共查询到20条相似文献,搜索用时 8 毫秒
1.
Wikmark OG Haugen P Lundblad EW Haugli K Johansen SD 《The Journal of eukaryotic microbiology》2007,54(1):49-56
The number of nuclear group I introns from myxomycetes is rapidly increasing in GenBank as more rDNA sequences from these organisms are being sequenced. They represent an interesting and complex group of intervening sequences because several introns are mobile (or inferred to be mobile) and many contain large and unusual insertions in peripheral loops. Here we describe related group I introns at position 1389 in the small subunit rDNA of representatives from the myxomycete family Didymiaceae. Phylogenetic analyses support a common origin and mainly vertical inheritance of the intron. All S1389 introns from the Didymiaceae belong to the IC1 subclass of nuclear group I introns. The central catalytic core region of about 100 nt appears divergent in sequence composition even though the introns reside in closely related species. Furthermore, unlike the majority of group I introns from myxomycetes the S1389 introns do not self-splice as naked RNA in vitro under standard conditions, consistent with a dependence on host factors for folding or activity. Finally, the myxomycete S1389 introns are exclusively found within the family Didymiaceae, which suggests that this group I intron was acquired after the split between the families Didymiaceae and Physaraceae. 相似文献
2.
Group I introns are autonomous genetic elements that can catalyze their own excision from pre-RNA. Understanding how group I introns move in nuclear ribosomal (r)DNA remains an important question in evolutionary biology. Two models are invoked to explain group I intron movement. The first is termed homing and results from the action of an intron-encoded homing endonuclease that recognizes and cleaves an intronless allele at or near the intron insertion site. Alternatively, introns can be inserted into RNA through reverse splicing. Here, we present the sequences of two large group I introns from fungal nuclear rDNA, which both encode putative full-length homing endonuclease genes (HEGs). Five remnant HEGs in different fungal species are also reported. This brings the total number of known nuclear HEGs from 15 to 22. We determined the phylogeny of all known nuclear HEGs and their associated introns. We found evidence for intron-independent HEG invasion into both homologous and heterologous introns in often distantly related lineages, as well as the "switching" of HEGs between different intron peripheral loops and between sense and antisense strands of intron DNA. These results suggest that nuclear HEGs are frequently mobilized. HEG invasion appears, however, to be limited to existing introns in the same or neighboring sites. To study the intron-HEG relationship in more detail, the S943 group I intron in fungal small-subunit rDNA was used as a model system. The S943 HEG is shown to be widely distributed as functional, inactivated, or remnant ORFs in S943 introns. 相似文献
3.
In the current era of massive discoveries of noncoding RNAs within genomes, being able to infer a function from a nucleotide sequence is of paramount interest. Although studies of individual group I introns have identified self-splicing and nonself-splicing examples, there is no overall understanding of the prevalence of self-splicing or the factors that determine it among the >2300 group I introns sequenced to date. Here, the self-splicing activities of 12 group I introns from various organisms were assayed under six reaction conditions that had been shown previously to promote RNA catalysis for different RNAs. Besides revealing that assessing self-splicing under only one condition can be misleading, this survey emphasizes that in vitro self-splicing efficiency is correlated with the GC content of the intron (>35% GC was generally conductive to self-splicing), and with the ability of the introns to form particular tertiary interactions. Addition of the Neurospora crassa CYT-18 protein activated splicing of two nonself-splicing introns, but inhibited the second step of self-splicing for two others. Together, correlations between sequence, predicted structure and splicing begin to establish rules that should facilitate our ability to predict the self-splicing activity of any group I intron from its sequence. 相似文献
4.
We sequenced small subunit ribosomal DNA (rDNA) PCR-fragments of sizes 2.3 kb and 2.9 kb isolated from a culture of the red alga, Porphyra spiralis var. spiralis. Phylogenetic analysis of the 2.3-kb fragment showed that it encoded the sequence of a contaminant filose amoeba. The Nuclearia-like amoeba (named strain N-Por) was identified with scanning electron microscopy. Its rDNA sequence was positioned with strong bootstrap support within a diverse protist assemblage that includes filose amoebae, chlorarachniophytes, cercomonads, and Plasmodiophora brassicae. The rDNA of N-Por contained a group I intron at the conserved 943 position that remarkably, had a U at the 3'-terminus rather than the universally conserved G. 相似文献
5.
Although the examination of large subunit ribosomal RNA genes (LSU rDNA) is advanced in phylogenetic studies, no corresponding sequence data from trebouxiophytes have been published, with the exception of ‘Chlorella’ellipsoidea Gerneck. We determined the LSU rDNA sequence of Chlorella vulgaris Beijerinck and of the symbiotic alga of green paramecium, Chlorella sp. NC64A. A total of 59 nucleotide substitutions were found in the LSU rDNA of the two species, which are disproportionately distributed. Primarily, 65% of the substitutions were encountered in the first 800 bp of the alignment. This segment apparently has evolved eight times faster than the complete SSU rDNA sequence, making it a good candidate for a phylogenetic marker and giving a resolution level intermediate between small subunit (SSU) rDNA and internal transcribed spacers. Green algae are known as a group I intron‐rich group along with rhodophytes and fungi. NC64A is particularly rich in the introns; five introns were newly identified from the LSU rDNA sequence, which we named Cnc.L200, Cnc.L1688, Cnc.L1926, Cnc.L2184 and Cnc.L2437, following the insertion positions. In the present study we analyzed these introns with three others (Cnc.S943, Cnc.S1367 and Cnc.S1512) that had already been found in NC64A SSU rDNA. Secondary structure modeling placed these introns in the group I intron family, with four introns belonging to subgroup C1 and the other four introns belonging to subgroup E. Five of the intron insertion positions are unique to the paramecian symbiont, which may indicate relatively recent events of intron infections that includes transpositions. Intron phylogeny showed unprecedented relationships; four Cnc. IC1 introns made a clade with some green algal introns with insertions at nine different positions, whereas four Cnc. IE introns made a clade with the S651 intron (Chlorella sp. AN 1–3), which lay as a sister to the S516 insertion position subfamily. 相似文献
6.
The archiascomycetous fungus Protomyces pachydermus has two group I introns within the nuclear small subunit (nSSU) rRNA gene. One of these introns has an internal open reading
frame (ORF) that encodes a predicted protein of 228 amino acid residues. On the other hand, Protomyces macrosporus has two group I introns that insert at the same positions as P. pachydermus, which have no ORF. Each alignment was constructed with Protomyces group I introns located in the same position and other introns retrieved by the BLAST Search. Each phylogenetic tree based
on the alignment shows that Protomyces introns are monophyletic but the relationships among fungal introns do not reflect on the fungal phylogeny. Therefore, it
is suggested that two different horizontal transfers of group I introns occurred at the early stage of Protomyces species diversification.
Received: 11 June 1997 / Accepted: 2 September 1997 相似文献
7.
Nuclear group I introns are parasitic mobile genetic elements occurring in the ribosomal RNA genes of a large variety of microbial eukaryotes. In Acanthamoeba, group I introns were found occurring in the 18S rDNA at four distinct insertion sites. Introns are present as single elements in various strains belonging to four genotypes, T3 (A. griffini), T4 (A. castellanii complex), T5 (A. lenticulata) and T15 (A. jacobsi). While multiple introns can frequently be found in the rDNA of several algae, fungi and slime moulds, they are usually rare and present as single elements in amoebae. We reported herein the characterization of an A. lenticulata strain containing two introns in its 18S rDNA. They are located to already known sites and show basal relationships with respective homologous introns present in the other T5 strains. This is the first and unique reported case of multiple nuclear introns in Acanthamoeba. 相似文献
8.
Different species of the lichen-forming ascomycete fungus Teloschistes were found to contain group IB introns at position S1506 in the small subunit ribosomal RNA gene. We have characterized the structural organization and phylogeny of the Teloschistes introns Tco.S1506, Tla.S1506, and Tvi.S1506. Common features to all the introns are a small size, a compact RNA structure, and an atypical catalytic ribozyme core sequence motif. Variations in intron sizes, due to sequence extensions in the P1 and P8 loop segments, were observed in different species and isolates. Phylogenetic analyses based on the ITS1-5.8S-ITS2 region as well as the introns show that the Teloschistes S1506 introns represent a distinct evolutionary isolated cluster among the nuclear group I introns. Furthermore, introns from different lineages of Teloschistes villosus appear not strictly vertically inherited probably due to horizontal transfer in one of the lineages. 相似文献
9.
Michel Labouesse 《Molecular & general genetics : MGG》1990,224(2):209-221
Summary The Saccharomyces cerevisiae nuclear gene NAM2 codes for mitochondrial leucyl-tRNA synthetase (mLRS). Herbert et al. (1988, EMBO J 7:473–483) proposed that this protein is involved in mitochondrial RNA splicing. Here we present the construction and analyses of nine mutations obtained by creating two-codon insertions within the NAM2 gene. Three of these prevent respiration while maintaining the mitochondrial genome. These three mutants: (1) display in vitro a mLRS activity ranging from 0%–50% that of the wild type: (2) allow in vivo the synthesis of several mitochondrially encoded proteins; (3) prevent the synthesis of the COXII protein but not of its mRNA; (4) abolish the splicing of the group I introns bI4 and aI4; and (5) affect significantly the excision of the group I introns bI2, bI3 and aI3. Importation of the bI4 maturase from the cytoplasm into mitochondria in a nam2
– mutant strain does not restore the excision of the introns bI4 and aI4 implying that the splicing deficiency does not result from the absence of the bI4 maturase. We conclude that the mLRS is a splicing factor essential for the excision of the group I introns bI4 and aI4 and probably important for the excision of other group I introns. 相似文献
10.
We have previously argued from phylogenetic sequence data that the group I intron in the rRNA genes of Tetrahymena was acquired by different Tetrahymena species at different times during evolution. We have now approached the question of intron mobility experimentally by crossing intron+ and intron? strains looking for a strong polarity in the inheritance of the intron (intron homing). Based on the genetic analysis we find that the intron in T. pigmentosa is inherited as a neutral character and that intron+ and intron? alleles segregate in a Mendelian fashion with no sign of intron homing. In an analysis of vegetatively growing cells containing intron+ and intron? rDNA, initially in the same macronucleus, we similarly find no evidence of intron homing. During the course of this work, we observed to our surprise that progeny clones from some crosses contained three types of rDNA. One possible explanation is that T. pigmentosa has two rdn loci in contrast to the single locus found in T. thermophila. Some of the progeny clones from the genetic analysis were expanded for several hundred generations, and allelic assortment of the rDNA was demonstrated by subcloning analysis. © 1992 Wiley-Liss, Inc. 相似文献
11.
Shyam Nyati Debashish Bhattacharya Silke Werth Rosmarie Honegger 《Journal of phycology》2013,49(6):1154-1166
We studied group I introns in sterile cultures of selected groups of lichen photobionts, focusing on Trebouxia species associated with Xanthoria s. lat. (including Xanthomendoza spp.; lichen‐forming ascomycetes). Group I introns were found inserted after position 798 (Escherichia coli numbering) in the large subunit (LSU) rRNA in representatives of the green algal genera Trebouxia and Asterochloris. The 798 intron was found in about 25% of Xanthoria photobionts including several reference strains obtained from algal culture collections. An alignment of LSU‐encoded rDNA intron sequences revealed high similarity of these sequences allowing their phylogenetic analysis. The 798 group I intron phylogeny was largely congruent with a phylogeny of the internal transcribed spacer region, indicating that the insertion of the intron most likely occurred in the common ancestor of the genera Trebouxia and Asterochloris. The intron was vertically inherited in some taxa, but lost in others. The high‐sequence similarity of this intron to one found in Chlorella angustoellipsoidea suggests that the 798 intron was either present in the common ancestor of Trebouxiophyceae, or that its present distribution results from more recent horizontal transfers, followed by vertical inheritance and loss. Analysis of another group I intron shared by these photobionts at small subunit position 1512 supports the hypothesis of repeated lateral transfers of this intron among some taxa, but loss among others. Our data confirm that the history of group I introns is characterized by repeated horizontal transfers, and suggests that some of these introns have ancient origins within Chlorophyta. 相似文献
12.
More than 1200 introns have been documented at over 150 unique sites in the small and large subunit ribosomal RNA genes (as of February 2002). Nearly all of these introns are assigned to one of four main types: group I, group II, archaeal and spliceosomal. This sequence information has been organized into a relational database that is accessible through the Comparative RNA Web Site (http://www.rna.icmb.utexas.edu/) While the rRNA introns are distributed across the entire tree of life, the majority of introns occur within a few phylogenetic groups. We analyzed the distributions of rRNA introns within the three-dimensional structures of the 30S and 50S ribosomes. Most sites in rRNA genes that contain introns contain only one type of intron. While the intron insertion sites occur at many different coordinates, the majority are clustered near conserved residues that form tRNA binding sites and the subunit interface. Contrary to our expectations, many of these positions are not accessible to solvent in the mature ribosome. The correlation between the frequency of intron insertions and proximity of the insertion site to functionally important residues suggests an association between intron evolution and rRNA function. 相似文献
13.
Myxomycetes (plasmodial slime molds) belonging to the order Physarales contain obligatory group I introns at positions 1949 and 2449 in their large subunit ribosomal RNA gene. Here, we report 36 group I introns from the Didymiaceae family (order Physarales) from 18 isolates representing three genera and seven species, and have reconstructed both host and intron phylogenies. The introns, named L1949 and L2449, were found in all isolates analyzed, consistent with an obligatory distribution in Didymiaceae. The introns fold at the RNA-level into typical group I ribozyme core structures that are relatively conserved, but contain large and highly variable extension sequences in peripheral domains without any detectable protein coding capacities. Furthermore, the L1949 and L2449 introns have probably become dependent on host factors for folding or activity. This assumption is based on that all introns tested for self-splicing in vitro failed to ligate the flanking exon regions. Phylogenies based on LSU rDNA and intron sequences are consistent with that the L1949 and L2449 introns follow a strict vertical inheritance within Didymiaceae. We suggest that the Didymiaceae L1949 and L2449 introns are well suited as high-resolution markers in genetic assessments at various taxonomic levels, from closely related strains of a single species to separating genera. 相似文献
14.
Hafez M Iranpour M Mullineux ST Sethuraman J Wosnitza KM Lehn P Kroeker J Loewen PC Reid J Hausner G 《Fungal biology》2012,116(1):98-111
During a recent phylogenetic study, group I introns were noted that interrupt the nuclear small subunit ribosomal RNA (SSU rDNA) gene in species of Ceratocystiopsis. Group I introns were found to be inserted at the following rDNA positions: S943, S989, and S1199. The introns have been characterized and phylogenetic analysis of the host gene and the corresponding intron data suggest that for S943 vertical transfer and frequent loss appear to be the most parsimonious explanation for the distribution of nuclear SSU rDNA introns among species of Ceratocystiopsis. The SSU rDNA data do suggest that a recent proposal of segregating the genus Ophiostoma sensu lato into Ophiostoma sensu stricto, Grosmannia, and Ceratocystiopsis has some merit but may need further amendments, as the SSU rDNA suggests that Ophiostoma s. str. may now represent a paraphyletic grouping. 相似文献
15.
An insertion sequence was detected near the 3′ end of the nuclear small subunit rDNA in isolates ofPhialophora gregata f. sp.adzukicola, the causal agent of the brown stem rot disease of adzuki bean. This insertion sequence was absent in isolates ofP. gregata, f. sp.sojae which causes brown stem rot of soybean. The insertion sequence is 304 bp long and contains all the characteristics of group
I introns. These characteristics include, the four conserved sequence elements (P, Q, R, and S), a U at the 5′ splice site
of the exon, a G at the 3′ splice site of the intron, a putative internal guiding sequences; the sequence also fits a secondary
structure model for group I introns. Similar to most group I introns found in nuclear small subunit rDNA, the intron was located
in a highly conserved region and is devoid of long open reading frames. This intron provides a convenient marker for use in
conventional PCR to separateP. gregata f. sp.adzukicola fromP. gregata f. sp.sojae. 相似文献
16.
J M Burke 《FEBS letters》1989,250(2):129-133
A model for selection of 3′-splice sites in splicing of RNA precursors containing group I introns is presented. The key feature of this model is a newly identified tertiary interaction between the catalytic core of the intron and the 3′-splice site. This tertiary pairing would bring the 3′-splice site into the core of the intron, which is known to contain RNA sequences and structures essential for catalyzing the splicing reactions. The proposed tertiary interaction can coexist with P10, a pairing between 3′-exon sequences and the ‘internal guide sequence’ near the 5′-end of the intron. The model predicts that three RNA-RNA interactions are important in selection of 3′-splice sites: (i) binding of intron sequences with the core; (ii) pairing of exon sequences with the internal guide sequence; and (iii) binding of the terminal guanosine to an unknown site within the core. 相似文献
17.
The gene coding for the small ribosomal subunit RNA of Ploeotia costata contains an actively splicing group I intron (Pco.S516) which is unique among euglenozoans. Secondary structure predictions indicate that paired segments P1-P10 as well as several conserved elements typical of group I introns and of subclass IC1 in particular are present. Phylogenetic analyses of SSU rDNA sequences demonstrate a well-supported placement of Ploeotia costata within the Euglenozoa; whereas, analyses of intron data sets uncover a close phylogenetic relation of Pco.S516 to S-516 introns from Acanthamoeba, Aureoumbra lagunensis (Stramenopila) and red algae of the order Bangiales. Discrepancies between SSU rDNA and intron phylogenies suggest horizontal spread of the group I intron. Monophyly of IC1 516 introns from Ploeotia costata, A. lagunensis and rhodophytes is supported by a unique secondary structure element: helix P5b possesses an insertion of 19 nt length with a highly conserved tetraloop which is supposed to take part in tertiary interactions. Neither functional nor degenerated ORFs coding for homing endonucleases can be identified in Pco.S516. Nevertheless, degenerated ORFs with His-Cys box motifs in closely related intron sequences indicate that homing may have occurred during evolution of the investigated intron group. 相似文献
18.
《Critical reviews in biochemistry and molecular biology》2013,48(3):215-232
Group II introns are some of the largest ribozymes in nature, and they are a major source of information about RNA assembly and tertiary structural organization. These introns are of biological significance because they are self-splicing mobile elements that have migrated into diverse genomes and played a major role in the genomic organization and metabolism of most life forms. The tertiary structure of group II introns has been the subject of many phylogenetic, genetic, biochemical and biophysical investigations, all of which are consistent with the recent crystal structure of an intact group IIC intron from the alkaliphilic eubacterium Oceanobacillus iheyensis. The crystal structure reveals that catalytic intron domain V is enfolded within the other intronic domains through an elaborate network of diverse tertiary interactions. Within the folded core, DV adopts an activated conformation that readily binds catalytic metal ions and positions them in a manner appropriate for reaction with nucleic acid targets. The tertiary structure of the group II intron reveals new information on motifs for RNA architectural organization, mechanisms of group II intron catalysis, and the evolutionary relationships among RNA processing systems. Guided by the structure and the wealth of previous genetic and biochemical work, it is now possible to deduce the probable location of DVI and the site of additional domains that contribute to the function of the highly derived group IIB and IIA introns. 相似文献
19.
The nucleotide sequence of the small-subunit rRNA (18S rRNA) coding gene in the higher fungus Protomyces inouyei contains two group I introns. This is the first report of two group I introns in the 18S rRNA coding region. Based on the comparison of the two introns of Protomyces inouyei with those of the green alga Ankistrodesmus stipitatus, and the other two higher fungi Pneumocystis carinii and Ustilago maydis, the Protomyces introns are group I introns containing the highly conserved sequence elements P, Q, R, and S. Intron A of Protomyces inouyei is located in the same position as in Pneumocystis carinii while intron B shares the location with that in Ustilago maydis. The phylogenetic relationships strongly support horizontal transfer of these group I introns.Correspondence to: J. Sugiyama 相似文献
20.
Alicia del Hoyo Raquel Álvarez Francisco Gasulla Leonardo Mario Casano Eva María del Campo 《Journal of phycology》2018,54(1):66-78
The history of group I introns is characterized by repeated horizontal transfers, even among phylogenetically distant species. The symbiogenetic thalli of lichens are good candidates for the horizontal transfer of genetic material among distantly related organisms, such as fungi and green algae. The main goal of this study was to determine whether there were different trends in intron distribution and properties among Chlorophyte algae based on their phylogenetic relationships and living conditions. Therefore, we investigated the occurrence, distribution and properties of group I introns within the chloroplast LSU rDNA in 87 Chlorophyte algae including lichen and free‐living Trebouxiophyceae compared to free‐living non‐Trebouxiophyceae species. Overall, our findings showed that there was high diversity of group I introns and homing endonucleases (HEs) between Trebouxiophyceae and non‐Trebouxiophyceae Chlorophyte algae, with divergence in their distribution patterns, frequencies and properties. However, the differences between lichen Trebouxiophyceae and free‐living Trebouxiophyceae were smaller. An exception was the cL2449 intron, which was closely related to ω elements in yeasts. Such introns seem to occur more frequently in lichen Trebouxiophyceae compared to free‐living Trebouxiophyceae. Our data suggest that lichenization and maintenance of lichen symbiosis for millions of years of evolution may have facilitated horizontal transfers of specific introns/HEs between symbionts. The data also suggest that sequencing of more chloroplast genes harboring group I introns in diverse algal groups may help us to understand the group I intron/HE transmission process within these organisms. 相似文献