首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxidation of the isolated deacetyl acyl-carrier protein subunit of citrate lyase from Klebsiella, aerogenes with Cu2+-o-phenanthroline complex leads exclusively to intrapeptide disulfide bridge formation indicating that the cysteamine and the cysteine residues are located in close proximity. The S-acetylation of the cysteine residue in deacetyl acyl-carrier protein subunit is catalysed by a citrate lyase ligase preparation in presence of acetate and ATP. Reaction-inactivation of citrate lyase results in deacetylation of the S-acetyl cysteamine residue of the prosthetic group but not of the S-acylated cysteine residue in the acyl-carrier protein.  相似文献   

2.
We determined the primary structure of a 9.6-kDa subunit of the respiratory chain NADH:ubiquinone reductase (complex I) from Neurospora crassa mitochondria and found a close relationship between this subunit and the bacterial or chloroplast acyl-carrier protein. The degree of sequence identity amounts to 80% in a region of 19 residues around the serine to which the phosphopantetheine is bound. The N-terminal presequence of the subunit has the characteristic features of a mitochondrial import sequence. We cultivated the auxotroph pan-2 mutant of N. crassa in the presence of [14C]pantothenate and recovered all radioactivity incorporated into mitochondrial protein in the 9.6-kDa subunit of complex I. We cultivated N. crassa in the presence of chloramphenicol to accumulate the nuclear-encoded peripheral arm of complex I. This pre-assembled arm also contains the 9.6-kDa subunit. These results demonstrate that an acyl-carrier protein with pantothenate as prosthetic group is a constituent part of complex I in N. crassa.  相似文献   

3.
Structural organization of the multifunctional animal fatty-acid synthase   总被引:5,自引:0,他引:5  
The amino acid sequence of the multifunctional fatty-acid synthase has been examined to investigate the exact location of the seven functional domains. Good agreement in predicting the location of interdomain boundaries was obtained using three independent methods. First, the sites of limited proteolytic attack that give rise to relatively stable, large polypeptide fragments were identified; cryptic sites for protease attack at the subunit interface were unmasked by first dissociating the dimer into its component subunits. Second, polypeptide regions exhibiting higher-than-average rates of non-conservative mutation were identified. Third, the sizes of putative functional domains were compared with those of related monofunctional proteins that exhibit similar primary or secondary structure. Residues 1-406 were assigned to the oxoacyl synthase, residues 430-802 to the malonyl/acetyl transferase, residues 1630-1850 to the enoyl reductase, residues 1870-2100 to the oxyreductase, residues 2114-2190 to the acyl-carrier protein and residues 2200-2505 to the thioesterase. The 47-kDa transferase and 8-kDa acyl-carrier-protein domains, which are situated at opposite ends of the multifunctional subunit, were nevertheless isolated from tryptic digests as a non-covalently associated complex. Furthermore, a centrally located domain encompassing residues 1160-1545 was isolated as a nicked dimer. These findings, indicating that interactions between the head-to-tail juxtaposed subunits occur in both the polar and equatorial regions, are consistent with previously derived electron-micrograph images that show subunit contacts in these areas. The data permit refinement of the model for the fatty-acid synthase dimer and suggest that the malonyl/acetyl transferase and oxoacyl synthase of one subunit cooperate with the reductases, acyl carrier protein and thioesterase of the companion subunit in the formation of a center for fatty-acid synthesis.  相似文献   

4.
K Takio  S B Smith  E G Krebs  K A Walsh  K Titani 《Biochemistry》1984,23(18):4200-4206
Evidence is presented that establishes the amino acid sequence of the regulatory subunit of type II cAMP-dependent protein kinase from bovine cardiac muscle. Complementary sets of overlapping peptides were generated primarily by tryptic digestion and by chemical cleavage at methionyl residues. The analysis was augmented by chemical cleavage at a single tryptophanyl residue and at three of the four aspartyl-proline bonds. Several large fragments generated by limited proteolysis contributed to the proof of structure. The subunit is a single chain of 400 residues corresponding to a molecular weight of 45 004. An amino-terminal segment of about 100 residues is believed to include the region responsible for oligomeric association. The remainder of the molecule consists of two tandem homologous domains, each of which is thought to bind a single molecule of cAMP. Comparison of the three domains with corresponding regions of the type I isozyme, of the Escherichia coli catabolite gene activator protein, and of cGMP-dependent protein kinase indicates extensive regions of homology and as much as 50% identity with the sequence of an internal segment of the type I isozyme.  相似文献   

5.
Neurospora mitochondria contain an acyl-carrier protein   总被引:6,自引:0,他引:6  
Mitochondria of Neurospora crassa were found to contain a protein which was labelled with [14C]pantothenic acid and which carried an acyl group. This protein, when purified 6000-fold, closely resembled the bacterial and chloroplast acyl-carrier protein(s) [ACP(s)] in its physical and chemical properties. The predominant acyl group esterified to the purified protein was 3-hydroxytetradecanoate, as determined by gas chromatographic mass spectrometry. The amino acid sequence of the tryptic peptide carrying the 4'-phosphophantetheine moiety showed a high degree of sequence similarity to the analogous bacterial and chloroplast ACP peptide sequences. The possible functions of this ACP in lipid metabolism are discussed in view of the fact that Neurospora has a separate cytoplasmic enzyme complex which carries out the de novo biosynthesis of fatty acids.  相似文献   

6.
We have cultivated the cel mutant of Neurospora crassa defective in cytosolic fatty acid synthesis with [2-14C]malonate and found radioactivity covalently attached to the mitochondrial acyl-carrier protein (ACP), a subunit of the respiratory chain NADH:ubiquinone oxidoreductase. We purified the ACP by reverse-phase HPLC: the bound acyl groups were trans-esterified to methylesters and analyzed by gas chromatography. The saturated C6 to C18 fatty acids and oleic acid were detected. De novo synthesis and desaturation of fatty acids at the ACP subunit of NADH:ubiquinone oxidoreductase and use of the products of this mitochondrial synthetic pathway for cardiolipin synthesis is discussed.  相似文献   

7.
The amino acid sequence of a proteolytic fragment of Escherichia coli biotin carboxyl carrier protein was determined from the structures of overlapping tryptic, thermolytic, and staphylococcal protease peptides together with automated sequenator analyses on the intact protein. The fragment, 82 residues in length, contains the single residue of biocytin of the protein. The relationship of the Mr = 9100 fragment to the native Mr = 22,500 subunit is discussed.  相似文献   

8.
S Nilekani  C SivaRaman 《Biochemistry》1983,22(20):4657-4663
Citrate lyase (EC 4.1.3.6) has been purified from Escherichia coli and the homogeneity of the preparation established from the three-component subunits obtained on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The purified enzyme has a specific activity of 120 mumol min-1 mg-1 and requires optimally 10 mM Mg2+ and a pH of 8.0 for the cleavage reaction. The native enzyme is polydispersed in the ultracentrifuge and in polyacrylamide gel electrophoresis. The enzyme complex is composed of three different polypeptide chains of 85 000, 54 000, 32 000 daltons. An estimate of subunit stoichiometry indicates that 1 mol of the largest polypeptide chain is associated with 6 mol each of the smaller ones. The polypeptide subunits have been isolated in pure state and their biological functions characterize. The 54 000-dalton subunit functions as the acyltransferase alpha subunit catalyzing the formation of citryl coenzyme A from citrate in the presence of acetyl coenzyme A and ethylenediaminetetraacetic acid. The 32 000-dalton subunit functions as the acyllyase beta subunit catalyzing the cleavage of (3S)-citryl coenzyme A to oxal-acetate and acetyl coenzyme A. The 85 000-dalton subunit, which carries exclusively the prosthetic group components, functions as the acyl-carrier protein gamma subunit in the cleavage of citrate in the presence of mg2+ and the alpha and beta subunits. The presence of a large ACP subunit and the unusual stoichiometry of the different subunits distinguish the complex from other citrate lyases. A ligase which acetylates the deacetyl[citrate lyase] in the presence of acetate and ATP has ben shown to be present in the organism.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Acyl-(acyl-carrier-protein) hydrolase (EC 3.1.2.14) releases fatty acids from the end-product of fatty acid synthesis in plastids for the subsequent synthesis of glycerolipids in the cytoplasm. Isoelectric focusing of chloroplast stroma proteins from squash cotyledons suggested that there were at least three isomeric forms of acyl-(acyl-carrier-protein) hydrolase having pI values of 4.5, 5.3 and 7.8. The pI 4.5 and pI 5.3 forms showed maximum activity at pH 9.8 whereas the activity of the pI 7.8 form increased within the range 6.2 to 10.2 but no optimum was seen. The pI 4.5 form was purified 100 000-fold from squash cotyledons. The highly purified fraction contained two polypeptides, whose molecular masses were estimated to be 35 kDa and 33 kDa by SDS-PAGE. It is suggested that the 33 kDa polypeptide was a degradation product of the 35kDa polypeptide. Oleoyl-(acyl-carrier protein) was the preferred substrate of this enzyme over palmitoyl- and stearoyl-(acyl-carrier protein), whereas lauroyl-(acyl-carrier protein) was nearly inactive. These results indicate the enzyme is specific for long-chain acyl-(acyl-carrier protein).  相似文献   

10.
The alpha subunit of the rat brain sodium channel is phosphorylated by cAMP-dependent protein kinase in vitro and in situ at multiple sites which yield seven tryptic phosphopeptides. Phosphopeptides 1-4 and 7 are derived from phosphorylation sites between residues 554 and 623 in a single large CNBr fragment from the cytoplasmic segment connecting homologous domains I and II of the alpha subunit (Rossie, S., Gordon, D., and Catterall, W. A. (1987) J. Biol. Chem. 262, 17530-17535). In the present work, antibodies were prepared against a synthetic peptide corresponding to residues 676-692 (AbSP15), which contain one additional potential phosphorylation site at Ser686-Ser687 in a different predicted CNBr fragment of this same intracellular segment. AbSP15 recognizes native and denatured sodium channels specifically and immunoprecipitates phosphorylated CNBr fragments of low molecular mass that contain a new site phosphorylated by cAMP-dependent protein kinase. Comparison of tryptic phosphopeptides derived from intact alpha subunits with those derived from the phosphorylated CNBr fragments isolated by immunoprecipitation with AbSP15 indicates that the two previously unidentified phosphopeptides 5 and 6 derived from the intact alpha subunit arise from phosphorylation of the site containing Ser686-Ser687. These results identify a new cAMP-dependent phosphorylation site and show that the major cAMP-dependent phosphorylation sites of the rat brain sodium channel, which are phosphorylated both in vitro and in intact neurons, are all located in a cluster between residues 554 and 687 in the intracellular segment between domains I and II.  相似文献   

11.
The NADPH-linked 3-oxoacyl-(acyl-carrier protein) (ACP) reductase (EC 1.1.1.100), also known as 'beta-ketoacyl-ACP reductase', has been purified from the mesocarp of mature avocado pears (Persea americana). The enzyme is inactivated by low ionic strength and low temperature. On SDS/PAGE under reducing conditions, purified 3-oxoacyl-ACP reductase migrated as a single polypeptide giving a molecular mass of 28 kDa. Gel-filtration chromatography gave an apparent native molecular mass of 130 kDa, suggesting that the enzyme is tetrameric. The enzyme is inactivated by dilution, but some protection is afforded by the presence of NADPH. Kinetic constants have been determined using synthetic analogues as well as the natural ACP substrate. It exhibits a broad pH optimum around neutrality. Phenylglyoxal inactivates the enzyme, and partial protection is given by 1 mM-NADPH. Antibodies have been raised against the protein, which were used to localize it using immunogold electron microscopy. It is localized in plastids. N-Terminal amino-acid-sequence analysis was performed on the enzyme, and it shows close structural similarity with cytochrome f. Internal amino-acid-sequence data, derived from tryptic peptides, shows similarity with the putative gene products encoded by the nodG gene from the nitrogen-fixing bacterium Rhizobium meliloti and the gra III act III genes from Streptomyces spp.  相似文献   

12.
Caspase-14, a cysteinyl aspartate-specific protease expressed during epidermal differentiation, is detected exclusively in the cytosolic fraction of epidermis as a complex of procaspase-14 together with caspase-14 large and small subunits. On non-denaturing protein gels, native caspase-14 has a relative electrophoretic mobility of approximately 80kDa, which resolves into caspase-14 proform, large and small subunit in SDS-polyacrylamide. Purification of caspase-14 from native skin with subsequent N-terminal sequencing of the small subunit and tryptic digest analysis of the large subunit revealed an atypical processing site between Ile152 and Lys153, which distinguishes it from other caspases described to date that are processed at aspartate residues. Expression of caspase-14 in heterologous systems results in unprocessed procaspase-14 without generation of the large and small subunits that characterize this protein family. However, addition of cellular extracts to purified recombinant human caspase-14 generated immunoreactive peptides indistinguishable from large and small subunits in skin. These data provide evidence for novel processing of caspase-14 suggesting that this enzyme has unique mechanisms of regulation during epidermal differentiation.  相似文献   

13.
Summary By the method of ethanol-salt extraction with ion-exchange chromatography on CM-cellulose an acidic protein of pea 80S ribosomes was isolated. This protein located in the large subunit, had a molecular weight of 14 000 and an IEP of 4.7. The protein is partially phosphorylated, alanine-rich and has methionine at the N-terminal position. Based on these characteristics and on the comparative study of tryptic hydrolyzates of the plant protein and E. coli L7/L12, the protein so obtained is found to be homologous to the L7/Ll2 of the procaryotic ribosomes.  相似文献   

14.
Tyr(P)-containing proteins were purified from extracts of insulin-treated rat hepatoma cells (H4-II-E-C3) by antiphosphotyrosine immunoaffinity chromatography. Two major insulin-stimulated, Tyr(P) proteins were recovered: an Mr 95,000 protein (identified as the insulin receptor beta subunit by its immunoprecipitation by a patient-derived anti-insulin receptor serum and several anti-insulin receptor (peptide) antisera) and an Mr 180,000 protein (which was unreactive with all anti-insulin receptor antibodies). After purification and tryptic digestion of the Mr 95,000 protein, tryptic peptides containing Tyr(P) were purified by sequential antiphosphotyrosine immunoaffinity, reversed-phase, anion-exchange chromatography. The partial amino acid sequence obtained by gas- and solid-phase Edman degradation was compared to the amino acid sequence of the intracellular extension of the rat insulin receptor deduced from the genomic sequence. Approximately 80% of all beta subunit [32P]Tyr(P) resides on two tryptic peptides: 50-60% of [32P]Tyr(P) is found on the tryptic peptide Asp-Ile-Tyr-Glu-Thr-Asp-Tyr-Tyr-Arg from the tyrosine kinase domain, which is recovered mainly as the double phosphorylated species (predominantly in the form with Tyr(P) at residues 3 and 7 from the amino terminus; the remainder with Tyr(P) at residues 3 and 8), with 10-15% as the triple phosphorylated species. A second tryptic peptide is located near the carboxyl terminus, contains 2 tyrosines, and has the sequence, Thr-Tyr-Asp-Glu-His-Ile-Pro-Tyr-Thr-; this contains 20-30% of beta subunit [32P]Tyr(P) and is identified primarily in a double phosphorylated form. Approximately 10% of beta subunit [32P]Tyr(P) resides on an unidentified tryptic peptide of Mr 4,000-5,000. The insulin-stimulated tyrosine phosphorylation of the insulin receptor in intact rat hepatoma cells thus involves at least 6 of the 13 tyrosine residues located on the beta subunit intracellular extension. These tyrosines are clustered in several domains in a distribution virtually identical to that previously found for partially purified human insulin receptor autophosphorylated in vitro in the presence of insulin. This multisite regulatory tyrosine phosphorylation is the initial intracellular event in insulin action.  相似文献   

15.
The structural stability of the hamster fibronectin receptor has been studied using limited proteolytic digestion and anti-(fibronectin receptor) monoclonal antibodies of known specificity. Treatment of the solubilized intact receptor or of the dissociated alpha and beta chains with any one of several proteases generated large protease-resistant fragments (92-110 kDa). Western blot analysis of tryptic digests using subunit-specific monoclonal antibodies revealed the large trypsin-generated fragment to be of beta-subunit origin. No products from the alpha subunit were detected. The protease-resistant fragment is lost upon exposure to reducing conditions; thus, the highly disulfide-bonded region of the beta subunit is important in the maintenance of the tertiary structure of the entire subunit. In contrast to solubilized fibronectin receptor, membrane-bound receptor is much more stable to proteolysis, and tryptic cleavage results in two large immunoreactive fragments of approximately 100 kDa and 95 kDa. This suggests a difference in the conformation and/or oligomeric organization of the membrane-bound receptor as compared with the solubilized heterodimeric receptor.  相似文献   

16.
The genomic locus containing the potential repressor gene mdcY (inactivated by a putative IS3 element) and the mdcLMACDEGBH genes from Acinetobacter calcoaceticus was cloned and sequenced. In order to evaluate the biochemical function of the protein components, the genes were expressed independently and their activities predicted by database analysis. The mdcA gene product, the alpha subunit, was found to be malonate/acetyl-CoA transferase and the mdcD gene product, the beta subunit, was found to be malonyl-CoA decarboxylase. The mdcE gene product, the gamma subunit, may play a role in subunit interaction to form a stable complex or as a codecarboxylase. The mdcC gene product, the delta subunit, was an acyl-carrier protein, which has a unique CoA-like prosthetic group. Various combinations of malonate decarboxylase subunits allowed us to estimate their contribution to malonyl-CoA decarboxylase activity. The prosthetic group was identified as carboxymethylated 2'-(5"-phosphoribosyl)-3'-dephospho-CoA by mass spectrometry. The mdcH gene product was determined to have malonyl-CoA/dephospho-CoA acyltransferase activity. Using database analysis mdcLM, mdcG, mdcB and mdcI were estimated to be the genes for a malonate transporter, a holo-acyl carrier synthase, protein for the formation of precursor of the prosthetic group and a regulatory protein, respectively. From the data shown above we propose a metabolic pathway for malonate in A. calcoaceticus.  相似文献   

17.
The function of plastid ribosomes in pea (Pisum sativum L.) was investigated by characterizing the products of protein synthesis in vitro in plastids isolated at different stages during the transition from etioplast to chloroplast. Etioplasts and plastids isolated after 24, 48 and 96h of greening in continuous white light, use added ATP to incorporate labelled amino acids into protein. Plastids isolated from greening leaves can also use light as the source of energy for protein synthesis. The labelled polypeptides synthesized in isolated plastids were analysed by electrophoresis in sodium dodecyl sulphate-ureapolyacrylamide gels. Six polypeptides are synthesized in etioplasts with ATP as energy source. Only one of these polypeptides is present in a 150 000g supernatant fraction. This polypeptide has been identified as the large subunit of Fraction I protein (3-phospho-D-glycerate carboxylyase EC 4.1.1.39) by comparing the tryptic 'map' of its L-(35S)methionine-labelled peptides with the tryptic 'map' of large subunit peptides from Fraction I labelled with L-(35S)methionine in vivo. The same gel pattern of six polypeptides is seen when plastids isolated from greening leaves are incubated with either added ATP or light as the energy source. However, the rates of synthesis of particular polypeptides are different in plastids isolated at different stages of the etioplast to chloroplast transition. The results support the idea that plastid ribosomes synthesize only a small number of proteins, and that the number and molecular weight of these proteins does not alter during the formation of chloroplasts from etioplasts.  相似文献   

18.
The preliminary data on the amino acid sequence of subunit IV from bovine heart cytochrome oxidase (Albany) is presented. The subunit consists of 97 amino acids linked together in a single polypeptide chain. The sequence was established by the isolation, purification and sequencing of some of the tryptic, chymotryptic and thermolytic and Staphylococcus aureus protease peptides. This subunit is present in all cytochrome oxidase preparations. It corresponds to polypeptide VIa in cytochrome oxidase (Aachen) and subunit a in cytochrome oxidase (Eugene).  相似文献   

19.
Malonate decarboxylase from Pseudomonasputida is composed of five subunits, alpha, beta, gamma, delta, and epsilon. Two subunits, delta and epsilon, have been identified as an acyl-carrier protein (ACP) and malonyl-CoA:ACP transacylase, respectively. Functions of the other three subunits have not been identified, because recombinant subunits expressed in Escherichia coi formed inclusion bodies. To resolve this problem, we used a coexpression system with GroEL/ES from E. coli, and obtained active recombinant subunits. Enzymatic analysis of the purified recombinant subunits showed that the alpha subunit was an acetyl-S-ACP:malonate ACP transferase and that the betagamma-subunit complex was a malonyl-S-ACP decarboxylase.  相似文献   

20.
A 3300-base segment of Escherichia coli chromosomal DNA, cloned into pBR322, will complement a methionine auxotroph in which the lesion is a defective methionyl-tRNA synthetase with a much reduced affinity for methionine. Crude extracts of these transformants contain elevated levels of a protein which has a subunit molecular weight of 66 000, methionyl-tRNA synthetase aminoacylation activity in vitro and which cross-reacts with anti-(methionyl-tRNA synthetase) antibodies. This polypeptide is very slightly larger than the well-characterised and crystallised tryptic fragment of methionyl-tRNA synthetase. A DNA sequence of 1750 residues at one end of the cloned insert codes for a non-terminated open reading frame in which we can locate a large number of methionyl-tRNA synthetase tryptic and chymotryptic peptides. We have also sequenced 300 nucleotides upstream of this coding segment where we find a large invert repeat in the putative methionyl-tRNA synthetase promoter region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号