) proteinmin(-1), and was dependent on l-arginine, NADPH and calcium. Salt stress (200mM NaCl) caused an increase of the l-arginine-dependent production of nitric oxide (NO), total S-nitrosothiols (RSNO) and number of proteins that underwent tyrosine nitration. Confocal laser scanning microscopy analysis using either specific fluorescent probes for NO and RSNO or antibodies to S-nitrosoglutathione and 3-nitrotyrosine, showed also a general increase of these reactive nitrogen species (RNS) mainly in the vascular tissue. Taken together, these findings show that in olive leaves salinity induces nitrosative stress, and vascular tissues could play an important role in the redistribution of NO-derived molecules during nitrosative stress.  相似文献   

3.
4.
Photooxidative stress in plants   总被引:36,自引:0,他引:36  
The light-dependent generation of active oxygen species is termed photooxidative stress. This can occur in two ways: (1) the donation of energy or electrons directly to oxygen as a result of photosynthetic activity; (2) exposure of tissues to ultraviolet irradiation. The light-dependent destruction of catalase compounds the problem. Although generally detrimental to metabolism, superoxide and hydrogen peroxide may serve useful functions if rigorously controlled and compartmentalised. During photosynthesis the formation of active oxygen species is minimised by a number of complex and refined regulatory mechanisms. When produced, active oxygen species are eliminated rapidly by efficient antioxidative systems. The chloroplast is able to use the production and destruction of hydrogen peroxide to regulate the thermal dissipation of excess excitation energy. This is an intrinsic feature of the regulation of photosynthetic electron transport. Photoinhibition and photooxidation only usually occur when plants are exposed to stress. Active oxygen species are part of the alarm-signalling processes in plants. These serve to modify metabolism and gene expression so that the plant can respond to adverse environmental conditions, invading organisms and ultraviolet irradiation. The capacity of the antioxidative defense system is often increased at such times but if the response is not sufficient, radical production will exceed scavenging and ultimately lead to the disruption of metabolism. Oxidative damage arises in high light principally when the latter is in synergy with additional stress factors such as chilling temperatures or pollution. Environmental stress can modify the photooxidative processes in various ways ranging from direct involvement in light-induced free radical formation to the inhibition of metabolism that renders previously optimal light levels excessive. It is in just such situations that the capacity for the production of active oxygen species can exceed that for scavenging by the antioxidative defense systems. The advent of plant transformation, however, may have placed within our grasp the possibility of engineering greater stress tolerance in plants by enhancement of the antioxidative defence system.  相似文献   

5.
Oxidative stress in plants   总被引:16,自引:0,他引:16  
Oxidative stress, defined as a shift of the balance between prooxidative and antioxidative reactions in favor of the former seems to be a common denominator of the action of various agents on living organisms. This review briefly presents the sources of reactive oxygen species and means of antioxidative defense in plants, means of assessment of oxidative stress and exemplary data on the induction of oxidative stress by various environmental and biological factors such as hyperoxia, light, drought, high salinity, cold, metal ions, pollutants, xenobiotics, toxins, reoxygenation after anoxia, experimental manipulations, pathogen infection and aging of plant organs.  相似文献   

6.
Iron acquisition by plants.   总被引:15,自引:0,他引:15  
In nongraminaceous plants, the FeII-transporter gene and ferric-chelate reductase gene have been cloned from Arabidopsis thaliana, whereas FeIII-reductase has not. In graminaceous monocots, the genes for mugineic acids (MAs) synthesis, nas (nicotianamine synthase) and naat (nicotianamine aminotransferase), have been cloned from barley, whereas the FeIII-MAs transporter gene is yet to be cloned. Transferrin absorption in Dunaliella has been reported, suggesting a phagocytotic (endocytotic) Fe-acquisition mechanism. Work to develop transgenic cultivars tolerant to Fe-deficiency in calcareous soils is now in progress.  相似文献   

7.
8.
Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology.Key words: aluminum, toxicity, tolerance, signal transduction, plants  相似文献   

9.
Iron and oxidative stress in bacteria   总被引:21,自引:0,他引:21  
The appearance of oxygen on earth led to two major problems: the production of potentially deleterious reactive oxygen species and a drastic decrease in iron availability. In addition, iron, in its reduced form, potentiates oxygen toxicity by converting, via the Fenton reaction, the less reactive hydrogen peroxide to the more reactive oxygen species, hydroxyl radical and ferryl iron. Conversely superoxide, by releasing iron from iron-containing molecules, favors the Fenton reaction. It has been assumed that the strict regulation of iron assimilation prevents an excess of free intracellular iron that could lead to oxidative stress. Studies in bacteria supporting that view are reviewed. While genetic studies correlate oxidative stress with increase of intracellular free iron, there are only few and sometimes contradictory studies on direct measurements of free intracellular metal. Despite this weakness, the strict regulation of iron metabolism, and its coupling with regulation of defenses against oxidative stress, as well as the role played by iron in regulatory protein in sensing redox change, appear as essential factors for life in the presence of oxygen.  相似文献   

10.
Iron uptake,trafficking and homeostasis in plants   总被引:38,自引:0,他引:38  
Hell R  Stephan UW 《Planta》2003,216(4):541-551
Iron is an essential micronutrient with numerous cellular functions, and its deficiency represents one of the most serious problems in human nutrition worldwide. Plants have two major problems with iron as a free ion: its insolubility and its toxicity. To ensure iron acquisition from soil and to avoid iron excess in the cells, uptake and homeostasis are tightly controlled. Plants meet the extreme insolubility of oxidized iron at neutral pH values by deficiency-inducible chelation and reduction systems at the root surface that facilitate uptake. Inside the cells the generation of highly toxic hydroxyl radicals by iron redox changes is avoided by intricate chelation mechanisms. Organic acids, most notably nicotianamine, and specialized proteins bind iron before it can be inserted into target molecules for biological function. Uptake and trafficking of iron throughout the plant is therefore a highly integrated process of membrane transport and reduction, trafficking between chelator species, whole-plant allocation and genetic regulation. The improvement of crop plants with respect to iron efficiency on iron-limiting soils and to iron fortification for human nutrition has been initiated by breeding and biotechnology. These efforts have to consider molecular and physiological evidence to overcome the inherent barriers and problems of iron metabolism.  相似文献   

11.
Research in our laboratory has focused on the analysis of the functions of a variety of enzymes that are involved in the scavenging of reactive oxygen intermediates (ROI) such as superoxide radicals (·O 2 ) and hydrogen peroxide (H2O2). Recent work has been on transgenic plants that over-express glutathione S-transferases (GST) that also have glutathione peroxidase activity. Transgenic tobacco plants that contain gene constructs that encode two different tobacco GST’s had elevated levels of both GST and GPX activity. Analysis of mature vegetative transgenic tobacco plants that over-express GST/GPX failed to show any increase in paraquat tolerance or protection from photooxidative stress. However, seeds of these GST/GPX-expressing tobacco lines are capable of more rapid germination and seedling growth at low temperatures and at elevated salt concentrations. Reduced levels of lipid peroxidation were noted in GST/GPX-expressing seedling compared to control seedlings under both stressful and non-stressful conditions. In addition, GST/GPX-expressing seedlings significantly accumulated more oxidized glutathione (GSSG) than control seedlings during stress. These characteristics clearly indicate that over-expression of GST/GPX in transgenic seedlings can have substantial effects on their stress tolerance. Furthermore, it appears that this effect is due primarily to the elevated levels of GPX activity.  相似文献   

12.
Unraveling salt stress signaling in plants   总被引:4,自引:0,他引:4  
Salt stress is a major environmental factor limiting plant growth and productivity. A better understanding of the mechanisms mediating salt resistance will help researchers design ways to improve crop performance under adverse environmental conditions. Salt stress can lead to ionic stress, osmotic stress and secondary stresses, particularly oxidative stress, in plants. Therefore,to adapt to salt stress, plants rely on signals and pathways that re-establish cellular ionic, osmotic, and reactive oxygen species(ROS) homeostasis. Over the past two decades, genetic and biochemical analyses have revealed several core stress signaling pathways that participate in salt resistance. The Salt Overly Sensitive signaling pathway plays a key role in maintaining ionic homeostasis,via extruding sodium ions into the apoplast. Mitogenactivated protein kinase cascades mediate ionic, osmotic,and ROS homeostasis. SnR K2(sucrose nonfermenting1-related protein kinase 2) proteins are involved in maintaining osmotic homeostasis. In this review, we discuss recent progress in identifying the components and pathways involved in the plant's response to salt stress and their regulatory mechanisms. We also review progress in identifying sensors involved in salt-induced stress signaling in plants.  相似文献   

13.
植物对水涝胁迫的适应   总被引:40,自引:0,他引:40  
赵可夫 《生物学通报》2003,38(12):11-14
根据近年来有关水涝胁迫对植物的伤害以及植物对水涝胁迫的适应性研究概况介绍了水涝胁迫对植物的伤害,植物对水涝胁迫的适应性。  相似文献   

14.
Arsenic induced oxidative stress in plants   总被引:3,自引:0,他引:3  
Iti Sharma 《Biologia》2012,67(3):447-453
Arsenic is a highly toxic metalloid for all forms of life including plants. Arsenic enters in the plants through phosphate transporters as a phosphate analogue or through aquaglycoporins. Uptake of arsenic in plant tissues adversely affects the plant metabolism and leads to various physiological and structural disorders. Photosynthetic apparatus, cell division machinery, energy production, and redox status are the major section of plant system that are badly affected by As (V). Similarly As (III) can react with thiol (-SH) groups of enzymes and inhibits various metabolic processes. Arsenic is also known to induce oxidative stress directly by generating reactive oxygen species (ROS) during conversion of its valence forms or indirectly by inactivating antioxidant molecules through binding with their -SH groups. As-mediated oxidative stress causes cellular, molecular and physiological disturbances in various plant species. Activation of enzymatic antioxidants namely, superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT) and glutathione reductase (GR), Glutathione s-transferase, glutathione peroxidase (GPX) as well as non antioxidant compounds such as, ascorbate, glutathione, carotenoids are reported to neutralize arsenic mediated oxidative stress. Understanding of biochemistry of arsenic toxicity would be beneficial for the development of arsenic tolerant crops and other economically important plants.  相似文献   

15.
植物抗氧化动态平衡研究进展   总被引:2,自引:0,他引:2       下载免费PDF全文
植物在生长发育的过程中会产生代谢副产物活性氧,其含量在植物生长过程中起双重作用。适量的活性氧可提高植物对逆境胁迫的耐受性,但是过量的活性氧会诱发氧化猝发反应,严重影响植物的生长发育。因此,提高植物的抗氧化能力对于提高植物的抗逆能力来说显得尤为重要,该方面的研究也成为近年来逆境生物学的一大热点。植物体为了应对逆境环境造成的活性氧动态失衡,进化出了含酶和非酶组分的抗氧化系统。本文主要介绍了参与高等植物活性氧代谢的相关物质,对近年来国内外报道的代谢途径进行了综述,为提高植物的抗逆能力提供参考依据。  相似文献   

16.
Plants in association with soil microorganisms play an important role in mineral weathering. Studies have shown that plants in symbiosis with ectomycorrhizal (ECM) fungi have the potential to increase the uptake of mineral-derived nutrients. However, it is usually difficult to study many of the different factors that influence ectomycorrhizal weathering in a single experiment. In the present study, we carried out a pot experiment where Pinus patula seedlings were grown with or without ECM fungi in the presence of iron ore minerals. The ECM fungi used included Pisolithus tinctorius, Paxillus involutus, Laccaria bicolor and Suillus tomentosus. After 24?weeks, harvesting of the plants was carried out. The concentration of organic acids released into the soil, as well as potassium and phosphorus released from the iron ore were measured. The results suggest that different roles of ectomycorrhizal fungi in mineral weathering such as nutrient absorption and transfer, improving the health of plants and ensuring nutrient circulation in the ecosystem, are species specific, and both mycorrhizal roots and non-mycorrhizal roots can participate in the weathering process of iron ore minerals.  相似文献   

17.
Liu Y  Connor JR 《Biometals》2012,25(4):837-845
Neurodegenerative disease is a condition in which subpopulations of neuronal cells of the brain and spinal cord are selectively lost. A common event in many neurodegenerative diseases is the increased level of endoplasmic reticulum (ER) stress caused by accumulation and deposits of inclusion bodies that contain abnormal aggregated proteins. However, the basis of how ER stress contributes to the selective neuronal vulnerability and degeneration remain elusive. Iron accumulation in the central nerve system is consistently present in many neurodegenerative diseases. In the past 5?years we have begun to show a relationship between polymorphisms in the HFE (high iron) gene and the risk of neurodegenerative disorders. Recent findings have suggested a connection between ER stress and iron metabolism and neurodegeneration. Here we review how the different levels of chronic ER stress contribute to the different fates of neurons, namely the adaptive response and neuronal death. And, we discuss the roles of iron and HFE genotype in selective neuronal vulnerability and degeneration through modifying the ER stress level.  相似文献   

18.
Iron accumulation in tobacco plants expressing soyabean ferritin gene   总被引:1,自引:0,他引:1  
High iron-content transgenic tobacco plants have been produced by transfer via Agrobacterium tumefaciens of soyabean ferritin cDNA under the control of a CaMV 35S promoter. Immunoblot analysis of protein from transgenic tobacco plants suggested mature ferritin subunits are produced by cleavage of transit peptides. The expressed ferritin was observed in the tissues of leaves and stems. The maximal iron content of transformant leaves was approximately 30% higher than leaves from non-transformants. The increased iron content of each transformant was correlated with increases in ferritin content. These results demonstrate the potential of breeding high iron content crops by introduction of the ferritin gene  相似文献   

19.
Wintz H 《Cell research》2006,16(10):797-798
Despite the fact that iron is one of the most abundant elements of the earth's crust, iron deficiencies are serious problems both in human nutrition [ 1 ] and in agriculture [2]. Six to eight percent of the world's population is potentially affected by iron deficiency induced anemia, a leading cause of maternal death in African and Asian countries where people rely mostly on plants for their daily intake of iron. Iron can also be a limiting factor in the growth of economically important crop plants because of inadequate soil chemistry, and such deficiencies cannot easily be corrected by amending the soil. Improving the plant's ability to absorb iron in adverse conditions and to increase their overall content could offer solutions to these dramatic problems. Therefore understanding the molecular mechanisms regulating iron uptake and homeostasis in plants has potentially important practical applications both in agriculture and human health [3].  相似文献   

20.
The accumulation of osmolytes like glycinebetaine (GB) in cell is known to protect organisms against abiotic stresses via osmoregulation or osmoprotection. Transgenic plants engineered to produce GB accumulate very low concentration of GB, which might not be sufficient for osmoregulation. Therefore, other roles of GB like cellular macromolecule protection and ROS detoxification have been suggested as mechanisms responsible for abiotic stress tolerance in transgenic plants. In addition, GB influences expression of several endogenous genes in transgenic plants. The new insights gained about the mechanism of stress tolerance in GB accumulating transgenic plants are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号