首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Cyclopropane-1,1-dicarboxylic acid (CDA) and trans-2-phenylcyclopropane-1-carboxylic acid (PCCA) are the main representatives of a group of compounds that are structural analogues of 1-aminocyclopropane-1-carboxylic acid (ACC) and have been proved to have an inhibitory effect on the wound ethylene produced by Lycopersicum esculentum fruit discs. During the experiments, that were carried out in this work the inhibition pattern of PCCA and CDA were studied when tested on partially purified apple ACO and their Ki values were determined. A mechanistic proposal was given, in order to explain the kinetic behaviour of the inhibitors. The common feature of these molecules is their cyclopropane ring, with different substitutes mainly at the positions C1 and C2. Two other compounds with similar structure where also tested as inhibitors, in order to clarify the relationship between structure and activity. These compounds are: 2-methyl cyclopropanecarboxylic acid (MCA), and cyclopropanecarboxylic acid (CCA).  相似文献   

2.
An enzyme preparation isolated from mungbean hypocotyls catalyses the malonyl-CoA-dependent N-malonylation of 1-aminocyclopropane-1-carboxylic acid (ACC), D-phenylalanine (Phe), D-methionine and 2-aminoisobutyric acid with Km values of 0.15, 0.8, 3.4 and 5.1 mM, respectively L-enantiomers of Phe and methionine were, however, not malonylated by the enzyme preparation. When ACC was tested on D-Phe malonyltransferase activity, or when D-Phe was tested on ACC malonyltransferase activity, these compounds exhibited competitive inhibition kinetics with Ki values similar to their respective Km values. Such a relationship suggests that malonylations of ACC and D-amino acids are catalysed by the same enzyme. This view was further supported by the observations that the ratio ACC-D-Phe malonyltransferase activities remained constant throughout various fractionation steps and both enzyme activities were inhibited similarly by various sulphydryl reagents and 1-aminocycloalkane-1-carboxylic acids.  相似文献   

3.
Effects of melatonin and some structurally related indole compounds were studied by in vitro methods such as (i) an inhibition of the hyaluronic acid degradation and (ii) a standard lipid peroxidation assay. In vivo approach was based on the alloxan model of hyperglycaemia. Reduction of the viscosity of a hyaluronic acid solution in the reaction mixture was inhibited by tryptamine (91% inhibition), as well as by indole-3-carboxylic acid and indomethacin (80% and 77% inhibition, respectively). Lipid peroxidation with tert-butyl hydroperoxide as a source of radicals was followed by the formation of thiobarbituric acid reactive substances. Tested drugs inhibited lipid peroxidation in the order: tryptamine (59%) > indole-2-carboxylic acid (38%) > indomethacin (26%) > melatonin and indole-3-carboxylic acid (13%). In vivo, alloxan-induced hyperglycaemia was reduced in mice pretreated with drugs tested. The highest protective effect was observed with indomethacin (52% inhibition), followed by tryptamine and melatonin (18% and 16% inhibition, respectively).  相似文献   

4.
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pentanoic acid, pent-2-enoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on the oxidation of saturated fatty acids by rat liver mitochondria were determined. 2. The formation of (14)CO(2) from [1-(14)C]palmitate was strongly inhibited by 0.01mm-pent-4-enoic acid. 3. The inhibition of oxygen uptake was less than that of (14)CO(2) formation, presumably because fumarate was used as a sparker. 4. The oxidation of [1-(14)C]-butyrate, -octanoate or -laurate was not strongly inhibited by 0.01mm-pent-4-enoic acid. 5. The other four non-hypoglycaemic compounds did not inhibit the oxidation of any saturated fatty acid when tested at 0.01mm concentration, though they all inhibited strongly at 10mm. 6. The oxidation of [1-(14)C]-myristate and -stearate, but not of [1-(14)C]decanoate, was strongly inhibited by 0.01mm-pent-4-enoic acid. 7. The oxidation of [1-(14)C]palmitate was about 50% carnitine-dependent under the experimental conditions used. 8. The percentage inhibition of [1-(14)C]palmitate oxidation by pent-4-enoic acid was the same whether carnitine was present or not. 9. Acetoacetate formation from saturated fatty acids was inhibited by 0.1mm-cyclopropanecarboxylic acid to a greater extent than their oxidation. 10. The other compounds tested inhibited acetoacetate formation from saturated fatty acids proportionately to the inhibition of oxidation. 11. Possible mechanisms for the inhibition of long-chain fatty acid oxidation by pent-4-enoic acid are discussed. 12. There was a correlation between the ability to inhibit long-chain fatty acid oxidation and hypoglycaemic activity in this series of compounds.  相似文献   

5.
A class of substituted 1-thiazol-2-yl-N-3-methyl-1H-pyrozole-5-carboxylic acid derivatives was found to have potent anti-proliferative activity against a broad range of tumor cell lines. A compound from this class (14) was profiled across a broad panel of hematologic and solid tumor cancer cell lines demonstrating cell cycle arrest at the G0/G1 interphase and has potent anti-proliferative activity against a distinct and select set of cancer cell types with no observed effects on normal human cells. An example is the selective inhibition of human B-cell lymphoma cell line (BJAB). Compound 14 was orally bioavailable and tolerated well in mice. Synthesis and structure activity relationships (SAR) in this series of compounds are discussed.  相似文献   

6.
Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5 α reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1 - 6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydro-naphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7 - 15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4- (N, N -dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC 50 =0.09 μM, rat type 1), 6-[3- (N, N -dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC 50 =0.75 μM, human type 2; IC 50 =0.81 μM, human type 1) and 6-[4- (N, N -diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC 50 =0.2 μM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki=90 nM; Km, Testosterone=0.8-1.0 μM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.  相似文献   

7.
1. The effects of the hypoglycaemic compound, pent-4-enoic acid, and of four structurally related non-hypoglycaemic compounds (pent-2-enoic acid, pentanoic acid, cyclopropanecarboxylic acid and cyclobutanecarboxylic acid), on glycolysis, glucose oxidation and gluconeogenesis in some rat tissues were determined. 2. None of the compounds at low concentrations inhibited glycolysis by particle-free supernatant fractions from rat liver, skeletal muscle and intestinal mucosa, though there was inhibition by cyclopropanecarboxylic acid and cyclobutanecarboxylic acid at 3mm concentration. 3. Pent-4-enoic inhibited the oxidation of [1-(14)C]palmitate by rat liver slices, but did not increase the oxidation of [U-(14)C]glucose. 4. Pent-4-enoic acid (0.01mm) strongly inhibited gluconeogenesis by rat kidney slices from pyruvate or succinate, but none of the other compounds inhibited significantly at low concentrations. 5. There was also some inhibition of gluconeogenesis in kidney slices from rats injected with pent-4-enoic acid. 6. The mechanism of the hypoglycaemic effect of pent-4-enoic acid is discussed; it is suggested that there is an inhibition of fatty acid and ketone-body oxidation and of gluconeogenesis so that glucose reserves become exhausted, leading to hypoglycaemia. 7. The mechanism of the hypoglycaemic action of pent-4-enoic acid appears to be similar to that of hypoglycin.  相似文献   

8.
The synthesis of N-substituted piperidine-4-(benzylidene-4-carboxylic acids) is described [benzoyl (1), benzyl (2), adamantanoyl (3), cyclohexanoyl (4), cyclohexylacetyl (5), diphenylacetyl (6), dicyclohexylacetyl (7), 2-propylpentanoyl (8), diphenylcarbamoyl (9), trimethylacetyl (10), 3,3-dimethylacryloyl (11), dicyclohexylacetyl derivative of the benzyl compound (12)]. Compounds were tested for inhibitory activity toward 5alpha-reductase isozymes 1 and 2 in human and rat. The test compounds inhibited 5alpha-reductase, showing a broad range of inhibitory potencies. In rat, compounds 6 (IC50 = 3.44 and 0.37 microM for type 1 and 2, respectively) and 9 (IC50=0.54 and 0.69 microM for type 1 and 2, respectively) displayed the best inhibition toward both isozymes. Compound 7 showed a strong inhibition toward type 2 human and rat enzyme (IC50 = 60 and 80 nM) but only a moderate activity versus type 1 enzyme (IC50 approximately 10 microM for rat and human enzyme). In vivo, selected compounds reduced prostate weights in castrated testosterone treated rats.  相似文献   

9.
This study describes the synthesis and some pharmacological properties of eight new analogues of arginine vasopressin (AVP) substituted at position 2 or 3 with cycloleucine (1-aminocyclopentane-1-carboxylic acid, Apc). All new peptides were tested for their pressor, antidiuretic and uterotonic in vitro potency. The Apc3 modification resulted in an almost complete loss of potency in all three tests, which is interpreted as a loss of interaction with all three neurohypophyseal hormone receptors. On the other hand, the Apc2 modification resulted in compounds having differently modified activities (high antidiuretic potency, low and graded pressor activity and either no activity or low oxytocin antagonizing activity in the uterotonic in vitro test) thus selectively altering the interaction with the receptors similar to that of 1-aminocyclohexane-1-carboxylic acid (Acc). The results obtained may be helpful for designing new analogues of arginine vasopressin.  相似文献   

10.
The characteristics of the conversion of 1-aminocyclopropane-1-carboxylic acid (ACC) to ethylene by pea (Pisum sativum L.) epicotyls and by pea epicotyl enzyme are compared. Of the four stereoisomers of 1-amino-2-ethylcyclopropane-1-carboxylic acid (AEC), only (1R,2S)-AEC is preferentially converted to 1-butene in pea epicotyls. This conversion is inhibited by ACC, indicating that butene production from (1R,2S)-AEC and ethylene production from ACC are catalyzed by the same enzyme. Furthermore, pea epicotyls efficiently convert ACC to ethylene with a low K m (66 M) for ACC and do not convert 4-methylthio-2-oxo-butanoic acid (KMB) to ethylene, thus demonstrating high specificity for its substrate. In contrast, the reported pea epicotyl enzyme which catalyzes the conversion of ACC to ethylene had a high K m (389 mM) for ACC and readily converted KMB to ethylene. We show, moreover, that the pea enzyme catalyzes the conversion of AEC isomers to butene without stereodiscrimination. Because of its lack of stereospecificity, its low affinity for ACC and its utilization of KMB as a substrate, we conclude that the reported pea enzyme system is not related to the in-vivo ethylene-forming enzyme.Abbreviations ACC 1-Amino cyclopropane-1-carboxylic acid - AEC 1-amino-2-ethylcyclopropane-1-carboxylic acid - EFE ethylene-forming enzyme - KMB 4-methylthio-2-oxobutanoic acid  相似文献   

11.
假单胞菌M18的生防功能归功于其分泌吩嗪-1-羧酸和藤黄绿脓菌素。为了研究抗生物质合成代谢相关性及调控机制,分别构建了两种抗生物质合成基因簇插入突变株M18T和M18Z1。用翻译融合表达载体pMEAZ(pltA′-′lacZ)分别转化野生株和突变株M18T、发酵培养并测定β-半乳糖苷酶活性,结果显示,添加藤黄绿脓菌素使突变株M18T(pMEAZ)的β-半乳糖苷酶活性比野生株M18(pMEAZ)增加约6倍,表明藤黄绿脓菌素对自身基因簇具正向自诱导作用。抗生物质的测定结果显示,突变株M18T无藤黄绿脓菌素合成,而吩嗪-1-羧酸的合成量与野生株相同;突变株M18Z1与野生株相比,吩嗪-1-羧酸明显减少,藤黄绿脓菌素却显著提高。过量的吩嗪-1-羧酸又抑制藤黄绿脓菌素的合成。表明,假单胞菌M18中独有的代谢相关方式为:藤黄绿脓菌素不影响吩嗪-1-羧酸,但吩嗪-1-羧酸负调控藤黄绿脓菌素。  相似文献   

12.
Structural optimization of the previously identified 4-(adamantan-1-yl)-2-quinolinecarbohydrazide (AQCH, MIC=6.25 microg/mL, 99% inhibition, Mycobacterium tuberculosis H37Rv) has led to two series of 4-(adamantan-1-yl)-2-substituted quinolines (Series 1-2). All new derivatives were evaluated in vitro for antimycobacterial activities against drug-sensitive M. tuberculosis H37Rv strain. Several 4-adamantan-1-yl-quinoline-2-carboxylic acid N'-alkylhydrazides (Series 1) described herein showed promising inhibitory activity. In particular, analogs 7, 9, 20, and 21 displayed MIC of 3.125 microg/mL. Further investigation of AQCH by its reaction with various aliphatic, aromatic, and heteroaromatic aldehydes led to the synthesis of 4-adamantan-1-yl-quinoline-2-carboxylic acid alkylidene hydrazides (Series 2). Analogs 42-44 and 48 have produced promising antimycobacterial activities (99% inhibition) at 3.125 microg/mL against drug-sensitive M. tuberculosis H37Rv strain. The most potent analog 35 of the series produced 99% inhibition at 1.00 microg/mL against drug-sensitive strain, and MIC of 3.125 microg/mL against isoniazid-resistant TB strain. To understand the relationship between structure and activity, a 3D-QSAR analysis has been carried out by three methods-comparative molecular field analysis (CoMFA), CoMFA with inclusion of a hydropathy field (HINT), and comparative molecular similarity indices analysis (CoMSIA). Several statistically significant CoMFA, CoMFA with HINT, and CoMSIA models were generated. Prediction of the activity of a test set of molecules was the best for the CoMFA model generated with database alignment. Based on the CoMFA contours, we have tried to explain the structure-activity relationships of the compounds reported herein.  相似文献   

13.
Conformational energy computations on the 1-aminocyclopropane-1-carboxylic acid mono-, di-, and tripeptide amides, (Ac-(Ac3c)n---NHMe (n=1−3), indicate that this C,-dialkylated, cyclic -amino acid residue is conformally restricted and that type-I(I′) β-bends and distorted 310-helices are particularly stable conformations for the di- and tripeptide amides, respectively. The results of the theoretical analysis are in agreement with those obtained in an i.r. absorption and 1H n.m.r. investigation in chloroform solution of A.c.3c-rich tri- and tetrapeptide esters. A comparisons is also made with the conclusions extracted from our previous work on peptides rich in Aib (-aminoisobutyric acid), Ac5c(1-aminocyclopentane-1-carboxylic acid), and Ac6c (1-aminocyclohexane-1-carboxylic acid).  相似文献   

14.
White light inhibits the conversion of 1-amino-cyclopropane-1-carboxylic acid (ACC) in discs of green leaves of tobacco (Nicotiana tabacum L.) and segments of oat (Avena sativa L.) leaves by from 60 to 90%. Etiolated oat leaves do not show this effect. The general nature of the effect is shown by its presence in both a mono- and a dicotyledon. Since the leaves have been grown and pre-incubated in light, yet can produce from 2 to 9 times as much ethylene in the dark as in the light, it follows that the light inhibition is fully reversible. The inhibition by light is about equal to that exerted in the dark by CoCl2; it can be partly reversed by dithiothreitol and completely by mercaptoethanol. Thus the light is probably acting, via the photosynthetic system, on the SH group(s) of the enzyme system converting ACC to ethylene.Abbreviation ACC 1-aminocyclopropane-1-carboxylic acid  相似文献   

15.
A new series 1-oxo-3-substitute-isothiochroman-4-carboxylic acid compounds have been designed and synthesized. Screening of these molecules for FAS inhibition in vitro has indicated that compounds 2c and 2d showed more effective FAS inhibition activities and higher therapeutic index than C75.  相似文献   

16.
2,4-Dichlorophenoxyacetate/α-ketoglutarate dioxygenase (TfdA), the first enzyme in the catabolic pathway for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), oxidizes α-ketoglutarate (α-kG) to CO2 and succinate while hydroxylating 2,4-D to yield an unstable hemiacetal that decomposes into 2,4-dichlorophenol and glyoxylate. In an effort to extend the potential biotechnological utility of this enzyme, a variety of non-phenoxyacetate compounds were examined as potential substrates. 2-Naphthoxyacetic acid was the best alternative substrate tested, followed by benzofuran-2-carboxylic acid, 2,4-dichlorocinnamic acid, 2-chlorocinnamic acid, 1-naphthoxyacetic acid, and 4-chlorocinnamic acid. TfdA appeared to oxidize the olefin bond of the cinnamic acids and benzofuran-2-carboxylate to form the corresponding epoxides. Whole cells were observed to also catalyze a TfdA-dependent oxidation of 2,4-dichlorocinnamic acid. Based on the ability of TfdA to metabolize chlorinated cinnamic acids, we speculate that tfdA-like sequences present in 2,4-D non-degrading natural isolates may function in metabolism of substituted cinnamic acids. These results support the use of TfdA and related enzymes in the specific oxidation of non-phenoxyacetate substrates.  相似文献   

17.
In this report the optimization of biosynthesis of tacrolimus, the immunosupressant widely used in transplantology and dermatology was described. The enhancement of the productivity of Streptomyces tsukubaensis strain was achieved by development of new precursors of tacrolimus biosynthesis, which should allow to reduce the costs of the process.The enrichment of the fermentation medium in pyridine-2-carboxylic acid (picolinic acid), piperidine-2-carboxylic acid (pipecolic acid), pyridine-3-carboxylic acid (nicotinic acid) or pyridine-3-carboxylic acid amide (nicotinamide) caused significant growth of the productivity of tacrolimus: 7-fold, 6-fold, 3-fold and 5-fold, respectively. The optimum concentration of the precursors in medium was 0.0025–0.005%. The investigation of the kinetics of tacrolimus biosynthesis together with the analysis of the impact of tested compounds on the culture growth and NAD (nicotinamide adenine dinucleotide) concentration in S. tsukubaensis cells enables to put forward a hypothesis concerning the mechanism of action of tested culture medium additives. The compounds active as tacrolimus precursors (pipecolic and picolinic acids) are more effective than these active mainly as the growth promoters (nicotinamide and nicotinic acid). Nicotinamide and nicotinic acid – vitamin B3 components – promote S. tsukubaensis growth most probably due to the stimulation of NAD/NADP biosynthesis.  相似文献   

18.
Novel 3,4-dihydro-naphthalene-2-carboxylic acids were synthesized and evaluated for 5alpha reductase inhibitory activity. This enzyme exists in two isoforms and is a pharmacological target for the treatment of benign prostatic hyperplasia, male pattern baldness and acne. In the present study non-steroidal compounds capable of mimicking the transition state of the steroidal substrates were prepared. The synthetic strategy for the preparation of compounds 1-6 consisted of triflation followed by subsequent Heck-type carboxylation or methoxy carbonylation for 6-phenyl-3,4-dihydronaphthalen-2(1H)-one 1c. A Negishi-type coupling reaction between 6-(trifluoro-methanesulfonyloxy)-3,4-dihydro-naphthalene-2-carboxylic acid methyl ester 7b and various aryl bromides led, after further transformations, to 6-substituted 3,4-dihydro-naphthalene-2-carboxylic acids 7-15. In a similar way the corresponding naphthalene-2-carboxylic acids 16 and 17 were obtained. The DU 145 cell line and prostate homogenates served as enzyme sources for the human type 1 and type 2 isozymes, whereas ventral prostate was employed to evaluate rat isozyme inhibitory potency. The most active inhibitors identified in this study were 6-[4-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (3) (IC50 = 0.09 microM, rat type 1), 6-[3-(N,N-dicyclohexylaminocarbonyl)phenyl]-3,4-dihydro-naphthalene-2-carboxylic acid (13) (IC50 = 0.75 microM, human type 2; IC50 = 0.81 microM, human type 1) and 6-[4-(N,N-diisopropylamino-carbonyl)phenyl]naphthalene-2-carboxylic acid (16) (IC50 = 0.2 microM, human type 2). The latter compound was shown to deactivate the enzyme in an uncompetitive manner (Ki = 90 nM; Km, Testosterone = 0.8-1.0 microM) similar to the steroidal inhibitor Epristeride. Select inhibitors (13 and 16) were tested in vivo using testosterone propionate-treated, juvenile, orchiectomized SD-rats. None of the compounds was active at a dose of 25 mg/kg. This result might in part be ascribed to the relatively poor in vitro rat isozyme inhibitory potency.  相似文献   

19.
Chemical investigations of a microfungus Xylaria sp. isolated from the Australian rainforest tree Glochidion ferdinandi have afforded two new natural products, 2-hydroxy-6-methyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (1) and 2-hydroxy-6-hydroxymethyl-8-methoxy-9-oxo-9H-xanthene-1-carboxylic acid (2). Compound 1 has previously been synthesised but only partially characterised. Methylation of 1 using diazomethane afforded the crystalline compound 2,8-dimethoxy-6-methyl-9-oxo-9H-xanthene-1-carboxylic acid methyl ester (3), whose structure was determined by single crystal X-ray analysis. This paper reports the full spectroscopic characterisation of compounds 1-3 by NMR, UV, IR and MS data. All compounds were inactive in a brine shrimp lethality assay and several antimicrobial screens.  相似文献   

20.
The synthesis of a series of 5-phenyl substituted 1-methyl-2-pyridones (I) and 4'-substituted biphenyl-4-carboxylic acids (II) as novel A-C ring steroidomimetic inhibitors of 5alpha-reductase (5alphaR) is described. Compounds 1-4 (I) were synthesized by palladium catalyzed cross coupling (Ishikura) reaction between diethyl(3-pyridyl)borane and aryl halides (1b-4b) followed by alpha-oxidation with sodium ferrocyanate of the 1-methyl-pyridinium salt. Inhibitors II (5-18) were obtained either by two successive Friedel-Crafts acylations from biphenyl (5a-10a) followed by saponification to yield the corresponding carboxylic acids (5-10) or by Suzuki cross coupling reaction to give the 4'-substituted biphenyl-4-carbaldehydes 11a-18a. The latter compounds were subjected to a Lindgren oxidation to yield compounds 11-18. The compounds were tested for inhibitory activity toward human and rat 5alphaR1 and 2. The test compounds inhibited 5alphaR, showing a broad range of inhibitory potencies. The best compound in series I was the N-(dicyclohexyl)-4-(1,2-dihydro-1-methyl-2-oxopyrid-5-yl)benzamide 4 exhibiting an IC(50) value for the human type 2 enzyme of 10 microM. In series II, the most active compound toward human type 2 isozyme was the 4'-(dicyclohexyl)acetyl-4-biphenyl carboxylic acid (10; IC(50)=220nM). Both series showed only marginal activity toward the human type 1 isozyme. In conclusion, the biphenyl carboxylic acids (II) are more appropriate for 5alphaR inhibition than the 5-phenyl-1-methyl-2-pyridones (I). Especially the 4'-carbonyl compounds 5-10 represent new lead structures for the development of novel human type 2 inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号