首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The “sicker sex” idea summarizes our knowledge of sex biases in parasite burden and immune ability whereby males fare worse than females. The theoretical basis of this is that because males invest more on mating effort than females, the former pay the costs by having a weaker immune system and thus being more susceptible to parasites. Females, conversely, have a greater parental investment. Here we tested the following: a) whether both sexes differ in their ability to defend against parasites using a natural host-parasite system; b) the differences in resource allocation conflict between mating effort and parental investment traits between sexes; and, c) effect of parasitism on survival for both sexes. We used a number of insect damselfly species as study subjects. For (a), we quantified gregarine and mite parasites, and experimentally manipulated gregarine levels in both sexes during adult ontogeny. For (b), first, we manipulated food during adult ontogeny and recorded thoracic fat gain (a proxy of mating effort) and abdominal weight (a proxy of parental investment) in both sexes. Secondly for (b), we manipulated food and gregarine levels in both sexes when adults were about to become sexually mature, and recorded gregarine number. For (c), we infected male and female adults of different ages and measured their survival. Males consistently showed more parasites than females apparently due to an increased resource allocation to fat production in males. Conversely, females invested more on abdominal weight. These differences were independent of how much food/infecting parasites were provided. The cost of this was that males had more parasites and reduced survival than females. Our results provide a resource allocation mechanism for understanding sexual differences in parasite defense as well as survival consequences for each sex.  相似文献   

2.
A number of parasites are vertically transmitted to new host generations via female eggs. In such cases, host reproduction is an intimate component of parasite fitness and no cost of the infection on host reproduction is expected to evolve. A number of these parasites distort host sex ratios towards females, thereby increasing either parasite fitness or the proportion of the host that transmit the parasite. In terrestrial isopods (woodlice), Wolbachia bacteria are responsible for sex reversion and female-biased sex ratios, changing genetic males into functional neo-females. Although sex ratio distortion is a powerful means for parasites to increase in frequency in host populations, it also has potential consequences on host biology, which may, in turn, have consequences for parasite prevalence. We used the woodlouse Armadillidium vulgare to test whether the interaction between Wolbachia infection and the resulting excess of females would limit female fertility through the reduction in sperm number that they receive from males. We showed that multiple male mating induces sperm depletion, and that this sperm depletion affects fertility only in infected females. This decrease in fertility, associated with male mate choice, may limit the spread of Wolbachia infections in host populations.  相似文献   

3.
Summary In the present paper we distinguish between two aspects of sexual reproduction. Genetic recombination is a universal features of the sexual process. It is a primitive condition found in simple, single-celled organisms, as well as in higher plants and animals. Its function is primarily to repair genetic damage and eliminate deleterious mutations. Recombination also produces new variation, however, and this can provide the basis for adaptive evolutionary change in spatially and temporally variable environments.The other feature usually associated with sexual reproduction, differentiated male and female roles, is a derived condition, largely restricted to complex, diploid, multicellular organisms. The evolution of anisogamous gametes (small, mobile male gametes containing only genetic material, and large, relatively immobile female gametes containing both genetic material and resources for the developing offspring) not only established the fundamental basis for maleness and femaleness, it also led to an asymmetry between the sexes in the allocation of resources to mating and offspring. Whereas females allocate their resources primarily to offspring, the existence of many male gametes for each female one results in sexual selection on males to allocate their resources to traits that enhance success in competition for fertilizations. A consequence of this reproductive competition, higher variance in male than female reproductive success, results in more intense selection on males.The greater response of males to both stabilizing and directional selection constitutes an evolutionary advantage of males that partially compensates for the cost of producing them. The increased fitness contributed by sexual selection on males will complement the advantages of genetic recombination for DNA repair and elimination of deleterious mutations in any outcrossing breeding system in which males contribute only genetic material to their offspring. Higher plants and animals tend to maintain sexual reproduction in part because of the enhanced fitness of offspring resulting from sexual selection at the level of individual organisms, and in part because of the superiority of sexual populations in competition with asexual clones.  相似文献   

4.
It may be reasonably assumed that a diversity of parasite genotypes in any one cell or organism is more harmful than a population of uniform genotypes. If this is accepted the following consequences follow: (i) Parasite mixing, due to cytoplasm mixing, at the time of zygote formation is a new and additional cost of sex. The rapid divisions typical of zygotic cleavage may be viewed as an adaptation to minimize the degree of mixing of parasites in each daughter cell. The faster the divisions the less chance parasite populations have to grow and mix. Mitosis is the fastest form of cell division. Prolongation of the diploid phase follows as a consequence of mitosis in a diploid zygote. This view is unusual in that it demands no advantage per se to the possession of two chromosome sets. (ii) The cells of the blastula formed from rapid zygotic divisions are different as regards their symbiotic inclusions. If the right to gametogenesis is restricted, then every replicator symbiont and nuclear genome alike and hence every cell of the developing embryo, will have an incentive to compete. Selection between the clonal blastula cells would result in the cells of low parasite diversity forming the gametes. Thus, germ line restriction is in the interests of the nuclear genome. Controlling the right to gametogenesis is only possible if the blastula remains intact. Hence, multicellularity might have evolved so as to enable the limitation of the right to gametogenesis and hence reduce the parasite diversity of gametes. Inter-cell competition during embryogenesis is central to Buss's seminal notion of the evolution of developmental complexity within the metazoa. The above theory provides the missing motive force behind such competition. (iii) For a given zygote size, the fittest zygotes are those produced by the gametes most disparate in size because these have a lower diversity of parasites. This may be the advantage of anisogamy. The novelty of this new view of anisogamy is that it puts a premium on sperm being very small, in order to exclude parasites from sperm cytoplasm. The hypothesis is briefly tested by examining if there are alternative means of parasite limitation in organisms with large gametes.  相似文献   

5.
Sex allocation theory predicts that females should adjust the sex of their offspring when the fitness returns of one sex are higher than the other. However, biased sex ratios may also arise if mortality differs between the sexes. Here, we examine whether offspring sex ratio bias in the dung beetle, Onthophagus taurus, represents adaptive sex allocation by females or is due to sex-specific mortality. First, we re-analyze an existing data set to show that females produce an excess of daughters when mating to smaller, less attractive males and near equal sex ratio with large, more attractive males. We show, that this results from females adjusting larval provisions after mating to males of variable attractiveness which in turn influences the likelihood that sons die during development. Second, we conduct a manipulative experiment varying the quantity and quality of larval provisions and show that the mortality of sons increased when larval provisions were reduced. Collectively, our work demonstrates that offspring mortality is contingent on the amount of resources provisioned by females and that sons have greater nutritional demands than daughters during development, leading to higher mortality. Our results therefore demonstrate the importance of considering sex-specific offspring mortality in studies of sex ratio evolution.  相似文献   

6.
The evolutionary consequences of changes in the complex life cycles of parasites are not limited to the traits that directly affect transmission. For instance, mating systems that are altered due to precocious sexual maturation in what is typically regarded as an intermediate host may impact opportunities for outcrossing. In turn, reproductive traits may evolve to optimize sex allocation. Here, we test the hypothesis that sex allocation evolved toward a more female‐biased function in populations of the hermaphroditic digenean trematode Alloglossidium progeneticum that can precociously reproduce in their second hosts. In these precocious populations, parasites are forced to self‐fertilize as they remain encysted in their second hosts. In contrast, parasites in obligate three‐host populations have more opportunities to outcross in their third host. We found strong support that in populations with precocious development, allocation to male resources was greatly reduced. We also identified a potential phenotypically plastic response in a body size sex allocation relationship that may be driven by the competition for mates. These results emphasize how changes in life cycle patterns that alter mating systems can impact the evolution of reproductive traits in parasites.  相似文献   

7.
Secondary sexual characters have been hypothesized to revealthe ability of males to resist debilitating parasites. Althoughsuch reliable signaling of parasite resistance may be maintainedby parasite–host coevolution, maternal effects potentiallyprovide a previously neglected factor that could affect thelevel of genetic variation in resistance to parasites. Thatcould be the case because maternal effects have an entirelyenvironmental basis, or because they can maintain considerableamounts of genetic variation through epistatic effects, evenin the presence of strong directional selection. Maternal effectshave been shown to occur as maternal allocation of immune factorsto offspring, and such allocation may depend on the mating prospectsof sons, causing mothers to differentially allocate maternaleffects to eggs in species subject to intense sexual selection.Here we show that a maternal effect through innate antibacterialimmune defense, lysozyme, which is transferred from the motherto the egg in birds, is positively associated with the evolutionof secondary sexual characters. Previous studies have shownthat females differentially allocate lysozyme to their eggswhen mated to attractive males, and elevated levels of lysozymeare associated with reduced hatching failure and superior healthamong neonates and adults. In this study, comparative analysesof lysozyme from eggs of 85 species of birds showed a strongpositive relationship between brightness of male plumage andegg lysozyme, even when controlling for potentially confoundingvariables. These findings suggest that maternal immune factorsmay play a role in the evolution of secondary sexual characters.  相似文献   

8.
The theory of constrained sex allocation posits that when a fraction of females in a haplodiploid population go unmated and thus produce only male offspring, mated females will evolve to lay a female-biased sex ratio. I examined evidence for constrained sex ratio evolution in the parasitic hymenopteran Uscana semifumipennis. Mated females in the laboratory produced more female-biased sex ratios than the sex ratio of adults hatching from field-collected eggs, consistent with constrained sex allocation theory. However, the male with whom a female mated affected her offspring sex ratio, even when sperm was successfully transferred, suggesting that constrained sex ratios can occur even in populations where all females succeed in mating. A positive relationship between sex ratio and fecundity indicates that females may become sperm-limited. Variation among males occurred even at low fecundity, however, suggesting that other factors may also be involved. Further, a quantitative genetic experiment found significant additive genetic variance in the population for the sex ratio of offspring produced by females. This has only rarely been demonstrated in a natural population of parasitoids, but is a necessary condition for sex ratio evolution. Finally, matings with larger males produced more female-biased offspring sex-ratios, suggesting positive selection on male size. Because the great majority of parasitic hymenoptera are monandrous, the finding of natural variation among males in their capacity to fertilize offspring, even after mating successfully, suggests that females may often be constrained in the sex allocation by inadequate number or quality of sperm transferred.  相似文献   

9.
Sex allocation theory has long generated insights into the nature of natural selection. Classical models have elucidated causal phenomena such as local mate competition and inbreeding on the degree of female bias exhibited by various invertebrates. Typically, these models assume mothers facultatively adjust sex allocation using predictive cues of future offspring mating conditions. Here we relax this assumption by developing a sex allocation model for haplodiploid mothers experiencing local mate competition that lay a fixed number of male eggs first. Female egg number is determined by remaining oviposition sites or remaining eggs of the mother, depending on which is exhausted first. Our model includes parameters for variation in foundress number, patch size, fecundity and offspring mortality that allow us to generate secondary sex ratio predictions based on specific parameterizations for natural populations. Simulations show that: 1) in line with classical models, factors that increase sib‐mating result in mothers laying relatively more female eggs; 2) high offspring mortality leads to relatively more males as fertilization insurance; 3) unlike classical model predictions, sub‐optimal predictions, such as more males than females are possible. In addition, our model provides the first quantitative predictions for the expected number of males and females in a patch where typically only one mother utilizes a given patch. We parameterized the model with data obtained from seven species of southern African fig wasps to predict expected means and variances for numbers of male and female offspring for typical numbers of mothers utilizing a patch. These predictions were compared to secondary sex ratio data from single foundress patches, the most commonly encountered situation for these species. Our predictions matched both the observed number and variance of male and female offspring with a high degree of accuracy suggesting that facultative adjustment is not required to produce evolutionary stable sex ratios.  相似文献   

10.
Males and females are often defined by differences in their energetic investment in gametes. In most sexual species, females produce few large ova, whereas males produce many tiny sperm. This difference in initial parental investment is presumed to exert a fundamental influence on sex differences in mating and parental behavior, resulting in a taxonomic bias toward parental care in females and away from parental care in males. In this article, we reexamine the logic of this argument as well as the evolutionarily stable strategy (ESS) theory often used to substantiate it. We show that the classic ESS model, which contrasts parental care with offspring desertion, violates the necessary relationship between mean male and female fitness. When the constraint of equal male and female mean fitness is correctly incorporated into the ESS model, its results are congruent with those of evolutionary genetic theory for the evolution of genes with direct and indirect effects. Male parental care evolves whenever half the magnitude of the indirect effect of paternal care on offspring viability exceeds the direct effect of additional mating success gained by desertion. When the converse is true, desertion invades and spreads. In the absence of a genetic correlation between the sexes, the evolution of paternal care is independent of maternal care. Theories based on sex differences in gametic investment make no such specific predictions. We discuss whether inferences about the evolution of sex differences in parental care can hold if the ESS theory on which they are based contains internal contradictions.  相似文献   

11.
Neal AT 《Parasitology》2011,138(10):1203-1210
Evolutionary theory predicts that the sex ratio of Plasmodium gametocytes will be determined by the number of gametes produced per male gametocyte (male fecundity), parasite clonal diversity and any factor that reduces male gametes' ability to find and combine with female gametes. Despite the importance of male gametocyte fecundity for sex ratio theory as applied to malaria parasites, few data are available on gamete production by male gametocytes. In this study, exflagellating gametes, a measure of male fecundity, were counted for 866 gametocytes from 26 natural infections of the lizard malaria parasite, Plasmodium mexicanum. The maximum male fecundity observed was 8, but most gametocytes produced 2-3 gametes, a value consistent with the typical sex ratio observed for P. mexicanum. Male gametocytes in infections with higher gametocytaemia had lower fecundity. Male fecundity was not correlated with gametocyte size, but differed among infections, suggesting genetic variation for fecundity. Fecundity and sex ratio were correlated (more female gametocytes with higher fecundity) as predicted by theory. Results agree with evolutionary theory, but also suggest a possible tradeoff between production time and fecundity, which could explain the low fecundity of this species, the variation among infections, and the correlation with gametocytaemia.  相似文献   

12.
Carotenoids are critical to embryonic development, immunity and protection from oxidative stress. Transmission of carotenoids to the eggs may affect development and maturation of immunity in offspring, but carotenoids may be available to females in limiting amounts. Females may thus transfer carotenoids to the eggs differentially in relation to the reproductive value of the offspring as affected by sexual ornamentation of their father. In this study of maternal allocation of carotenoids to the eggs in the barn swallow (Hirundo rustica), females whose immune system had been experimentally challenged with an antigen had smaller lutein concentrations in their eggs than controls. We manipulated the size of a secondary sexual character (tail length) of males, and analysed the effect of manipulation on allocation of lutein to eggs by their vaccinated mates. Contrary to our prediction based on parental allocation theory, mates of tail-shortened males had a larger lutein concentration in their eggs compared with those of control and tail-elongated males. According to previous studies, offspring of short-tailed males have larger exposure and/or susceptibility to parasites. A larger lutein concentration in the eggs of females mated to males with experimentally reduced ornaments may thus reflect adaptive maternal strategies to enhance offspring viability.  相似文献   

13.
Hormones mediate the physiological responses of animals to environmental changes. Consequently, hormones can be responsible of trade offs between different life history traits. Juvenile hormone (JH) is thought to mediate resource allocation in insects: specifically, it is thought to enhance the expression of condition-related traits like sexual signals, whilst reducing immune responsiveness. Here, we experimentally test whether a JH analog (JHa) had an effect on immunity of male dragonflies Celithemis eponina, and if such effects are translated into faster growth or development of a natural parasite (water mite). We also tested the effects of JHa on host condition (muscular mass and fat reserves) of mature male dragonflies. Mites from JHa treated dragonflies grew faster than mites from control dragonflies receiving just an acetone carrier. However, there was no effect of JHa on measures of host immune response (melanization of a nylon implant) or condition of mature males. We suggest that better parasite growth in JHa treated males does not result from the JH immunosuppressive function, but instead it appears that parasites receive hormone signals from the host and alter their development without affecting host condition measurably. Our work highlights the importance of measuring both immune parameters and response to real parasites when studying evolutionary trade offs.  相似文献   

14.
Social Hymenoptera are ideal biological models for the study of the selective forces affecting the evolution of multiple mating (polyandry), because sister species can evolve different lifestyles and mating strategies. Single mating is predicted in workerless social parasites, because the key benefit of multiple mating in social insects, that is, the increase in genetic diversity among worker offspring, does not hold for workerless species. We compared the queen mating frequency between the ant Plagiolepis pygmaea and its derived social parasite P. xene. Previous studies showed that queens of the host P. pygmaea are obligately polyandrous. Here, pedigree analyses of mother–offspring combinations indicate that queens of the parasite P. xene did not revert to single mating; more than 50% of queens mated multiply, with 2–4 males. This result shows that reversal from multiple to single mating may be not selected in polyandrous social insect workerless parasites. We propose that such reversion does not occur when multiple mating is virtually cost free.  相似文献   

15.
寄生蜂性别分配行为   总被引:3,自引:2,他引:1  
寄生蜂是性比分配行为领域的研究热点对象,其性别决定方式为单双倍型,一般情况下,未受精的单倍型卵发育成雄蜂,受精的二倍型卵发育为雌蜂。局部配偶竞争和近交等因素使得偏雌性比成为这类生物的进化稳定策略;其性比具有可调节性,产卵个体可以根据对产卵环境的判定来调控后代性比,从而获得最大适合度。在此基础上形成的局部配偶竞争理论阐述了寄生蜂性比的这种可调节性,成为进化论的优秀论据。  相似文献   

16.
Hosts are typically challenged by multiple parasites, but to date theory on the evolution of resistance has mainly focused on single infections. We develop a series of models that examine the impact of multiple parasites on the evolution of resistance under the assumption that parasites coexist at the host population scale as a consequence of superinfection. In this way, we are able to explicitly examine the impact of ecological dynamics on the evolutionary outcome. We use our models to address a key question of how host lifespan affects investment in resistance to multiple parasites. We show that investment in costly resistance depends on the specificity of the immune response and on whether or not the focal parasite leads to more acute infection than the co‐circulating parasite. A key finding is that investment in resistance always increases as the immune response becomes more general independently of whether it is the focal or the co‐circulating parasite that exploits the host most aggressively. Long‐lived hosts always invest more than short‐lived hosts in both general resistance and resistance that is specific to relatively acute focal parasites. However, for specific resistance to parasites that are less acute than co‐circulating parasites it is the short‐lived hosts that are predicted to invest most. We show that these results apply whatever the mode of defence, that is whether it is through avoidance or through increased recovery, with or without acquired immunity, or through acquired immunity itself. As a whole, our results emphasize the importance of considering multiple parasites in determining optimal immune investment in eco‐evolutionary systems.  相似文献   

17.
The differential allocation hypothesis predicts increased investment in offspring when females mate with high-quality males. Few studies have tested whether investment varies with mate relatedness, despite evidence that non-additive gene action influences mate and offspring genetic quality. We tested whether female lekking lance-tailed manakins (Chiroxiphia lanceolata) adjust offspring sex and egg volume in response to mate attractiveness (annual reproductive success, ARS), heterozygosity and relatedness. Across 968 offspring, the probability of being male decreased with increasing parental relatedness but not father ARS or heterozygosity. This correlation tended to diminish with increasing lay-date. Across 162 offspring, egg volume correlated negatively with parental relatedness and varied with lay-date, but was unrelated to father ARS or heterozygosity. Offspring sex and egg size were unrelated to maternal age. Comparisons of maternal half-siblings in broods with no mortality produced similar results, indicating differential allocation rather than covariation between female quality and relatedness or sex-specific inbreeding depression in survival. As males suffer greater inbreeding depression, overproducing females after mating with related males may reduce fitness costs of inbreeding in a system with no inbreeding avoidance, while biasing the sex of outbred offspring towards males may maximize fitness via increased mating success of outbred sons.  相似文献   

18.
Much social psychological research has been dedicated to understanding mating strategies from the standpoint of genetic-fitness payout (e.g., Simpson and Gangestad, 2000). The current work is designed to provide a coherent, quantitative model for predicting different classes of mating strategies in both males and females. Specifically, the framework developed in this paper is an elaboration of Dawkins' (1989) quantitative assessment of different male and female mating strategies. Dawkins suggests that the prevalence of different strategies employed should be predictable in terms of evolutionary stable strategies. In the current work, a quantitative analysis predicting the prevalence of different mating strategies within each sex was conducted. The mathematical functions derived suggest that variability in the costs associated with raising offspring affects the expected prevalence of mating strategies differently for males and females. According to the present model, variability in female strategies should be less affected by changes in parental investment (PI) than variability in male strategies. Important predictions regarding male and female mating strategies across cultures are discussed.  相似文献   

19.
Limited availability of mating partners has been proposed as an explanation for the occurrence of simultaneous hermaphroditism in animals with pair mating. When low population density or low mobility of a species limits the number of potential mates, simultaneous hermaphrodites may have a selective advantage because, first, they are able to adjust the allocation of resources between male and female functions in order to maximize fitness; second, in a hermaphroditic population the likelihood of meeting a partner is higher because all individuals are potential mates; and, third, in the absence of mating partners, many simultaneously hermaphroditic animals have the option of reproducing through self-fertilization. Recognizing that mate availability is central to the existing theory of hermaphroditism in animals, it is important to examine the effects of mate search on predictions of the stability of hermaphroditism. Many hermaphroditic animals can increase the number of potential mates they contact by active searching. However, since mate search has costs in terms of time and energy, the increased number of potential mates will be traded off against the amount of resources that can be allocated to the production of gametes. We explore the consequences of this trade-off to the evolution of mating strategies and to the selective advantage of self-fertilization. We show that in low and moderate population densities, poor mate-search efficiency and high costs of searching stabilize hermaphroditism and bias sex allocation toward female function. In addition, in very low population densities, there is strong selective advantage for self-fertilization, but this advantage decreases considerably in species with high mate-search efficiency. Most important, however, we present a novel evolutionary prediction: when mate search is efficient, disruptive frequency-dependent selection on time allocation to mate search leads to the evolution of searching and nonsearching phenotypes and, ultimately, to the evolution of males and females.  相似文献   

20.
Establishing the selfing, rate of parasites is important for studies in clinical and epidemiological medicine as well as evolutionary biology Sex allocation theory offers a relatively cheap and easy way to estimate selfing rates in natural parasite populations. Local mate competition (LMC) theory predicts that the optimal sex ratio (r*; defined as proportion males) is related to the selfing rate (s) by the equation r* = (1-s)/2. In this paper, we generalize the application of sex allocation theory across parasitic protozoa in the phylum Apicomplexa. This cosmopolitan phylum consists entirely of parasites, and includes a number of species of medical and veterinary importance. We suggest that LMC theory should apply to eimeriorin intestinal parasites. As predicted, data from 13 eimeriorin species showed a female-biased sex ratio, with the sex ratios suggesting high levels of selfing (0.8-1.0). Importantly, our estimate of the selfing rate in one of these species, Toxoplasma gondii, is in agreement with previous genetic analyses. In contrast, we predict that LMC theory will not apply to the groups in which syzygy occurs (adeleorins, gregarines and piroplasms). Syzygy occurs when a single male gametocyte and a single female gametocyte pair together physically or in close proximity, just prior to fertilization. As predicted, data from four adeleorin species showed sex ratios not significantly different from 0.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号