首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Although sexual dimorphism is ubiquitous in animals, the means by which sex determination mechanisms trigger specific modifications to shared structures is not well understood. In C. elegans, tail tip morphology is highly dimorphic: whereas hermaphrodites have a whip-like, tapered tail tip, the male tail is blunt-ended and round. Here we show that the male-specific cell fusion and retraction that generate the adult tail are controlled by the previously undescribed doublesex-related DM gene dmd-3, with a secondary contribution from the paralogous gene mab-3. In dmd-3 mutants, cell fusion and retraction in the male tail tip are severely defective, while in mab-3; dmd-3 double mutants, these processes are completely absent. Conversely, expression of dmd-3 in the hermaphrodite tail tip is sufficient to trigger fusion and retraction. The master sexual regulator tra-1 normally represses dmd-3 expression in the hermaphrodite tail tip, accounting for the sexual specificity of tail tip morphogenesis. Temporal cues control the timing of tail remodeling in males by regulating dmd-3 expression, and Wnt signaling promotes this process by maintaining and enhancing dmd-3 expression in the tail tip. Downstream, dmd-3 and mab-3 regulate effectors of morphogenesis including the cell fusion gene eff-1. Together, our results reveal a regulatory network for male tail morphogenesis in which dmd-3 and mab-3 together occupy the central node. These findings indicate that an important conserved function of DM genes is to link the general sex determination hierarchy to specific effectors of differentiation and morphogenesis.  相似文献   

2.
3.
4.
M M Shen  J Hodgkin 《Cell》1988,54(7):1019-1031
The gene mab-3 appears to regulate a subset of sex-specific events in C. elegans male development. Mutations in mab-3 have no apparent effect on hermaphrodites, but cause synthesis of yolk proteins and a limited lineage alteration in males. We infer that mab-3 has at least two distinct male-specific functions. First, mab-3 activity prevents yolk protein production by males, without affecting stage or tissue specificity of expression. Second, mab-3 activity is required for expression of the male V ray cell lineage. Epistasis analysis is most consistent with a model in which mab-3 is controlled by tra-1, the last switch gene known to act in the somatic sex determination pathway. We discuss how genes such as mab-3 might generate sexual dimorphism.  相似文献   

5.
Ephrins and semaphorins regulate a wide variety of developmental processes, including axon guidance and cell migration. We have studied the roles of the ephrin EFN-4 and the semaphorin MAB-20 in patterning cell-cell contacts among the cells that give rise to the ray sensory organs of Caenorhabditis elegans. In wild-type, contacts at adherens junctions form only between cells belonging to the same ray. In efn-4 and mab-20 mutants, ectopic contacts form between cells belonging to different rays. Ectopic contacts also occur in mutants in regulatory genes that specify ray morphological identity. We used efn-4 and mab-20 reporters to investigate whether these ray identity genes function through activating expression of efn-4 or mab-20 in ray cells. mab-20 reporter expression in ray cells was unaffected by mutants in the Pax6 homolog mab-18 and the Hox genes egl-5 and mab-5, suggesting that these genes do not regulate mab-20 expression. We find that mab-18 is necessary for activating efn-4 reporter expression, but this activity alone is not sufficient to account for mab-18 function in controlling cell-cell contact formation. In egl-5 mutants, efn-4 reporter expression in certain ray cells was increased, inconsistent with a simple repulsion model for efn-4 action. The evidence indicates that ray identity genes primarily regulate ray morphogenesis by pathways other than through regulation of expression of semaphorin and ephrin.  相似文献   

6.
Rho-binding kinase and the myosin phosphatase targeting subunit regulate nonmuscle contractile events in higher eukaryotes. Genetic evidence indicates that the C. elegans homologs regulate embryonic morphogenesis by controlling the actin-mediated epidermal cell shape changes that transform the spherical embryo into a long, thin worm. LET-502/Rho-binding kinase triggers elongation while MEL-11/myosin phosphatase targeting subunit inhibits this contractile event. We describe mutations in the nonmuscle myosin heavy chain gene nmy-1 that were isolated as suppressors of the mel-11 hypercontraction phenotype. However, a nmy-1 null allele displays elongation defects less severe than mutations in let-502 or in the single nonmuscle myosin light chain gene mlc-4. This results because nmy-1 is partially redundant with another nonmuscle myosin heavy chain, nmy-2, which was previously known only for its role in anterior/posterior polarity and cytokinesis in the early embryo. At the onset of elongation, NMY-1 forms filamentous-like structures similar to actin, and LET-502 is interspersed with these structures, where it may trigger contraction. MEL-11, which inhibits elongation, is initially cytoplasmic. In response to LET-502 activity, MEL-11 becomes sequestered away from the contractile apparatus, to the plasma membrane, when elongation commences. Upon completion of morphogenesis, MEL-11 again appears in the cytoplasm where it may halt actin/myosin contraction.  相似文献   

7.
To gain an understanding of the genes and mechanisms that govern morphogenesis and its evolution, we have analyzed mutations that disrupt this process in a simple model structure, the male tail tip of the rhabditid nematode C. elegans. During the evolution of rhabditid male tails, there have been several independent changes from tails with rounded tips ("peloderan", as in C. elegans) to those with pointed tips ("leptoderan"). Mutations which produce leptoderan (Lep) tails in C. elegans thus identify candidate genes and pathways in which evolutionary changes could have produced leptoderan tails from peloderan ancestors. Here we report that two novel, gain-of-function (gf) alleles of lin-41 have lesions predicted to affect the N-terminus of the RBCC-domain LIN-41 protein. Both gf alleles cause the tail tip of adult males to retain the pointed shape of the juvenile tails, producing a Lep phenotype that looks like the tails of leptoderan species. Consistent with its role in the heterochronic pathway, we find that lin-41 governs the timing and extent of male tail tip morphogenesis in a dose-dependent manner. Specifically, the Lep phenotype results from a heterochronic delay in the retraction and fusion of the tail tip cells during L4 morphogenesis, such that retraction is not completed before the adult molt. Conversely, we find that tail tip morphogenesis and cell fusions begin precociously at the L3 stage in the reduced-function lin-41 mutant, ma104, resulting in over-retracted male tails in the adult. Because modulated anti-LIN-41 RNAi knockdowns in the gf mutants restore wild-type phenotype, we suggest that the leptoderan phenotype of the gf alleles is due to a higher activity of otherwise normal LIN-41. Additionally, the gf allele is suppressed by the wild-type allele, suggesting that LIN-41 normally regulates itself, possibly by autoubiquitination. We speculate that small changes affecting LIN-41 could have been significant for male tail evolution.  相似文献   

8.
Using electron microscopy and immunofluorescent labeling of adherens junctions, we have reconstructed the changes in cell architecture and intercellular associations that occur during morphogenesis of the nematode male tail tip. During late postembryonic development, the Caenorhabditis elegans male tail is reshaped to form a copulatory structure. The most posterior hypodermal cells in the tail define a specialized, sexually dimorphic compartment in which cells fuse and retract in the male, changing their shape from a tapered cone to a blunt dome. Developmental profiles using electron microscopy and immunofluorescent staining suggest that cell fusions are initiated at or adjacent to adherens junctions. Anterior portions of the tail tip cells show the first evidence of retractions and fusions, consistent with our hypothesis that an anterior event triggers these morphogenetic events. Available mutations that interfere with morphogenesis implicate particular regulatory pathways and suggest loci at which evolutionary changes could have produced morphological diversity.  相似文献   

9.
Genome sequence analyses predict many proteins that are structurally related to proteases but lack catalytic residues, thus making functional assignment difficult. We show that one of these proteins (ACN-1), a unique multi-domain angiotensin-converting enzyme (ACE)-like protein from Caenorhabditis elegans, is essential for larval development and adult morphogenesis. Green fluorescent protein-tagged ACN-1 is expressed in hypodermal cells, the developing vulva, and the ray papillae of the male tail. The hypodermal expression of acn-1 appears to be controlled by nhr-23 and nhr-25, two nuclear hormone receptors known to regulate molting in C. elegans. acn-1(RNAi) causes arrest of larval development because of a molting defect, a protruding vulva in adult hermaphrodites, severely disrupted alae, and an incomplete seam syncytium. Adult males also have multiple tail defects. The failure of the larval seam cells to undergo normal cell fusion is the likely reason for the severe disruption of the adult alae. We propose that alteration of the ancestral ACE during evolution, by loss of the metallopeptidase active site and the addition of new protein modules, has provided opportunities for novel molecular interactions important for post-embryonic development in nematodes.  相似文献   

10.
The tapered sensory rays of the male Caenorhabditis elegans are important for successful male/hermaphrodite copulation. A group of ram (ray morphology abnormal) genes encoding modifying enzymes and transmembrane protein have been reported as key regulators controlling ray morphogenesis. Here we report the characterization of another component essential for this morphogenetic process encoded by mab-7. This gene is active in the hypodermis, structural cells, the body seam and several head neurons. It encodes a novel protein with a hydrophobic region at the N-terminus, an EGF-like motif, an ShKT motif and a long C-terminal tail. All these domains are shown to be critical to MAB-7 activity except the EGF-like domain, which appears to be regulatory and dispensable. MAB-7 is shown to be a type II membrane protein, tethered on the cell surface by the N-terminal transmembrane domain with the remainder of the protein exposed to the extracellular matrix. Since ectopic mab-7 expression in any ray cell or even in touch neurons of non-ray lineage can rescue the mutant phenotype, mab-7 is probably acting non-autonomously. It may facilitate intercellular communication among ray cells to augment normal ray morphogenesis.  相似文献   

11.
Semaphorins and ephrins are axon guidance cues. In C. elegans, semaphorin-2a/mab-20 and ephrin-4/efn-4/mab-26 also regulate cell sorting to form distinct rays in the male tail. Several erf (enhancer of ray fusion) mutations were identified in a mab-20 enhancer screen. Mutants of plexin-2 (plx-2) and unc-129, which encodes an axon guiding TGF-beta, were also found to be erfs. Genetic analyses show that plx-2 and mab-20 function in the same pathway, as expected if PLX-2 is a receptor for MAB-20. Surprisingly, MAB-20 also signals in a parallel pathway that requires efn-4. This signal utilizes a non-plexin receptor. The expression of plx-2, efn-4, and unc-129 in subsets of 3-cell sensory ray clusters likely mediates the ray-specific cell sorting functions of the ubiquitously expressed mab-20. We present a model for the integrated control of TGF-beta, semaphorin, and ephrin signaling in the sorting of cell clusters into distinct rays in the developing male tail.  相似文献   

12.
The C. elegans genome encodes a single Eph receptor tyrosine kinase, VAB-1, which functions in neurons to control epidermal morphogenesis. Four members of the ephrin family of ligands for Eph receptors have been identified in C. elegans. Three ephrins (EFN-1/VAB-2, EFN-2 and EFN-3) have been previously shown to function in VAB-1 signaling. We show that mutations in the gene mab-26 affect the fourth C. elegans ephrin, EFN-4. We show that efn-4 also functions in embryonic morphogenesis, and that it is expressed in the developing nervous system. Interestingly, efn-4 mutations display synergistic interactions with mutations in the VAB-1 receptor and in the EFN-1 ephrin, indicating that EFN-4 may function independently of the VAB-1 Eph receptor in morphogenesis. Mutations in the LAR-like receptor tyrosine phosphatase PTP-3 and in the Semaphorin-2A homolog MAB-20 disrupt embryonic neural morphogenesis. efn-4 mutations synergize with ptp-3 mutations, but not with mab-20 mutations, suggesting that EFN-4 and Semaphorin signaling could function in a common pathway or in opposing pathways in C. elegans embryogenesis.  相似文献   

13.
14.
A New Kind of Informational Suppression in the Nematode Caenorhabditis Elegans   总被引:16,自引:6,他引:10  
J. Hodgkin  A. Papp  R. Pulak  V. Ambros    P. Anderson 《Genetics》1989,123(2):301-313
Independent reversions of mutations affecting three different Caenorhabditis elegans genes have each yielded representatives of the same set of extragenic suppressors. Mutations at any one of six loci act as allele-specific recessive suppressors of certain allels of unc-54 (a myosin heavy chain gene), lin-29 (a heterochronic gene), and tra-2 (a sex determination gene). The same mutations also suppress certain alleles of another sex determination gene, tra-1, and of a morphogenetic gene, dpy-5. In addition to their suppression phenotype, the suppressor mutations cause abnormal morphogenesis of the male bursa and the hermaphrodite vulva. We name these genes smg-1 through smg-6 (suppressor with morphogenetic effect on genitalia), in order to distinguish them from mab (male abnormal) genes that can mutate to produce abnormal genitalia but which do not act as suppressors (smg-1 and smg-2 are new names for two previously described genes, mab-1 and mab-11). The patterns of suppression, and the interactions between the different smg genes, are described and discussed. In general, suppression is recessive and incomplete, and at least some of the suppressed mutations are hypomorphic in nature. A suppressible allele of unc-54 contains a deletion in the 3' noncoding region of the gene; the protein coding region of the gene is apparently unaffected. This suggests that the smg suppressors affect a process other than translation, for example mRNA processing, transport, or stability.  相似文献   

15.
16.
Semaphorins are extracellular proteins that regulate axon guidance and morphogenesis by interacting with a variety of cell surface receptors. Most semaphorins interact with plexin-containing receptor complexes, although some interact with non-plexin receptors. Class 2 semaphorins are secreted molecules that control axon guidance and epidermal morphogenesis in Drosophila and Caenorhabditis elegans. We show that the C. elegans class 2 semaphorin MAB-20 binds the plexin PLX-2. plx-2 mutations enhance the phenotypes of hypomorphic mab-20 alleles but not those of mab-20 null alleles, indicating that plx-2 and mab-20 act in a common pathway. Both mab-20 and plx-2 mutations affect epidermal morphogenesis during embryonic and in postembryonic development. In both contexts, plx-2 null mutant phenotypes are much less severe than mab-20 null phenotypes, indicating that PLX-2 is not essential for MAB-20 signaling. Mutations in the ephrin efn-4 do not synergize with mab-20, indicating that EFN-4 may act in MAB-20 signaling. EFN-4 and PLX-2 are coexpressed in the late embryonic epidermis where they play redundant roles in MAB-20-dependent cell sorting.  相似文献   

17.
Developmental timing in the nematode Caenorhabditis elegans is controlled by heterochronic genes, mutations in which cause changes in the relative timing of developmental events. One of the heterochronic genes, let-7, encodes a microRNA that is highly evolutionarily conserved, suggesting that similar genetic pathways control developmental timing across phyla. Here we report that the nuclear receptor nhr-25, which belongs to the evolutionarily conserved fushi tarazu-factor 1/nuclear receptor NR5A subfamily, interacts with heterochronic genes that regulate the larva-to-adult transition in C. elegans. We identified nhr-25 as a regulator of apl-1, a homolog of the Alzheimer's amyloid precursor protein-like gene that is downstream of let-7 family microRNAs. NHR-25 controls not only apl-1 expression but also regulates developmental progression in the larva-to-adult transition. NHR-25 negatively regulates the expression of the adult-specific collagen gene col-19 in lateral epidermal seam cells. In contrast, NHR-25 positively regulates the larva-to-adult transition for other timed events in seam cells, such as cell fusion, cell division and alae formation. The genetic relationships between nhr-25 and other heterochronic genes are strikingly varied among several adult developmental events. We propose that nhr-25 has multiple roles in both promoting and inhibiting the C. elegans heterochronic gene pathway controlling adult differentiation programs.  相似文献   

18.
19.
The Semaphorins are a family of secreted and transmembrane proteins known to elicit growth cone repulsion and collapse. We made and characterized a putative null mutant of the C. elegans gene semaphorin-2a (Ce-sema-2a). This mutant failed to complement mutants of mab-20 (Baird, S. E., Fitch, D. H., Kassem, I. A. A. and Emmons, S. W. (1991) Development 113, 515-526). In addition to low-frequency axon guidance errors, mab-20 mutants have unexpected defects in epidermal morphogenesis. Errant epidermal cell migrations affect epidermal enclosure of the embryo, body shape and sensory rays of the male tail. These phenotypic traits are explained by the formation of inappropriate contacts between cells of similar type and suggest that Ce-Sema-2a may normally prevent formation or stabilization of ectopic adhesive contacts between these cells.  相似文献   

20.
We have identified Conserved Non-coding Elements (CNEs) in the regulatory region of Caenorhabditis elegans and Caenorhabditis briggsae mab-9, a T-box gene known to be important for cell fate specification in the developing C. elegans hindgut. Two adjacent CNEs (a region 78 bp in length) are both necessary and sufficient to drive reporter gene expression in posterior hypodermal cells. The failure of a genomic mab-9::gfp construct lacking this region to express in posterior hypodermis correlates with the inability of this construct to completely rescue the mab-9 mutant phenotype. Transgenic males carrying this construct in a mab-9 mutant background exhibit tail abnormalities including morphogenetic defects, altered tail autofluorescence and abnormal lectin-binding properties. Hermaphrodites display reduced susceptibility to the C. elegans pathogen Microbacterium nematophilum. This comparative genomics approach has therefore revealed a previously unknown role for mab-9 in hypodermal function and we suggest that MAB-9 is required for the secretion and/or modification of posterior cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号