首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proexosite I on prothrombin has been implicated in providing a recognition site for factor Va within prothrombinase. To examine whether hirudin-like sequences (659-698) on the cofactor contribute to this interaction, we expressed and purified two-chain FVa derivatives that were intracellularly truncated at the C terminus of the heavy chain: FVa709 (des710-1545), FVa699 (des700-1545), FVa(692 (des693-1545), FVa678 (des679-1545), and FVa658 (des659-1545). We found that FVa709, FVa699, FVa692, and FVa678 exhibited specific clotting activities that were comparable with plasma-derived and recombinant FVa. Additionally, kinetic studies using prothrombin revealed that the Km and kcat values for these derivatives were unaltered. Fluorescent measurements and chromatography studies indicated that FVa709, FVa699, FVa692, and FVa678 bound to FXa membranes and thrombin-agarose in a manner that was comparable with the wild-type cofactors. In contrast, FVa658 had an approximately 1% clotting activity and reduced affinity for FXa membranes (approximately 20-fold) and did not bind to thrombin-agarose. Surprisingly, however, FVa(658) exhibited essentially normal kinetic parameters for prothrombin when the variant was fully saturated with FXa membranes. Overall our results are consistent with the interpretation that any possible binding interactions between prothrombin and the C-terminal region of the FVa heavy chain do not contribute in a detectable way to the enhanced function of prothrombinase.  相似文献   

2.
Activated coagulation factor V (FVa) is a cofactor of activated factor X (FXa) in prothrombin activation. FVa is composed of a light chain (LC) and a heavy chain (HC) that are noncovalently associated in a calcium-dependent manner. We constructed a recombinant FV Asp111Asn/Asp112Asn mutant (rFV-NN) to abolish calcium binding to a potential calcium-binding site in FVa in order to study the specific role of these residues in the expression of FVa activity. Whereas thrombin-activated recombinant FV wild type (rFV-wt) presented with stable FVa activity, incubation of rFV-NN with thrombin resulted in a temporary increase in FVa activity, which was rapidly lost upon prolonged incubation. Loss of FVa activity was most likely due to dissociation of HC and LC since, upon chromatography of rFVa-NN on a SP-Sepharose column, the HC did not bind significantly to the resin whereas the LC bound and could be eluted at high ionic strength. In contrast, rFVa-wt adhered to the column, and both the HC and LC coeluted at high ionic strength. In the presence of phospholipid vesicles, the loss of rFVa-NN activity was partially prevented by FXa, active site inhibited FXa, and prothombin in a dose-dependent manner. We conclude that the introduced amino acid substitutions result in a loss of the high-affinity (calcium-dependent) interaction of the HC and LC of FVa. We propose that the introduced substitutions disrupt the calcium-binding site in FV, thereby yielding a FV molecule that rapidly loses activity following thrombin-catalyzed activation most likely via dissociation of the HC and LC.  相似文献   

3.
Factor V (FV) is a large (2,196 amino acids) nonenzymatic cofactor in the coagulation cascade with a domain organization (A1-A2-B-A3-C1-C2) similar to the one of factor VIII (FVIII). FV is activated to factor Va (FVa) by thrombin, which cleaves away the B domain leaving a heterodimeric structure composed of a heavy chain (A1-A2) and a light chain (A3-C1-C2). Activated protein C (APC), together with its cofactor protein S (PS), inhibits the coagulation cascade via limited proteolysis of FVa and FVIIIa (APC cleaves FVa at residues R306, R506, and R679). The A domains of FV and FVIII share important sequence identity with the plasma copper-binding protein ceruloplasmin (CP). The X-ray structure of CP and theoretical models for FVIII have been recently reported. This information allowed us to build a theoretical model (994 residues) for the A domains of human FV/FVa (residues 1-656 and 1546-1883). Structural analysis of the FV model indicates that: (a) the three A domains are arranged in a triangular fashion as in the case of CP and the organization of these domains should remain essentially the same before and after activation; (b) a Type II copper ion is located at the A1-A3 interface; (c) residues R306 and R506 (cleavage sites for APC) are both solvent exposed; (d) residues 1667-1765 within the A3 domain, expected to interact with the membrane, are essentially buried; (e) APC does not bind to FVa residues 1865-1874. Several other features of factor V/Va, like the R506Q and A221V mutations; factor Xa (FXa) and human neutrophil elastase (HNE) cleavages; protein S, prothrombin and FXa binding, are also investigated.  相似文献   

4.
Activated protein C (APC) cleavage of Factor Va (FVa) at residues R506 and R306 correlates with its inactivation. APC resistance and increased thrombotic risk are due to the mutation R506Q in Factor V (FV). To study the effects of individual cleavages in FVa by APC and the importance of regions near the cleavage sites, the following recombinant (r) human FVs were prepared and purified: wild-type, Q306-rFV, Q506-rFV, and Q306Q506-rFV. All had similar time courses for thrombin activation. Q506-rFVa was cleaved by APC at R306 and was moderately resistant to APC in plasma-clotting assays and in prothrombinase assays measuring FVa residual activity, in agreement with studies of purified plasma-derived Q506-FVa. Q306-rFVa was cleaved by APC at R506 and gave a low APC-resistance ratio similar to Q506-rFVa in clotting assays, whereas unactivated Q306-rFV gave a near-normal APC-resistance ratio. When FVa residual activity was measured after long exposure to APC, Q306-rFVa was inactivated by only < or = 40% under conditions where Q506-rFVa was inactivated > 90%, supporting the hypothesis that efficient inactivation of normal FVa by APC requires cleavage at R306. In addition, the heavy chain of Q306-rFVa was cleaved at R506 much more rapidly than activity was lost, suggesting that FVa cleaved at only R506 is partially active. Under the same conditions, Q306Q506-rFVa lost no activity and was not cleaved by APC. Therefore, cleavage at either R506 or R306 appears essential for significant inactivation of FVa by APC. Modest loss of activity, probably due to cleavage at R679, was observed for the single site rFVa mutants, as evidenced by a second phase of inactivation. Q306Q506-rFVa had a low activity-to-antigen ratio of 0.50-0.77, possibly due to abnormal Factor Xa (FXa) binding. Furthermore, Q306Q506-rFV was very resistant to cleavage and activation by FXa. Q306Q506-rFV appeared to bind FXa and inhibit FXa's ability to activate normal FV. Thus, APC may downregulate FV/Va partly by impairing FXa-binding sites upon cleavage at R306 and R506. This study shows that R306 is the most important cleavage site for normal efficient inactivation of FVa by APC and supports other studies suggesting that regions near R306 and R506 provide FXa-binding sites and that FVa cleaved at only R506 retains partial activity.  相似文献   

5.
Factor V (FV) is a single-chain plasma protein containing 13-25% carbohydrate by mass. Studies were done to determine if these carbohydrate moieties altered the activated protein C (APC)-catalyzed cleavage and inactivation of both FV and the cofactor which results from its activation by alpha-thrombin, factor Va(IIa) (FVa(IIa)). Treatment of purified FV with N-glycanase and neuraminidase under nonprotein-denaturing conditions removed approximately 20-30% of the carbohydrate from the heavy chain region of the molecule. When glycosidase-treated FV was analyzed in an aPTT (activated partial thromboplastin time)-based APC sensitivity assay, the APC sensitivity ratio (APC-SR) increased from 2.34 to 3.33. In contrast, when glycosidase-treated FV was activated with alpha-thrombin, the addition of the resulting FVa(IIa) to the plasma-based APC sensitivity assay produced no substantial increase in the APC-SR. Additional functional analyses of the APC-catalyzed inactivation of FVa(IIa) in an assay consisting of purified components indicated that both glycosidase-treated and untreated FVa(IIa) expressed identical cofactor activities and were inactivated at identical rates. Analyses of the APC-catalyzed cleavage of glycosidase-treated FV at Arg(306), the initial cleavage site, revealed a 10-fold rate increase when compared to untreated FV. In contrast, and consistent with functional assays, similar analyses of FVa(IIa), derived from those FV species, revealed near-identical rates of APC-catalyzed cleavage at both the Arg(506) and Arg(306)sites. These combined results indicate that N-linked carbohydrate moieties play a substantial role in the APC-catalyzed cleavage and inactivation of FV but not FVa(IIa) at position Arg(306) and that the Arg(306) cleavage sites of FV and FVa(IIa) are distinct substrates for APC.  相似文献   

6.
Notecarin D (NotD) is a prothrombin (ProT) activator in the venom of the tiger snake, Notechis scutatus, and a factor Xa (FXa) homolog. NotD binds specifically to the FXa binding site expressed on factor V (FV) upon activation to factor Va (FVa) by thrombin. NotD active site-labeled with 5-fluorescein ([5F]FFR-NotD) binds FV and FVa with remarkably high affinity in the absence of phospholipids (K(D) 12 and ≤ 0.01 nm, respectively). In the presence of membranes, the affinity of [5F]FFR-NotD for FVa is similar, but increased ~55-fold for FV. Binding of FXa active site-labeled with Oregon Green to FV and FVa in the presence of phospholipids is ~5,000- and ~80-fold weaker than [5F]FFR-NotD, respectively. NotD reports FVa and not FV binding by a 3-fold increase in tripeptide substrate hydrolysis, demonstrating allosteric regulation by FVa. The NotD·FVa·membrane complex activates ProT with K(m)((app)) similar to prothrombinase, and ~85-fold weaker without membranes. Active site-blocked NotD exhibits potent anticoagulant activity in plasma thrombin generation assays, representing inhibition of productive prothrombinase assembly and possible disruption of FXa inhibition by the tissue factor pathway inhibitor. The results show that high affinity binding of NotD to FVa is membrane-independent, unlike the strict membrane dependence of FXa for high affinity FVa binding.  相似文献   

7.
Coagulation factor V (FV) circulates in two forms, FV1 and FV2, having slightly different molecular masses and phospholipid-binding properties. The aim was to determine whether this heterogeneity is due to the degree of glycosylation of Asn(2181). FVa1 and FVa2 were isolated and digested with endoglycosidase PNGase F. As judged by Western blotting, the FVa2 light chain contained two N-linked carbohydrates, whereas FVa1 contained three. Wild-type FV and three mutants, Asn(2181)Gln, Ser(2183)Thr, and Ser(2183)Ala, were expressed in COS1 cells, activated by thrombin, and analyzed by Western blotting. Wild-type FVa contained the 71 kDa-74 kDa doublet, whereas the Asn(2181)Gln and Ser(2183)Ala mutants contained only the 71 kDa light chain. In contrast, the Ser(2183)Thr mutant gave a 74 kDa light chain. This demonstrated that the third position in the Asn-X-Ser/Thr consensus affects glycosylation efficiency, Thr being associated with a higher degree of glycosylation than Ser. The Ser(2183)Thr mutant FVa was functionally indistinguishable from plasma-purified FVa1, whereas Asn(2181)Gln and Ser(2183)Ala mutants behaved like FVa2. Thus, the carbohydrate at Asn(2181) impaired the interaction between FVa and the phospholipid membrane, an interpretation consistent with a structural analysis of a three-dimensional model of the C2 domain and the position of a proposed phospholipid-binding site. In conclusion, we show that the FV1-FV2 heterogeneity is caused by differential glycosylation of Asn(2181) related to the presence of a Ser rather than a Thr at the third position in the consensus sequence of glycosylation.  相似文献   

8.
To investigate the relationship between the individual thrombin cleavages in factor V (FV) and the generation of activated factor X (FXa) cofactor activity, recombinant FV mutants having the cleavage sites eliminated separately or in combination were used. After thrombin incubation, the ability of the FV variants to bind FXa and support prothrombin activation was tested. The interaction between FVa and FXa on the surface of phospholipid was investigated with a direct binding assay as well as in a functional prothrombin activation assay. FV mutated at all cleavage sites functioned poorly as FXa cofactor in prothrombin activation, the apparent K(d) for FXa being approximately 10 nm. Fully activated wild type FVa, yielded an apparent K(d) of around 0.2 nm. The Arg(709) and Arg(1018) cleavages occurred at low thrombin concentrations and decreased the K(d) for FXa binding 5- and 3-fold, respectively. The Arg(1545) cleavage, being less sensitive to thrombin, decreased the K(d) for FXa binding approximately 20-fold. The K(m) for prothrombin was the same for all FV variants, demonstrating B-domain dissociation to result in exposure of binding site for FXa but not for prothrombin. In conclusion, we demonstrate FV activation to be associated with the stepwise release of the B-domain, which results in a gradual exposure of the FXa-binding site.  相似文献   

9.
The factor Va (FVa) inactivation by activated protein C (APC), mediated by cleavages at Arg306 and Arg506 in FVa, is inhibited by both factor Xa (FXa) and prothrombin. Although FXa is known to specifically inhibit the Arg506 cleavage, the effect of prothrombin has not been confined to one cleavage site. We used recombinant FV variants, FV:R506Q/R679Q and FV:R306Q/R679Q, to investigate the effect of prothrombin on the individual cleavage sites. The APC-mediated FVa inhibition was monitored by a prothrombinase-based FVa assay, and apparent first order rate constants were calculated for each of the cleavage sites both in the presence and absence of prothrombin. Prothrombin impaired cleavages at both Arg306 and Arg506 and the inhibition correlated with a delayed appearance of proteolytic products on Western blots. Almost complete inhibition was obtained at around 3 microm prothrombin, whereas half-maximal inhibition was obtained at 0.7 microm prothrombin. After cleavage of prothrombin by thrombin, the inhibitory activity was lost. The inhibitory effect of prothrombin on APC-mediated inhibition of FVa was seen both in the presence and absence of protein S, but in particular for the Arg306 sites, it was more pronounced in the presence of protein S. Thus, prothrombin inhibition of APC inactivation of FVa appears to be due to both impaired APC function and decreased APC cofactor function of protein S. In conclusion, FVa, being part of the prothrombinase complex, is protected from APC by both FXa and prothrombin. Release of products of prothrombin activation from the prothrombinase complex would alleviate the protection, allowing APC-mediated inactivation of FVa.  相似文献   

10.
Activation of human factor V by factor Xa and thrombin   总被引:12,自引:0,他引:12  
D D Monkovic  P B Tracy 《Biochemistry》1990,29(5):1118-1128
The activation of human factor V by factor Xa and thrombin was studied by functional assessment of cofactor activity and sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by either autoradiography of 125I-labeled factor V activation products or Western blot analyses of unlabeled factor V activation products. Cofactor activity was measured by the ability of the factor V/Va peptides to support the activation of prothrombin. The factor Xa catalyzed cleavage of factor V was observed to be time, phospholipid, and calcium ion dependent, yielding a cofactor with activity equal to that of thrombin-activated factor V (factor Va). The cleavage pattern differed markedly from the one observed in the bovine system. The factor Xa activated factor V subunits expressing cofactor activity were isolated and found to consist of peptides of Mr 220,000 and 105,000. Although thrombin cleaved the Mr 220,000 peptide to yield peptides previously shown to be products of thrombin activation, cofactor activity did not increase. N-Terminal sequence analysis confirmed that both factor Xa and thrombin cleave factor V at the same bond to generate the Mr 220,000 peptide. The factor Xa dependent functional assessment of 125I-labeled factor V coupled with densitometric analyses of the cleavage products indicated that the cofactor activity of factor Xa activated factor V closely paralleled the appearance of the Mr 220,000 peptide. This observation facilitated the study of the kinetics of factor V activation by allowing the activation of factor V to be monitored by the appearance of the Mr 220,000 peptide (factor Xa activation) or the Mr 105,000 peptide (thrombin activation). Factor Xa catalyzed activation of factor V obeyed Michaelis-Menten kinetics and was characterized by a Km of 10.4 nM, a kcat of 2.6 min-1, and a catalytic efficiency (kcat/Km) of 4.14 X 10(6) M-1 s-1. The thrombin-catalyzed activation of factor V was characterized by a Km of 71.7 nM, a kcat of 14.0 min-1, and a catalytic efficiency of 3.26 X 10(6) M-1 s-1. This indicates that factor Xa is as efficient an enzyme toward factor V as thrombin.  相似文献   

11.
Activated Factor V (FVa) functions as a membrane-bound cofactor to the enzyme Factor Xa (FXa) in the conversion of prothrombin to thrombin, increasing the catalytic efficiency of FXa by several orders of magnitude. To map regions on FVa that are important for binding of FXa, site-directed mutagenesis resulting in novel potential glycosylation sites on FV was used as strategy. The consensus sequence for N-linked glycosylation was introduced at sites, which according to a computer model of the A domains of FVa, were located at the surface of FV. In total, thirteen different regions on the FVa surface were probed, including sites that are homologous to FIXa-binding sites on FVIIIa. The interaction between the FVa variants and FXa and prothrombin were studied in a functional prothrombin activation assay, as well as in a direct binding assay between FVa and FXa. In both assays, the four mutants carrying a carbohydrate side chain at positions 467, 511, 652, or 1683 displayed attenuated FXa binding, whereas the prothrombin affinity was unaffected. The affinity toward FXa could be restored when the mutants were expressed in the presence of tunicamycin to inhibit glycosylation, indicating the lost FXa affinity to be caused by the added carbohydrates. The results suggested regions surrounding residues 467, 511, 652, and 1683 in FVa to be important for FXa binding. This indicates that the enzyme:cofactor assembly of the prothrombinase and the tenase complexes are homologous and provide a useful platform for further investigation of specific structural elements involved in the FVa.FXa complex assembly.  相似文献   

12.
A novel inhibitory protein against blood coagulation factor Va (FVa) was purified from muscle protein of granulated ark (Tegillarca granosa, order Arcoida, marine bivalvia) by consecutive FPLC method using anion exchange and gel permeation chromatography. In the results of ESIQTOF tandem mass analysis and database research, it was revealed that the purified T. granosa anticoagulant protein (TGAP) has 7.7 kDa of molecular mass and its partial sequence, HTHLQRAPHPNALGYHGK, has a high identity (64%) with serine/threonine kinase derived from Rhodopirellula baltica (order Planctomycetales, marine bacteria). TGAP could potently prolong thrombin time (TT), corresponding to inhibition of thrombin (FIIa) formation. Specific factor inhibitory assay showed that TGAP inhibits FVa among the major components of prothrombinase complex. In vitro assay for direct-binding affinity using surface plasmon resonance (SPR) spectrometer indicated that TGAP could be directly bound with FVa. In addition, the binding affinity of FVa to FII was decreased by addition of TGAP in dose-dependant manner (IC50 value = 77.9 nM). These results illustrated that TGAP might interact with a heavy chain of FVa (FVa(H)) bound to FII in prothrombin complex. The present study elucidated that non-cytotoxic T. granosa anticoagulant protein (TGAP) bound to FVa can prolong blood coagulation time by inhibiting conversion of FII to FIIa in blood coagulation cascade. In addition, TGAP did not significantly (P < 0.05) show fibrinolytic activity and cytotoxicity on venous endothelial cell line (ECV 304).  相似文献   

13.
Thrombin activated factor Va (factor VIIa, residues 1-709 and 1546-2196) has an apparent dissociation constant (Kd,app) for factor Xa within prothrombinase of approximately 0.5 nM. A protease (NN) purified from the venom of the snake Naja nigricollis nigricollis, cleaves human factor V at Asp697, Asp1509, and Asp1514 to produce a molecule (factor VNN) that is composed of a Mr 100,000 heavy chain (amino acid residues 1-696) and a Mr 80,000 light chain (amino acid residues 1509/1514-2196). Factor VNN, has a Kd,app for factor Xa of 4 nm and reduced clotting activity. Cleavage of factor VIIa by NN at Asp697 results in a cofactor that loses approximately 60-80% of its clotting activity. An enzyme from Russell's viper venom (RVV) cleaves human factor V at Arg1018 and Arg1545 to produce a Mr 150,000 heavy chain and Mr 74,000 light chain (factor VRVV, residues 1-1018 and 1546-2196). The RVV species has affinity for factor Xa and clotting activity similar to the thrombin-activated factor Va. Cleavage of factor VNN at Arg1545 by alpha-thrombin (factor VNN/IIa) or RVV (factor VNN/RVV) leads to enhanced affinity of the cofactor for factor Xa (Kd,app approximately 0.5 nM). A synthetic peptide containing the last 13 residues from the heavy chain of factor Va (amino acid sequence 697-709, D13R) was found to be a competitive inhibitor of prothrombinase with respect to prothrombin. The peptide was also found to specifically interact with thrombin-agarose. These data demonstrate that 1) cleavage at Arg1545 and formation of the light chain of factor VIIa is essential for high affinity binding and function of factor Xa within prothrombinase and 2) a binding site for prothrombin is contributed by amino acid residues 697-709 of the heavy chain of the cofactor.  相似文献   

14.
Factor VIII (FVIII) is the nonproteolytic cofactor for FIXa in the tenase complex of blood coagulation. FVIII is proteolytically activated by thrombin and FXa in vitro to form a heterotrimer with full procoagulant activity. Activated protein C inactivates thrombin-activated FVIII through cleavage adjacent to position Arg 336 in the cofactor. We have investigated the interaction of FIXa and FVIII and subjected FVIII polypeptides to N-terminal amino acid sequence analysis. Contrary to previous reports, we were unable to demonstrate the activation of FVIII by FIXa. Incubation of these two proteins at equimolar or close to equimolar concentrations resulted in the inactivation of FVIII, coincident with cleavage of the FVIII heavy chain adjacent to Arg 336 and the light chain adjacent to Arg 1719. These cleavages were detected in the presence or absence of thrombin, indicating that FIXa does not stabilize thrombin-activated FVIIIa. APC cleaved FVIII at the same position in the heavy chain, and simultaneous incubation of FVIII, APC, and FIXa did not result in stabilization of the cofactor. We conclude that FIXa does not play a role in the stabilization or activation of FVIII.  相似文献   

15.
Factor VIII is a cofactor in the tenase enzyme complex which assembles on the membrane of activated platelets. A critical step in tenase assembly is membrane binding of factor VIII. Platelet membrane factor VIII-binding sites were characterized by flow cytometry using either fluorescein maleimide-labeled recombinant factor VIII or a fluorescein-labeled monoclonal antibody against factor VIII. Following activation by thrombin, most platelets bound factor VIII within 90 s. In addition, over the course of several minutes, membranous vesicles (microparticles) were shed from the platelet plasma membrane and each microparticle bound as much factor VIII as a stimulated platelet. Over 30 min, stimulated platelets (but not microparticles) lost the capacity to bind factor VIII. Factor VIII bound saturably to microparticles from platelets stimulated with thrombin, thrombin plus collagen, or the complement proteins C5b-9. The binding of factor VIII was compared to factor V, a structurally homologous coagulation cofactor. Analysis of microparticle binding kinetics yielded similar on and off rates for factor VIII and factor Va and KD values of 2-10 nM. In the presence of 20 nM factor Va, the binding of factor VIII to microparticles was increased, and there was a comparable increase in platelet tenase activity. At higher factor Va concentrations, factor VIII binding and tenase activity were inhibited. Conversely, factor VIII had a similar dose-dependent effect on factor Va binding and platelet prothrombinase activity. Synthetic phospholipid vesicles containing phosphatidylserine competed with microparticles for binding of factor VIII and factor Va. These studies indicate that activated platelets express a transient increase in high affinity receptors for factor VIII, whereas platelet-derived microparticles express a sustained increase in receptors. The binding characteristics of platelet membrane receptors for factor VIII are similar to those for factor Va.  相似文献   

16.
There is strong evidence that a functionally important cluster of amino acids is located on the COOH-terminal portion of the heavy chain of factor Va, between amino acid residues 680 and 709. To ascertain the importance of this region for cofactor activity, we have synthesized five overlapping peptides representing this amino acid stretch (10 amino acids each, HC1-HC5) and tested them for inhibition of prothrombinase assembly and function. Two peptides, HC3 (spanning amino acid region 690-699) and HC4 (containing amino acid residues 695-704), were found to be potent inhibitors of prothrombinase activity with IC(50) values of approximately 12 and approximately 10 microm, respectively. The two peptides were unable to interfere with the binding of factor Va to active site fluorescently labeled Glu-Gly-Arg human factor Xa, and kinetic analyses showed that HC3 and HC4 are competitive inhibitors of prothrombinase with respect to prothrombin with K(i) values of approximately 6.3 and approximately 5.3 microm, respectively. These data suggest that the peptides inhibit prothrombinase because they interfere with the incorporation of prothrombin into prothrombinase. The shared amino acid motif between HC3 and HC4 is composed of Asp(695)-Tyr-Asp-Tyr-Gln(699) (DYDYQ). A pentapeptide with this sequence inhibited both prothrombinase function with an IC(50) of 1.6 microm (with a K(D) for prothrombin of 850 nm), and activation of factor V by thrombin. Peptides HC3, HC4, and DYDYQ were also found to interact with immobilized thrombin. A recombinant factor V molecule with the mutations Asp(695) --> Lys, Tyr(696) --> Phe, Asp(697) --> Lys, and Tyr(698) --> Phe (factor V(2K2F)) was partially resistant to activation by thrombin but could be readily activated by RVV-V activator (factor Va(RVV)(2K2F)) and factor Xa (factor Va(Xa)(2K2F)). Factor Va(RVV)(2K2F) and factor Va(Xa)(2K2F) had impaired cofactor activity within prothrombinase in a system using purified reagents. Our data demonstrate for the first time that amino acid sequence 695-698 of factor Va heavy chain is important for procofactor activation and is required for optimum prothrombinase function. These data provide functional evidence for an essential and productive contribution of factor Va to the activity of prothrombinase.  相似文献   

17.
Inactivation of factor Va (FVa) by activated protein C (APC) is a key reaction in the down-regulation of thrombin formation. FVa inactivation by APC is correlated with a loss of FXa cofactor activity as a result of three proteolytic cleavages in the FVa heavy chain at Arg306, Arg506, and Arg679. Recently, we have shown that heparin specifically inhibits the APC-mediated cleavage at Arg506 and stimulates cleavage at Arg306. Three-dimensional molecular models of APC docked at the Arg306 and Arg506 cleavage sites in FVa have identified several FVa amino acids that may be important for FVa inactivation by APC in the absence and presence of heparin. Mutagenesis of Lys320, Arg321, and Arg400 to Ala resulted in an increased inactivation rate by APC at Arg306, which indicates the importance of these residues in the FVa-APC interaction. No heparin-mediated stimulation of Arg306 cleavage was observed for these mutants, and stimulation by protein S was similar to that of wild type FVa. With this, we have now demonstrated that a cluster of basic residues in FVa comprising Lys320, Arg321, and Arg400 is required for the heparin-mediated stimulation of cleavage at Arg306 by APC. Furthermore, mutations that were introduced near the Arg506 cleavage site had a significant but modest effect on the rate of APC-catalyzed FVa inactivation, suggesting an extended interaction surface between the FVa Arg506 site and APC.  相似文献   

18.
The functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin was studied by functional assessment of cofactor activity and Western blotting analyses of platelet releasates, obtained by stimulating washed suspensions of platelets with various agonists, including collagen, collagen with ADP, and the calcium ionophore A23187. Platelet factor V was released as a partially proteolyzed molecule that was bound to platelet microparticles, irrespective of the agonist used. Radiolabeled plasma factor V was not cleaved for up to 30 min following release when added to platelets prior to stimulation, suggesting that platelet factor V was stored in a partially proteolyzed form. Released platelet factor V possessed significant cofactor activity that was increased only 2-3-fold by either factor Xa or thrombin. The factor V subunits that expressed cofactor activity were isolated and found to consist of peptides of Mr = 220,000 and 150,000. Incubation of released platelet factor V with factor Xa or thrombin yielded the same cleavage pattern, in which two peptides of Mr = 105,000 and 74,000 appeared to be electrophoretically indistinguishable from thrombin-activated plasma factor V. Under the conditions of these studies, factor Xa activated platelet-released factor V 50-100 times more effectively than thrombin. This observation may be due in part to the existence of platelet factor V in a partially proteolyzed state, or its association with platelet microparticles following platelet stimulation. These data collectively suggest that platelet-released factor V may be the foremost initiator of prothrombinase complex assembly and function during the early stages of coagulation with additional cofactor activation accomplished by factor Xa.  相似文献   

19.
Recent studies have indicated that factor Va bound to activated platelets is partially protected from inactivation by activated protein C (APC). To explore whether this sustained factor Va activity could maintain ongoing thrombin generation, the kinetics of platelet factor Va-dependent prothrombinase activity and its inhibition by APC were studied. In an attempt to mimic physiologically relevant conditions, platelets were adhered to collagen type I-coated discs. These discs were then spun in solutions containing prothrombin and factor Xa either in the absence or presence of APC. The experiments were performed in the absence of platelet-derived microparticles, with thrombin generation and inhibition confined to the surface of the adherent platelets. APC completely inactivated platelet-associated prothrombinase activity with an overall second order rate constant of 3.3 x 10(6) m(-)1 s(-)1, which was independent of the prothrombin concentration over a wide range around the apparent K(m) for prothrombin. Kinetic studies on prothrombinase assembled at a planar phospholipid membrane composed of 25 mol % phosphatidylserine and 75 mol % phosphatidylcholine revealed a similar second order rate constant of inhibition (2.5 x 10(6) m(-1) s(-1)). Collectively, these data demonstrate that ongoing platelet factor Va-dependent thrombin generation at the surface of collagen-adherent platelets is effectively inhibited by APC. No differences were observed between the kinetics of APC inactivation of plasma-derived factor Va or platelet factor Va as part of the prothrombinase associated with, respectively, a planar membrane of synthetic phospholipids or collagen-adherent platelets.  相似文献   

20.
The interaction interface between human thrombin and human factor V (FV), necessary for complex formation and cleavage to generate factor Va, was investigated using a site-directed mutagenesis strategy. Fifty-three recombinant thrombins, with a total of 78 solvent-exposed basic and polar residues substituted with alanine, were used in a two-stage clotting assay with human FV. Seventeen mutants with less than 50% of wild-type (WT) thrombin FV activation were identified and mapped to anion-binding exosite I (ABE-I), anion-binding exosite II (ABE-II), the Leu(45)-Asn(57) insertion loop, and the Na(+) binding loop of thrombin. Three ABE-I mutants (R68A, R70A, and Y71A) and the ABE-II mutant R98A had less than 30% of WT activity. The thrombin Na(+) binding loop mutants, E229A and R233A, and the Leu(45)-Asn(57) insertion loop mutant, W50A, had a major effect on FV activation with 5, 15, and 29% of WT activity, respectively. The K52A mutant, which maps to the S' specificity pocket, had 29% of WT activity. SDS-polyacrylamide gel electrophoresis analysis of cleavage reactions using the thrombin ABE mutants R68A, Y71A, and R98A, the Na(+) binding loop mutant E229A, and the Leu(45)-Asn(57) insertion loop mutant W50A showed a requirement for both ABEs and the Na(+)-bound form of thrombin for efficient cleavage at the FV residue Arg(709). Several basic residues in both ABEs have moderate decreases in FV activation (40-60% of WT activity), indicating a role for the positive electrostatic fields generated by both ABEs in enhancing complex formation with complementary negative electrostatic fields generated by FV. The data show that thrombin activation of FV requires an extensive interaction interface with thrombin. Both ABE-I and ABE-II and the S' subsite are required for optimal cleavage, and the Na(+)-bound form of thrombin is important for its procoagulant activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号