首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background and Aims Evolutionary transitions from outcrossing to self-fertilization are thought to occur because selfing provides reproductive assurance when pollinators or mates are scarce, but they could also occur via selection to reduce floral vulnerability to herbivores. This study investigated geographic covariation between floral morphology, fruit set, pollen limitation and florivory across the geographic range of Camissoniopsis cheiranthifolia, a Pacific coastal dune endemic that varies strikingly in flower size and mating system.Methods Fruit set was quantified in 75 populations, and in 41 of these floral herbivory by larvae of a specialized moth (Mompha sp.) that consumes anthers in developing buds was also quantified. Experimental pollen supplementation was performed to quantify pollen limitation in three large-flowered, outcrossing and two small-flowered, selfing populations. These parameters were also compared between large- and small-flowered phenotypes within three mixed populations.Key Results Fruit set was much lower in large-flowered populations, and also much lower among large- than small-flowered plants within populations. Pollen supplementation increased per flower seed production in large-flowered but not small-flowered populations, but fruit set was not pollen limited. Hence inadequate pollination cannot account for the low fruit set of large-flowered plants. Floral herbivory was much more frequent in large-flowered populations and correlated negatively with fruit set. However, florivores did not preferentially attack large-flowered plants in three large-flowered populations or in two of three mixed populations.Conclusions Selfing alleviated pollen limitation of seeds per fruit, but florivory better explains the marked variation in fruit set. Although florivory was more frequent in large-flowered populations, large-flowered individuals were not generally more vulnerable within populations. Rather than a causative selective factor, reduced florivory in small-flowered, selfing populations is probably an ecological consequence of mating system differentiation, with potentially significant effects on population demography and biotic interactions.  相似文献   

2.
Floral size dimorphism, pollination, and genetic variation of Alpinia nieuwenhuizii (Zingiberaceae), a flexitylous ginger, were studied. This study revealed that floral size differed among habitats (i.e., roadsides/riversides vs. forest floors). The effective pollinators of small-flowered populations of the species on a forest floor were different from those of large-flowered populations along roadsides/riversides. Using inter-simple sequence repeat (ISSR) PCR, considerable genetic differentiation was detected between small- and large-flowered populations. These results indicate that reproductive isolation in A. nieuwenhuizii owing to the differentiation of pollen vectors between two floral size morphs may lead to genetic differentiation between the two morphs.  相似文献   

3.
Kennedy BF  Elle E 《Oecologia》2008,155(3):469-477
Autonomous selfing can provide reproductive assurance (RA) for flowering plants that are unattractive to pollinators or in environments that are pollen limited. Pollen limitation may result from the breakdown of once-continuous habitat into smaller, more isolated patches (habitat fragmentation) if fragmentation negatively impacts pollinator populations. Here we quantify the levels of pollen limitation and RA among large and small populations of Collinsia parviflora, a wildflower with inter-population variation in flower size. We found that none of the populations were pollen limited, as pollen-supplemented and intact flowers did not differ in seed production. There was a significant effect of flower size on RA; intact flowers (can self) produced significantly more seeds than emasculated flowers (require pollen delivery) in small-flowered plants but not large-flowered plants. Population size nested within flower size did not significantly affect RA, but there was a large difference between our two replicate populations for large-flowered, small populations and small-flowered, large populations that appears related to a more variable pollination environment under these conditions. In fact, levels of RA were strongly negatively correlated with rates of pollinator visitation, whereby infrequent visitation by pollinators yielded high levels of RA via autonomous selfing, but there was no benefit of autonomous selfing when visitation rates were high. These results suggest that autonomous selfing may be adaptive in fragmented habitats or other ecological circumstances that affect pollinator visitation rates.  相似文献   

4.
In the tropical dry forest of the central Pacific coast of Mexico the pollination and reproductive success of the bombacaceous tree Ceiba grandiflora was negatively affected by habitat disruption. Two of the three bat species that function as effective pollinators for this species ( Glossophaga soricina and Musonycteris harrisoni) visited flowers found in trees in disturbed habitats significantly less than trees found in undisturbed habitats. A similar pattern was observed for the effective bat pollinator, Leptonycteris curasoae; however the difference was not significant. The three nectarivorous bats that functioned as effective pollinators of C. grandiflora also visited flowers to exclusively feed on pollen by biting or pulling off an anther (see Fig. S1 of Electronic Supplementary Material). The number of pollen grains deposited on stigmas from flowers in undisturbed areas was significantly greater than from flowers in disturbed habitats. The greater visitation rate and the greater number of pollen grains deposited on flowers from trees in undisturbed forest resulted in a significantly greater fruit set for trees in these areas. Our study demonstrates the negative effect that habitat disruption has on bat pollinators in tropical dry forest ecosystems and documents the negative consequences for the plants they pollinate.  相似文献   

5.
A central question in plant evolutionary ecology is how mixed mating systems are maintained in the face of selection against self-pollination. Recently, attention has focused on the potential reproductive assurance (RA) benefit of selfing: the ability to produce seeds via autonomous selfing when the potential for outcrossing is reduced or absent. To date, there is little experimental support for this benefit under natural pollination conditions. In addition, the RA hypothesis has not been tested experimentally in a species displaying morphological variation for traits expected to influence the mating system, such as flower size, which affects both attractiveness to pollinators and ability to self autonomously. Here, we document significant among-population variation in flower size in Collinsia parviflora and show that pollinators preferred large flowers over small flowers in experimental arrays. The pollinator community varied among three study sites, and two small-flowered populations had lower pollinator visitation rates than one large-flowered population. We compared seed production between intact flowers (can self) and experimentally emasculated flowers (require a pollinator) on large- and small-flowered plants. As predicted by the RA hypothesis, small-flowered plants show a greater RA benefit of selfing than large-flowered plants; emasculated, small flowers produced very few seeds, relative to intact, small flowers or either emasculated or intact, large flowers. We also show that the RA benefit is pollination-context dependent, differing between small- and large-flowered test sites, likely due to a combination of pollinator discrimination against small flowers and differences between test sites in the pollinator community. This paper is the first experimental evidence showing a trait-dependent RA benefit of selfing under natural pollination conditions.  相似文献   

6.
Gene flow via seed and pollen is a primary determinant of genetic and species diversity in plant communities at different spatial scales. This paper reviews studies of gene flow and population genetic structure in tropical rain forest trees and places them in ecological and biogeographic context. Although much pollination is among nearest neighbors, an increasing number of genetic studies report pollination ranging from 0.5–14 km for canopy tree species, resulting in extensive breeding areas in disturbed and undisturbed rain forest. Direct genetic measures of seed dispersal are still rare; however, studies of fine scale spatial genetic structure (SGS) indicate that the bulk of effective seed dispersal occurs at local scales, and we found no difference in SGS (Sp statistic) between temperate (N?=?24 species) and tropical forest trees (N?=?15). Our analysis did find significantly higher genetic differentiation in tropical trees (F ST?=?0.177; N?=?42) than in temperate forest trees (F ST?=?0.116; N?=?82). This may be due to the fact that tropical trees experience low but significant rates of self-fertilization and bi-parental inbreeding, whereas half of the temperate tree species in our survey are wind pollinated and are more strictly allogamous. Genetic drift may also be more pronounced in tropical trees due to the low population densities of most species.  相似文献   

7.
Large floral displays favour pollinator attraction and the import and export of pollen. However, large floral displays also have negative effects, such as increased geitonogamy, pollen discounting and nectar/pollen robber attraction. The size of the floral display can be measured at different scales (e.g. the flower, inflorescence or entire plant) and variations in one of these scales may affect the behaviour of flower visitors in different ways. Moreover, the fragmentation of natural forests may affect flower visitation rates and flower visitor behaviour. In the present study, video recordings of the inflorescences of a tree species (Tabebuia aurea) from the tropical savannah of central Brazil were used to examine the effect of floral display size at the inflorescence and tree scales on the visitation rate of pollinators and nectar robbers to the inflorescence, the number of flowers approached per visit, the number of visits per flower of potential pollinators and nectar robbers, and the interaction of these variables with the degree of landscape disturbance. Nectar production was quantified with respect to flower age. Although large bees are responsible for most of the pollination, a great diversity of flower insects visit the inflorescences of T. aurea. Other bee and hummingbird species are highly active nectar robbers. Increases in inflorescence size increase the visitation rate of pollinators to inflorescences, whereas increases in the number of inflorescences on the tree decrease visitation rates to inflorescences and flowers. This effect has been strongly correlated with urban environments in which trees with the largest floral displays are observed. Pollinating bees (and nectar robbers) visit few flowers per inflorescence and concentrate visits to a fraction of available flowers, generating an overdispersed distribution of the number of visits per inflorescence and per flower. This behaviour reflects preferential visits to young flowers (including flower buds) with a greater nectar supply.  相似文献   

8.
Pollinator syndrome is one of the most important determinants regulating pollen dispersal in tropical tree species. It has been widely accepted that the reproduction of tropical forest species, especially dipterocarps that rely on insects with weak flight for their pollination, is positively density-dependent. However differences in pollinator syndrome should affect pollen dispersal patterns and, consequently, influence genetic diversity via the mating process. We examined the pollen dispersal pattern and mating system of Shorea maxwelliana, the flowers of which are larger than those of Shorea species belonging to section Mutica which are thought to be pollinated by thrips (weak flyers). A Bayesian mating model based on the paternity of seeds collected from mother trees during sporadic and mass flowering events revealed that the estimated pollen dispersal kernel and average pollen dispersal distance were similar for both flowering events. This evidence suggests that the putative pollinators – small beetles and weevils – effectively contribute to pollen dispersal and help to maintain a high outcrossing rate even during sporadic flowering events. However, the reduction in pollen donors during a sporadic event results in a reduction in effective pollen donors, which should lead to lower genetic diversity in the next generation derived from seeds produced during such an event. Although sporadic flowering has been considered less effective for outcrossing in Shorea species that depend on thrips for their pollination, effective pollen dispersal by the small beetles and weevils ensures outcrossing during periods of low flowering tree density, as occurs in a sporadic flowering event.  相似文献   

9.
The bee guild represents direct primary costs of angiosperm reproduction. Tropical flower visitors take an amount comparable to herbivores, exceeding 3% of net primary production energy. Therefore herbivory and aboveground net primary production have been underestimated. Comparing pollinators to other herbivores, harvest in mature forest by tropical bees is greater than leafcutter ants, game animals, frugivores, vertebrate folivores, insect defoliators excluding ants, flower-feeding birds and bats, but not soil organisms. The ratio of total aboveground net primary production to investment in pollen, nectar and resin used by pollinators suggests wind pollination is several times more efficient in temperate forests than is animal pollination in neotropical moist forest. Animal pollination may be favoured by habitat mosaics and an unpredictable or sparse dispersion of conspecifics — consequences of fluctuating abiotic and biotic environments. Natural selection evidently favours diminished direct reproductive costs in forests, for example by wind pollination, regardless of latitude and disturbance regime. An example is “wind pollination by proxy” of dominant trees in seasonal southeast Asian forests. They flower only occasionally and their pollen is dispersed by tiny winged insects that are primarily carried by the wind — rather than the nectar-hungry bees, bats, birds and moths used by most tropical flora. Increasing evapotranspiration is associated with greater net primary production; I show its correlation with species richness of social tropical bees across the isthmus of Panama, which may indicate increasing forest reproductive effort devoted to flowering, and its monopolization by unspecialized flower visitors in wetter and less seasonal lowland forests.  相似文献   

10.

Background and Aims

Knowledge of pollen dispersal patterns and variation of fecundity is essential to understanding plant evolutionary processes and to formulating strategies to conserve forest genetic resources. Nevertheless, the pollen dispersal pattern of dipterocarp, main canopy tree species in palaeo-tropical forest remains unclear, and flowering intensity variation in the field suggests heterogeneity of fecundity.

Methods

Pollen dispersal patterns and male fecundity variation of Shorea leprosula and Shorea parvifolia ssp. parvifolia on Peninsular Malaysian were investigated during two general flowering seasons (2001 and 2002), using a neighbourhood model modified by including terms accounting for variation in male fecundity among individual trees to express heterogeneity in flowering.

Key Results

The pollen dispersal patterns of the two dipterocarp species were affected by differences in conspecific tree flowering density, and reductions in conspecific tree flowering density led to an increased selfing rate. Active pollen dispersal and a larger number of effective paternal parents were observed for both species in the season of greater magnitude of general flowering (2002).

Conclusions

The magnitude of general flowering, male fecundity variation, and distance between pollen donors and mother trees should be taken into account when attempting to predict the effects of management practices on the self-fertilization and genetic structure of key tree species in tropical forest, and also the sustainability of possible management strategies, especially selective logging regimes.  相似文献   

11.
At irregular intervals of 2 to 10 years the aseasonal tropical rain forests in west Malesia come into heavy mass flowering, followed by mast fruiting. During a heavy flowering almost half the mature individuals and over 80% of the canopy and emergent tree Species in a forest may flower. This involves over 200 tree species in a forest flowering over a short period of 3–4 months. The pollination needs during a mass flowering appears to be overcome in several ways. A rapid increase in the number of pollinators seems to occur in the forest. This is partly caused by the migration of pollinators from the fringes of the forest to forage on the superabundance of flowers. At the same time, some groups of plants which share common pollinators appear to reduce pollinator competition by flowering in interspecific sequence. Many members of the family Dipterocarpaceae have evolved sequential flowering too. They also share unique pollinators, common flower thrips which appear to build up rapidly in numbers by feeding and breeding on the millions of dipterocarp flower buds which are present several weeks before the flowering. The environmental cue for this irregular, but widespread mass flowering can be traced to a small dip of about 2° C below mean night-time temperature for 4 or 5 nights. The conditions for such temperature drops occur during El Nino events.  相似文献   

12.
Habitat remnants act as a source of pollinators potentially relevant for crop pollination and yield. This work analyzes how habitat loss influences pollinators, effective pollination and yield of soybean crops. The study area comprises ten sites adjacent to forest patches surrounded by a soybean matrix in central Argentina (eight sites in the season 2014–2015 and two sites in the season 2015–2016). Pollination was estimated by pollen deposition and frequency of flower visitors. Pollen deposition on stigmas and seed set were measured comparing open plants and plants with pollinator exclusion. These response variables were compared considering increasing distance to the forest edge and an increasing gradient of forest patch size. Bees were the most frequent visitors of soybean flowers, especially honeybees, but also at least three native bee species were recorded. Open plants showed higher rates of stigmatic pollen deposition than plants with pollinator exclusion, but seed set was similar. Total insect visitation rates, especially of native insects, decreased with distance to the forest edge and so did pollen deposition. Pollen deposition and seed set increased with increasing forest patch size for plants located near and far from the forest edge, respectively. Overall, our results suggest that the contribution of native pollinators from local forest patches is important for effective pollination across the landscape. Small patches of forest (approximately 1 ha.) guarantee pollinators to ensure plant yields similar to the yields of plants growing close to large patches, but only at short distances; while larger forest patches provide better pollination services for the crop at larger distances from the forest edge. However, we encourage further studies because results suggest that other factors may also influence soybean pollination and production.  相似文献   

13.
Tropical trees often display long‐distance pollen dispersal, even in highly fragmented landscapes. Understanding how patterns of spatial isolation influence pollen dispersal and interact with background patterns of fine‐scale spatial genetic structure (FSGS) is critical for evaluating the genetic consequences of habitat fragmentation. In the endangered tropical timber tree Dysoxylum malabaricum (Meliaceae), we apply eleven microsatellite markers with paternity and parentage analysis to directly estimate historic gene flow and contemporary pollen dispersal across a large area (216 km2) in a highly fragmented agro‐forest landscape. A comparison of genetic diversity and genetic structure in adult and juvenile life stages indicates an increase in differentiation and FSGS over time. Paternity analysis and parentage analysis demonstrate high genetic connectivity across the landscape by pollen dispersal. A comparison between mother trees in forest patches with low and high densities of adult trees shows that the frequency of short‐distance mating increases, as does average kinship among mates in low‐density stands. This indicates that there are potentially negative genetic consequences of low population density associated with forest fragmentation. Single isolated trees, in contrast, frequently receive heterogeneous pollen from distances exceeding 5 km. We discuss the processes leading to the observed patterns of pollen dispersal and the implications of this for conservation management of D. malabaricum and tropical trees more generally.  相似文献   

14.
Tropical rainforest trees typically occur in low population densities and rely on animals for cross-pollination. It is of conservation interest therefore to understand how rainforest fragmentation may alter the pollination and breeding structure of remnant trees. Previous studies of the Amazonian tree Dinizia excelsa (Fabaceae) found African honeybees (Apis mellifera scutellata) as the predominant pollinators of trees in highly disturbed habitats, transporting pollen up to 3.2 km between pasture trees. Here, using microsatellite genotypes of seed arrays, we compare outcrossing rates and pollen dispersal distances of (i) remnant D. excelsa in three large ranches, and (ii) a population in undisturbed forest in which African honeybees were absent. Self-fertilization was more frequent in the disturbed habitats (14%, n = 277 seeds from 12 mothers) than in undisturbed forest (10%, n = 295 seeds from 13 mothers). Pollen dispersal was extensive in all three ranches compared to undisturbed forest, however. Using a twogener analysis, we estimated a mean pollen dispersal distance of 1509 m in Colosso ranch, assuming an exponential dispersal function, and 212 m in undisturbed forest. The low effective density of D. excelsa in undisturbed forest (approximately 0.1 trees/ha) indicates that large areas of rainforest must be preserved to maintain minimum viable populations. Our results also suggest, however, that in highly disturbed habitats Apis mellifera may expand genetic neighbourhood areas, thereby linking fragmented and continuous forest populations.  相似文献   

15.
Summary Annual flower production ranged over four orders of magnitude among individuals of the tropical tree Prockia crucis (Flacourtiaceae), but the number of visits per flower by bees did not increase with flower number. In a population in Jalisco, México, the trees flower for about one week each year, offering only pollen to the bees (mostly solitary species). In a small group of trees, the number of visits per flower was less on trees with greater flower production but in a large group visitation did not vary between trees. Pollen flow probably was not directed from large to small trees or vice versa, because the number of flowers per tree did not determine the schedule of visits. The ratio of pollinators to pollen thieves decreased rapidly through the day, while individuals of both groups foraged more rapidly. Most bee species were rare, and only a small subset of medium-sized to large bees were effective pollinators. Large and small groups of trees differed in the relationship between individual flower crop and abundance and diversity of both pollinators and thieves.  相似文献   

16.
F. A. Jones  L. S. Comita 《Oikos》2010,119(11):1841-1847
Negative density‐dependent demographic processes operating at post‐dispersal seed, seedling, and juvenile stages are the dominant explanation for the coexistence of high numbers of tree species in tropical forests. At adult stages, the effect of pollinators and pre‐dispersal fruit predators are often dependent on the density or abundance of flowers and fruit in the canopy, but each have opposite effects on individual realized reproduction. We studied the effect of density on total and mature fruit set and pre‐dispersal predation rates within individual tree canopies in a common canopy tree species, Jacaranda copaia in a 50‐ha forest census plot in central Panama. We sampled all reproductive sized trees in the plot (n = 188) across three years and estimated fruit set and predation rates. Population‐wide pre‐dispersal seed predation averaged between 6–37% across years. Using linear mixed effects models, we found that increased density and fecundity of conspecific neighbours increased focal tree fruit set, but also the rate of pre‐dispersal predation. An interaction between individual and neighbourhood fruit production predicted lower predation rates at high individual and neighbourhood fecundities, which suggests predator satiation at high fruit abundance levels. However, the rate at which fruit set increased with conspecific neighbour fruit production was greater than the rate at which fruit were lost to predation, resulting in an overall positive effect of neighbour density on mature fruit production in focal trees. Our results run counter to the expectation of a uniformly negative effect of density across all life stages in tropical trees and suggest further exploration of the role of spatial clumping, pollen dispersal limitation, and predation at pre‐dispersal adult stages in maintenance of species diversity in plant communities.  相似文献   

17.
Ward M  Dick CW  Gribel R  Lowe AJ 《Heredity》2005,95(4):246-254
Despite the typically low population densities and animal-mediated pollination of tropical forest trees, outcrossing and long-distance pollen dispersal are the norm. We reviewed the genetic literature on mating systems and pollen dispersal for neotropical trees to identify the ecological and phylogenetic correlates. The 36 studies surveyed found >90% outcrossed mating for 45 hermaphroditic or monoecious species. Self-fertilization rates varied inversely with population density and showed phylogenetic and geographic trends. The few direct measures of pollen flow (N=11 studies) suggest that pollen dispersal is widespread among low-density tropical trees, ranging from a mean of 200 m to over 19 km for species pollinated by small insects or bats. Future research needs to examine (1) the effect of inbreeding depression on observed outcrossing rates, (2) pollen dispersal in a wide range of pollination syndromes and ecological classes, (3) and the range of variation of mating system expression at different hierarchical levels, including individual, seasonal, population, ecological, landscape and range wide.  相似文献   

18.
Pollen and seed dispersal among dispersed plants   总被引:2,自引:0,他引:2  
The ecological significance of spacing among plants in contributing to the maintenance of species richness, particularly in tropical forests, has received considerable attention that has largely focussed on distance- and density-dependent seed and seedling mortality. More recently it has become apparent that plant spacing is also relevant to pollination, which often constrains seed production. While seed and seedling survival is reduced at high conspecific densities, pollination success, by contrast, is positively correlated to local conspecific density. Distance-dependent mechanisms acting on pollination and seed production have now been described for a variety of plants, with relatively isolated plants or fragmented populations generally suffering reduced fecundity due to pollen limitation. Yet there is considerable variability in the vulnerability of plant species to pollination failure, which may be a function of breeding system, life history, the pollination vector, the degree of specialisation among plants and their pollinators, and other indirect effects of habitat change acting on plants or pollinators. As reduced tree densities and population fragmentation are common outcomes of anthropogenically altered landscapes, understanding how pollination processes are affected in such degraded landscapes can inform effective conservation and management of remaining natural areas.  相似文献   

19.
Ghazoul  Jaboury  McLeish  Moray 《Plant Ecology》2001,153(1-2):335-345
Invertebrates mediate several important ecological processes, including pollination and seed predation, and events that affect invertebrate diversity or behaviour can potentially disrupt forest regeneration processes. This study investigates the impact of logging in Thailand and forest fragmentation in Costa Rica on the pollination and seed production of two self-incompatible forest trees. Logging in a dry deciduous dipterocarp forest in Thailand resulted in reduced densities of the common dipterocarp treeShorea siamensis and variably isolated individual trees. The number of flower visits to S. siamensis by pollinating Trigona bees was not affected by logging disturbance. However, pollinators did spend longer periods of time foraging in the canopies of isolated trees which were more prevalent in logged areas where tree density had been reduced. Consequently, at the logged site few cross-pollinations were effected and fruit set of S. siamensis was considerably lower than at nearby unlogged sites where distances between flowering conspecifics were smaller. Reduced fruit set has long-term implications for the recovery of S. siamensis populations in disturbed areas, and local population genetic structure is likely to be affected as reduced outcrossing rates among trees in disturbed regions results in relatively inbred seed. In Costa Rica forest fragmentation has restricted the once widespread tree Anacardium excelsum to forest patches located in an agriculturally-dominated landscape. As with S. siamensis, the abundance of pollinators, also Trigona bees, in the canopies of A. excelsum was largely unaffected by fragment size. Nevertheless, pollination success and seed production was positively correlated with fragment size. We propose that small bees rarely move between forest fragments and gene exchange through pollination occurs predominantly among trees within fragments and, together with likely low genetic variability in small fragments, that this contributes to the observed reduced fertilisation and seed set of A. excelsum. Thus increased tree isolation tree through selective logging or habitat fragmentation by forest clearance can result in reduced seed set due to changes in the foraging patterns of poorly mobile pollinators. Even if population sizes of the pollinators are maintained following environmental perturbation, this study shows that disturbance may disrupt pollination processes through changes in pollinator foraging behaviour. More attention needs to be focussed on changes in the behaviour of species involved in key ecological interactions following disturbance events in tropical forests.  相似文献   

20.
Despite increasing knowledge about the effects of habitat loss on pollinators in natural landscapes, information is very limited regarding the underlying mechanisms of forest fragmentation affecting plant-pollinator interactions in such landscapes. Here, we used a network approach to describe the effects of forest fragmentation on the patterns of interactions involving the understory dominant palm Astrocaryum mexicanum (Arecaceae) and its floral visitors (including both effective and non-effective pollinators) at the individual level in a Mexican tropical rainforest landscape. Specifically, we asked: (i) Does fragment size affect the structure of individual-based plant-pollinator networks? (ii) Does the core of highly interacting visitor species change along the fragmentation size gradient? (iii) Does forest fragment size influence the abundance of effective pollinators of A. mexicanum? We found that fragment size did not affect the topological structure of the individual-based palm-pollinator network. Furthermore, while the composition of peripheral non-effective pollinators changed depending on fragment size, effective core generalist species of pollinators remained stable. We also observed that both abundance and variance of effective pollinators of male and female flowers of A. mexicanum increased with forest fragment size. These findings indicate that the presence of effective pollinators in the core of all forest fragments could keep the network structure stable along the gradient of forest fragmentation. In addition, pollination of A. mexicanum could be more effective in larger fragments, since the greater abundance of pollinators in these fragments may increase the amount of pollen and diversity of pollen donors between flowers of individual plants. Given the prevalence of fragmentation in tropical ecosystems, our results indicate that the current patterns of land use will have consequences on the underlying mechanisms of pollination in remnant forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号