首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(S)-5-bromo-N-[(1-cyclopropylmethyl-2-pyrrolidinyl)methyl]-2,3-dimethoxybenzamide (4) has pico-molar in vitro binding affinity to D(2) receptor (K(i) (D(2))=0.003 nM) with lower affinity to D(3) receptor (K(i) (D(3))=0.22 nM). In this study, we describe radiosynthesis of [(11)C]4 and evaluation of its binding characteristics in post-mortem human brain autoradiography and with PET in cynomolgus monkeys. The (11)C labelled 4 was synthesized by using [(11)C]methyltriflate in a methylation reaction with its phenolic precursor with good incorporation yield (64+/-11%, DCY) and high specific radioactivity >370 GBq/micromol (>10,000 Ci/mmol). In post-mortem human brain autoradiography [(11)C]4 exhibited high specific binding in brain regions enriched with dopamine D(2)/D(3) receptors and low level of non-specific binding. In cynomolgus monkeys [(11)C]4 exhibited high brain uptake reaching 4.4% ID at 7.5 min. The binding in the extrastriatal low density D(2)-receptor regions; thalamus and frontal, parietal, temporal, and occipital cortex, was clearly visible. Pre-treatment with raclopride (1 mg/kg as tartrate) caused high reduction of binding in extrastriatal regions, including cerebellum. [(11)C]4 is a promising radioligand for imaging D(2) receptors in low density regions in brain.  相似文献   

2.
Positron emission tomography (PET) studies have indicated that the in vivo availability of dopamine D(2) -like receptors declines with age in the human brain. Most of the studies have been carried out with healthy male subjects, or with subject groups containing both sexes. The authors have recently demonstrated that the availability of D(2) -like receptors in the frontal cortex is higher in women than in men. The present study was aimed to further examine this phenomenon. Thirty-seven healthy women (age range 22-78 years) were examined with PET and [(11) C]FLB 457, a high-affinity tracer for the extrastriatal D(2) -like receptors. A negative relationship between age and dopamine D(2) -like receptor availability was seen in the frontal cortex (decrease of 12% per decade of life), the temporal cortex (9%) and the thalamus (6%). A non-linear s-shape association explained the relationship only in the frontal cortex, while in other regions the association was linear. Neither oestradiol nor progesterone levels had a significant relationship with the [(11) C]FLB 457 uptake in any of the brain regions studied after the effect of age was partialled out. The results indicate that: (i) the extrastriatal D(2) -like receptor availability decreases with age in healthy women with the fastest rate in the frontal cortex and with the overall rate close to the rate reported in healthy men; (ii) around midlife (age 40-60 years) in women, the frontal receptor decline plateaus while the decline continues to be linear in other extrastriatal brain regions; and (iii) serum oestradiol or progesterone levels are not associated with cortical or thalamic D(2) -like receptor availability in women. The results may prove to be important in studies where the biochemical basis of clinical sex differences is examined in patients with dopamine-related neuropsychiatric disorders.  相似文献   

3.
Although the aging effect of dopamine D2 receptor in the striatum is well-documented, the effect of age on the extrastriatal dopamine D2 receptor has not been fully examined. Since the density of extrastriatal dopamine D2 receptor is very low, suitable ligands are limited. In this study, we used [11C]FLB 457 to quantify the extrastriatal dopamine D2 receptor in the living human brain. Twenty-seven healthy male subjects aged from 21 to 82 years participated in the positron emission tomography study. Extrastriatal [11C]FLB 457 binding was quantified with a reference tissue model using cerebellum as a reference region. Binding potentials corresponding to Bmax/Kd were used to evaluate age-related change. We found age-related decreases of D2 receptor binding in all measured extrastriatal regions. The decrease of D2 receptor binding was 13.8% per decade in frontal cortex, 12.0% in temporal cortex, 13.4% in parietal cortex, 12.4% in occipital cortex, 12.2% in hippocampus, and 4.8% in thalamus. These findings suggest that the amounts of D2 receptor declines in all brain regions as part of the normal aging process.  相似文献   

4.
Recombinant, human dopamine D3 and D2 receptors form functional heterodimers upon co-expression in COS-7 cells. Herein, actions of the antiparkinsonian agents, S32504, ropinirole and pramipexole, at D3/D2L heterodimers were compared to their effects at the respective monomers and at split, chimeric D3trunk/D2tail and D2trunk/D3tail receptors: the trunk incorporated transmembrane domains (TDs) I-V and the tail TDs VI and VII. In binding assays with the antagonist [3H]nemonapride, all agonists were potent ligands of D3 receptors showing, respectively, 100-, 18- and 56-fold lower affinity at D2L receptors, mimicking the selective D3 receptor antagonist, S33084 (100-fold). At D3trunk/D2tail receptors, except for ropinirole, all drugs showed lower affinities than at D3 sites, whereas for D2trunk/D3tail receptors, affinities of all drugs were higher than at D2L sites. The proportion of high affinity binding sites recognized by S32504, pramipexole and ropinirole in membranes derived from cells co-expressing D3 and D2L sites was higher than in an equivalent mixture of membranes from cells expressing D3 or D2L sites, consistent with the promotion of heterodimer formation. In contrast, the percentage of high and low affinity sites (biphasic isotherms) recognized by S33084 was identical. Functional actions were determined by co-transfection of a chimeric adenylyl cyclase (AC)-V/VI insensitive to D3 receptors. Accordingly, D3 receptor-transfected cells were irresponsive whereas, in D2L receptor-transfected cells, agonists suppressed forskolin-stimulated cAMP production with modest potencies. In cells co-transfected with D3 and D2L receptors, S32504, ropinirole and pramipexole potently suppressed AC-V/VI with EC50s 33-, 19- and 11-fold lower than at D2L receptors, respectively. S32504 also suppressed AC-V/VI activity at split D3trunk/D2tail and D2trunk/D3tail chimeras transfected into COS-7 cells. In conclusion, antiparkinson agents behave as potent agonists at D3/D2'heterodimers', though any role in their actions in vivo remains to be demonstrated.  相似文献   

5.
The mesencephalic dopamine (DA) system is the main DA system related to affective and cognitive functions. The system consists of two different cell groups, A9 and A10, which originate from different regions of the midbrain. The striatum is the main input from the midbrain, and is functionally organized into associative, sensorimotor and limbic subdivisions. At present, there have been few studies investigating the associations of DA functions between striatal subdivisions and extrastriatal regions. The aim of this study was to investigate the relationship of DA D1 receptor (D1R) expression between striatal subdivisions and extrastriatal regions in humans using positron emission tomography (PET) with voxel-by-voxel whole brain analysis. The PET study was performed on 30 healthy subjects using [11C]SCH23390 to measure D1R expression. Parametric images of binding potentials (BP ND) were created using the simplified reference tissue model. Regions of interest were defined for striatal subdivisions. Multiple regression analysis was undertaken to determine extrastriatal regions that were associated with each striatal subdivision in BP ND using statistical parametric mapping 5. The BP ND values of associative, sensorimotor and limbic subdivisions were similarly correlated with those of multiple brain regions. Regarding the interrelationships among striatal subdivisions, mutual correlations were found among associative, sensorimotor and limbic subdivisions in BP ND as well. The relationships in BP ND between striatal subdivisions and extra-striatal regions suggest that differential striatal subdivisions and extrastriatal regions have a similar biological basis of D1R expression. Different DA projections from the midbrain did not explain the associations between striatal subdivisions and extrastriatal regions in D1R expression, and the DA-related neural networks among the midbrain, striatum and the other regions would contribute to a similar D1R expression pattern throughout the whole brain.  相似文献   

6.
《Journal of Physiology》2013,107(6):503-509
The role of prefrontal dopamine D1 receptors in prefrontal cortex (PFC) functions, including working memory, is widely investigated. However, human (healthy volunteers and schizophrenia patients) positron emission tomography (PET) studies about the relationship between prefrontal D1 receptors and PFC functions are somewhat inconsistent. We argued that several factors including an inverted U-shaped relationship between prefrontal D1 receptors and PFC functions might be responsible for these inconsistencies. In contrast to D1 receptors, relatively less attention has been paid to the role of D2 receptors in PFC functions. Several animal and human pharmacological studies have reported that the systemic administration of D2 receptor agonist/antagonist modulates PFC functions, although those studies do not tell us which region(s) is responsible for the effect. Furthermore, while prefrontal D1 receptors are primarily involved in working memory, other PFC functions such as set-shifting seem to be differentially modulated by dopamine. PET studies of extrastriatal D2 receptors including ours suggested that orchestration of prefrontal dopamine transmission and hippocampal dopamine transmission might be necessary for a broad range of normal PFC functions. In order to understand the complex effects of dopamine signaling on PFC functions, measuring a single index related to basic dopamine tone is not sufficient. For a better understanding of the meanings of PET indices related to neurotransmitters, comprehensive information (presynaptic, postsynaptic, and beyond receptor signaling) will be required. Still, an interdisciplinary approach combining molecular imaging techniques with cognitive neuroscience and clinical psychiatry will provide new perspectives for understanding the neurobiology of neuropsychiatric disorders and their innovative drug developments.  相似文献   

7.
Previous studies have revealed that activation of rat striatal D(1) dopamine receptors stimulates both adenylyl cyclase and phospholipase C via G(s) and G(q), respectively. The differential distribution of these systems in brain supports the existence of distinct receptor systems. The present communication extends the study by examining other brain regions: hippocampus, amygdala, and frontal cortex. In membrane preparations of these brain regions, selective stimulation of D(1) dopamine receptors increases the hydrolysis of phosphatidylinositol/phosphatidylinositol 4,5-biphosphate. In these brain regions, D(1) dopamine receptors couple differentially to multiple Galpha protein subunits. Antisera against Galpha(q) blocks dopamine-stimulated PIP(2) hydrolysis in hippocampal and in striatal membranes. The binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(i) was enhanced in all brain regions. Dopamine also increased the binding of [(35)S]GTPgammaS or [alpha-(32)P]GTP to Galpha(q) in these brain regions: hippocampus = amygdala > frontal cortex. However, dopamine-stimulated binding of [(35)S]GTPgammaS to Galphas only in the frontal cortex and striatum. This differential coupling profile in the brain regions was not related to a differential regional distribution of the Galpha proteins. Dopamine induced increases in GTPgammaS binding to Galpha(s) and Galpha(q) was blocked by the D(1) antagonist SCH23390 but not by D(2) receptor antagonist l-sulpiride, suggesting that D(1) dopamine receptors couple to both Galpha(s) and Galpha(q) proteins. Co-immunoprecipitation of Galpha proteins with receptor-binding sites indicate that in the frontal cortex, D(1) dopamine-binding sites are associated with both Galpha(s) and Galpha(q) and, in hippocampus or amygdala, D(1) dopamine receptors couple solely to Galpha(q). The results indicate that in addition to the D(1)/G(s)/adenylyl cyclase system, brain D(1)-like dopamine receptor sites activate phospholipase C through Galpha(q) protein.  相似文献   

8.

Objective

Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE.

Methods

To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclerosis (13 left- and eight right-sided) and 18 controls using PET with the high-affinity dopamine D2/D3-receptor ligand 18F-Fallypride to image striatal and extrastriatal binding. TLE was defined by interictal and ictal video-EEG, MRI and 18F-Fluorodeoxyglucose PET. Voxel-based statistical and regions-of-interest analyses were performed.

Results

18F-Fallypride binding potential was significantly reduced in the affected temporal lobe and bilateral putamen. A positive correlation between age at onset of epilepsy and [18F]FP BPnd (binding potential non-displaceable) in temporal regions on the epileptogenic side was found, as well as a negative correlation between epilepsy duration and [18F]FP BPnd in the temporal pole on the epileptogenic side and a positive correlation between the estimated number of lifetime GTCS and [18F]FP BPnd in the hippocampus on the epileptogenic side.

Significance

The areas of reduced D2/D3 receptor availability correspond to “the irritative zone” surrounding the epileptogenic area. Moreover, reduced D2/D3 receptor availability was detectable in the basal ganglia, which are suspected to be involved in a control circuit for epileptic seizures. The correlational analysis additionally suggests that increased epilepsy duration leads to increasing impairment of the dopaminergic system.  相似文献   

9.
The present study attempts to demonstrate D1/D2 dopamine (DA) receptor interactions during stereotyped behaviour in mice. B-HT 920 [2-amino-6-allyl-5, 6, 7, 8-tetrahydro-4H-thiazolo-(4, 5-d)-azepine] (0.05-1.0 mg/kg), a selective D2-DA agonist, induced mild per se stereotypy consisting mainly of sniffing and rearing responses. Apomorphine, a mixed D1/D2 agonist, also produced typical stereotypic response in mice. The stereotypic response of B-HT 920 was blocked by D2-DA antagonist, sulpiride (50 mg/kg). The effect of apomorphine was not influenced by co-treatment with SKF 38393. Simultaneous administration of B-HT 920 (0.1-0.5 mg/kg) with SKF 38393 (5 mg/kg), a selective D1-DA agonist, elicited dramatic increase in stereotyped behaviours in naive as well as in 24 hr reserpinised (2 mg/kg) mice. Co-treatment of apomorphine (0.5 mg/kg) with B-HT 920 (0.1, 0.25 mg/kg) also resulted in a clearly synergistic effect on stereotyped behaviour. These potentiated responses were reduced or blocked by haloperidol, a D2-DA antagonist. The data suggest that in presence of concomitant stimulation of D1-DA receptors. B-HT 920 exhibits full expression of postsynaptic D2-DA receptor mediated behavioural effects.  相似文献   

10.
Susceptibility of dopamine D5 receptor targeted mice to cysteamine   总被引:2,自引:0,他引:2  
BACKGROUND: Recently we demonstrated that gastric mucosa of rats can synthesize, store and release dopamine. Out of five different subtypes, mRNA of D5 (=D1b) dopamine receptor is very abundant in the gastric epithelium. D1 receptor selective dopamine agonists have been shown to protect against experimental gastro-duodenal lesions. AIMS: To test the hypothesis that protective effects of dopamine involve D5 receptors, mucosal lesions were induced in D5 receptor deficient (KO) and wild-type (WT) mice using cysteamine. Morphology and gastric acid secretion of D5 KO mice were also studied. METHODS: Single doses of 600 mg/kg, 300 mg/kg cysteamine or vehicle were administered subcutaneously to fasted animals. After 24 h, number and severity of gastro-duodenal lesions were analyzed. Basal and histamine-induced maximal gastric acid output were measured by a stomach-sac wash-through method. RESULTS: All the KOs in the 600 mg/kg cysteamine group died within 4 h showing symptoms of toxicity while three out of four WTs survived (P<0.05). Mortality after 300 mg/kg cysteamine was significantly higher in KOs versus the WTs: 6/14 versus 2/11, P<0.05. Gastric lesion-index was also significantly higher in KOs (median, middle quartile): four (3-9) versus 0 (0-0), P<0.05. Duodenal lesions did not develop from this single dose of cysteamine in either genotype. Basal and histamine-induced maximal gastric acid output were comparable in the two genotypes. CONCLUSIONS: This study demonstrates that loss of D5 receptor causes mucosal vulnerability and increased toxicity of cysteamine in genetically manipulated mice. Thus, D5 receptor subtype is indeed likely to be involved in protective effects of dopamine in the stomach.  相似文献   

11.
12.
In the present study, the effects of bilateral injections of dopaminergic agents into the hippocampal CA1 regions (intra-CA1) on ethanol (EtOH) state-dependent memory were examined in mice. A single-trial step-down passive avoidance task was used for the assessment of memory retention in adult male NMRI mice. Pre-training intra-peritoneal (i.p.) administration of EtOH (0.25, 0.5 and 1 g/kg) dose dependently induced impairment of memory retention. Pre-test administration of EtOH (0.5 g/kg)-induced state-dependent retrieval of the memory acquired under pre-training EtOH (0.5 g/kg) influence. Intra-CA1 administration of the dopamine D(1) receptor agonist, SKF 38393 (0.5, 1 and 2 g/mouse) or the dopamine D(2) receptor agonist, quinpirole (0.25, 0.5 and 1 microg/mouse) alone cannot affect memory retention. While, pre-test intra-CA1 injection of SKF 38393 (2 microg/mouse, intra-CA1) or quinpirole (0.25, 0.5 and 1 microg/mouse, intra-CA1) improved pre-training EtOH (0.5 g/kg)-induced retrieval impairment. Moreover, pre-test administration of SKF 38393 (0.5, 1 and 2 microg/mouse, intra-CA1) or quinpirole (0.5 and 1 microg/mouse, intra-CA1) with an ineffective dose of EtOH (0.25 g/kg) significantly restored the retrieval and induced EtOH state-dependent memory. Furthermore, pre-training injection of the dopamine D(1) receptor antagonist, SCH 23390 (4 microg/mouse), but not the dopamine D(2) receptor antagonist, sulpiride, into the CA1 regions suppressed the learning of a single-trial passive avoidance task. Pre-test intra-CA1 injection of SCH 23390 (2 and 4 microg/mouse, intra-CA1) or sulpiride (2.5 and 5 microg/mouse, intra-CA1) 5 min before the administration of EtOH (0.5 g/kg, i.p.) dose dependently inhibited EtOH state-dependent memory. These findings implicate the involvement of a dorsal hippocampal dopaminergic mechanism in EtOH state-dependent memory and also it can be concluded that there may be a cross-state dependency between EtOH and dopamine.  相似文献   

13.
14.
The aim of the present study was to explore the mood effects of D1 receptor agonist, SKF-38393 and D1 receptor antagonist, SCH-23390 alone or in combination with a low dose of 17β-estradiol (17β-E2) in the adult ovariectomized female rats (OVX). OVX rats of Wistar strain were used in all experiments. Two weeks after surgery rats were chronically treated with vehicle, a low dose of 17β-E2 (5.0 μg/rat), SKF-38393 (0.1 mg/kg), SCH-23390 (0.1 mg/kg), SKF-38393 plus 17β-E2 or SCH-23390 plus 17β-E2 for 14 days before the forced swimming test. We found that SCH-23390 significantly decreased immobility time in the OVX females. A combination of SCH-23390 with a low dose of 17β-E2 induced more profound decrease of immobility time in the OVX rats compared to the rats treated with SCH-23390 alone. On the contrary, SKF-38393 failed to modify depression-like behavior in the OVX rats. In addition, SKF-38393 significantly blocked the antidepressant-like effect of 17β-E2 in OVX rats. Thus, the D1 receptor antagonist SCH-23390 alone or in combination with a low dose of 17β-E2 exerted antidepressant-like effect in OVX female rats, while the D1 receptor agonist SKF-38393 produced depressant-like profile on OVX rats.  相似文献   

15.
The dopamine D1, D2, D3 receptors, vesicular monoamine transporter type-2 (VMAT2), and dopamine transporter (DAT) densities were measured in 11 aged human brains (aged 77–107.8, mean: 91 years) by quantitative autoradiography. The density of D1 receptors, VMAT2, and DAT was measured using [3H]SCH23390, [3H]dihydrotetrabenazine, and [3H]WIN35428, respectively. The density of D2 and D3 receptors was calculated using the D3-preferring radioligand, [3H]WC-10 and the D2-preferring radioligand [3H]raclopride using a mathematical model developed previously by our group. Dopamine D1, D2, and D3 receptors are extensively distributed throughout striatum; the highest density of D3 receptors occurred in the nucleus accumbens (NAc). The density of the DAT is 10–20-fold lower than that of VMAT2 in striatal regions. Dopamine D3 receptor density exceeded D2 receptor densities in extrastriatal regions, and thalamus contained a high level of D3 receptors with negligible D2 receptors. The density of dopamine D1 linearly correlated with D3 receptor density in the thalamus. The density of the DAT was negligible in the extrastriatal regions whereas the VMAT2 was expressed in moderate density. D3 receptor and VMAT2 densities were in similar level between the aged human and aged rhesus brain samples, whereas aged human brain samples had lower range of densities of D1 and D2 receptors and DAT compared with the aged rhesus monkey brain. The differential density of D3 and D2 receptors in human brain will be useful in the interpretation of PET imaging studies in human subjects with existing radiotracers, and assist in the validation of newer PET radiotracers having a higher selectivity for dopamine D2 or D3 receptors.  相似文献   

16.
Dopamine D(1)-like receptors play a key role in dopaminergic signaling. In addition to G(s/olf)/adenylyl cyclase (AC)-coupled D(1) receptors, the presence of D(1)-like receptors coupled to G(q)/phospholipase C (PLC) has been proposed. Benzazepine D(1) receptor agonists are known to differentially activate G(s/olf)/AC and G(q)/PLC signaling. By utilizing SKF83959 and SKF83822, we investigated the D(1)-like receptor signaling cascades, which regulate DARPP-32 phosphorylation at Thr34 (the PKA-site) in mouse neostriatal slices. Treatment with SKF83959 or SKF83822 increased DARPP-32 phosphorylation. The SKF83959- and SKF83822-induced increase in DARPP-32 phosphorylation was largely, but partially, antagonized by a D(1) receptor antagonist, SCH23390, and the residual SCH23390-insensitive increase was abolished by an adenosine A(2A) receptor antagonist. In addition, the SKF83959-induced, SCH23390-sensitive increase in DARPP-32 phosphorylation was enhanced by a PLC inhibitor. Analysis in slices from D(1)R/D(2)R-DARPP-32 mice revealed that both D(1) receptor agonists regulate DARPP-32 phosphorylation in striatonigral, but not in striatopallidal, neurons. Thus, dopamine D(1)-like receptors are coupled to three signaling cascades in striatonigral neurons: (i) SCH23390-sensitive G(s/olf)/AC/PKA, (ii) adenosine A(2A) receptor-dependent G(s/olf)/AC/PKA, and (iii) G(q)/PLC signaling. Interestingly, G(q)/PLC signaling interacts with SCH23390-sensitive G(s/olf)/AC/PKA signaling, resulting in its inhibition. Three signaling cascades activated by D(1)-like receptors likely play a distinct role in dopaminergic regulation of psychomotor functions.  相似文献   

17.
Concentrations of intestinal 1,25-dihydroxyvitamin D receptor were measured in rats receiving pharmacological amounts (25,000 IU/rat daily for 6 days) of either vitamin D2 or vitamin D3. The data showed that both hypervitaminosis D2 and hypervitaminosis D3 resulted in significant up-regulation of intestinal 1,25-dihydroxyvitamin D receptor (fmol/mg protein) relative to controls (409 +/- 24, vitamin D2-treated; 525 +/- 41, vitamin D3-treated; and 249 +/- 19, control). The 1,25-dihydroxyvitamin D receptor enhancement also was accompanied by elevated plasma 25-hydroxyvitamin D and hypercalcemia. These data suggest that increased target-tissue 1,25-dihydroxyvitamin D receptor may play a role in enhancing target-tissue responsiveness and, thus, have a significant role in mediating the toxic effects of hypervitaminosis D.  相似文献   

18.
We have previously described a significant decrease in the positive cooperativity level and affinity of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] binding to its chick intestinal chromatin receptor induced in vitro by a physiological 10-fold molar excess of (24R)-25-dihydroxyvitamin D3 [24R,25(OH)2D3] [F. Wilhelm and A. W. Norman (1985) Biochem. Biophys. Res. Commun. 126, 496-501]. In this report, we have initiated a comparative study of the binding of 24R,25(OH)2[3H]D3 and 1,25(OH)2[3H]D3 to the the intestinal chromatin fraction obtained from vitamin D-replete birds. 24R,25(OH)2[3H]D3 specific binding to this chromatin fraction was characterized by a dissociation constant (Kd) of 34.0 +/- 6.4 nM, a positive cooperativity level (nH) of 1.40 +/- 0.13, and a capacity (Bmax) of 47 +/- 8 fmol/mg protein. The very low relative competitive index (RCI) of 24R,25(OH)2D3 (0.11 +/- 0.03%) for the 1,25(OH)2D3 binding site/receptor, as well as the inability of 1,25(OH)2D3 to displace 24R,25(OH)2D3 from its binding site at a physiological molar ratio of 1:10, strongly suggest the independence of 24R,25(OH)2D3 and 1,25(OH)2D3 binding sites. Stereospecificity of the 24R,25(OH)2D3 binding sites was attested by the displacement of only 45 +/- 6% of 24R,25(OH)2D3 specific binding by equimolar concentrations of 24S,25(OH)2D3. Collectively these results suggest the existence of a binding domain/receptor for 24,25(OH)2D3 in the chick intestine which is independent of the 1,25(OH)2D3 receptor.  相似文献   

19.
Quercetin, a bioflavonoid (100-300 mg/kg) produced dose dependent increase in tail-flick latency, the analgesic effect being sensitive to reversal by naloxone (1 mg/kg). Prior treatment with haloperidol (1 mg/kg), D1/D2 receptor antagonist haloperidol, sulpiride (50 mg/kg), a selective D2 receptor antagonist, yohimbine (5 mg/kg), a alpha2-adrenoreceptor antagonist but not by SCH 23390 a, selective D1 receptor antagonist blocked this response. Apomorphine (1 mg/kg) a mixed D1/D2 dopamine receptor agonist, and quinpirole (0.5 mg/kg), a selective D2 receptor agonist also produced antinociception, that was reversed by haloperidol (1 mg/kg), sulpiride (50 mg/kg), but not by yohimbine (5 mg/kg). The antinociceptive action of quercetin (200 mg/kg) was potentiated by D2 agonist quinpirole (0.2 mg/kg). Dopamine D1 receptor agonist SKF38393 (10 and 15 mg/kg) failed to alter the antinociceptive effect of quercetin (200 mg/kg). Quercetin (200 mg/kg) reversed reserpine (2 mg/kg-4 hr) induced hyperalgesia, which was reversed by sulpiride but not by yohimbine. Thus, a role of dopamine D2 and alpha2-adrenoreceptors is postulated in the antinociceptive action of quercetin.  相似文献   

20.
Evidence for heterodimerization has recently been provided for dopamine D(1) and adenosine A(1) receptors as well as for dopamine D(2) and somatostatin SSTR(5) receptors. In this paper, we have studied the possibility that D(2) and D(3) receptors interact functionally by forming receptor heterodimers. Initially, we split the two receptors at the level of the third cytoplasmic loop into two fragments. The first, containing transmembrane domains (TM) I to V and the N-terminal part of the third cytoplasmic loop, was named D(2trunk) or D(3trunk), and the second, containing the C-terminal part of the third cytoplasmic loop, TMVI and TMVII, and the C-terminal tail, was named D(2tail) or D(3tail). Then we defined the pharmacological profiles of the homologous (D(2trunk)/D(2tail) and D(3trunk)/D(3tail)) as well as of the heterologous (D(2trunk)/D(3tail) and D(3trunk)/D(2tail)) cotransfected receptor fragments. The pharmacological profile of the cross-cotransfected fragments was different from that of the native D(2) or D(3) receptors. In most cases, the D(3trunk)/D(2tail) was the one with the highest affinity for most agonists and antagonists. Moreover, we observed that all of these receptor fragments reduced the expression of the wild type dopamine D(2) and D(3) receptors, suggesting that D(2) and D(3) receptors can form complexes with these fragments and that these complexes bind [(3)H]nemonapride less efficiently or are not correctly targeted to the membrane. In a second set of experiments, we tested the ability of the split and the wild type receptors to inhibit adenylyl cyclase (AC) types V and VI. All of the native and split receptors inhibited AC-V and AC-VI, with the exception of D(3), which was unable to inhibit AC-VI. We therefore studied the ability of D(2) and D(3) to interact functionally with one another to inhibit AC-VI. We found that with D(2) alone, R-(+)-7-hydroxydypropylaminotetralin hydrobromide inhibited AC-VI with an IC(50) of 2.05 +/- 0.15 nm, while in the presence of D(2) and D(3) it inhibited AC-VI with an IC(50) of 0.083 +/- 0.011 nm. Similar results were obtained with a chimeric cyclase made from AC-V and AC-VI. Coimmunoprecipitation experiments indicate that D(2) and D(3) receptors are capable of physical interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号