首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Adult adipose tissue contains a large supply of progenitors that can renew fat cells for homeostatic tissue maintenance and adaptive growth or regeneration in response to external challenges. However, the in vivo mechanisms that control adipocyte progenitor behavior are poorly characterized. We recently demonstrated that recruitment of adipocyte progenitors by macrophages is a central feature of adipose tissue remodeling under various adipogenic conditions. Catabolic remodeling of white adipose tissue by β3-adrenergic receptor stimulation requires anti-inflammatory M2-polarized macrophages to clear dying adipocytes and to recruit new brown adipocytes from progenitors. In this Extra Views article, we discuss in greater detail the cellular elements of adipogenic niches and report a strategy to isolate and characterize the subpopulations of macrophages and adipocyte progenitors that actively participate in adrenergic tissue remodeling. Further characterization of these subpopulations may facilitate identification of new cellular targets to improve metabolic and immune function of adipose tissue.  相似文献   

2.
3.
脂肪组织是人体重要的能量贮存器官,同时还是一个重要的内分泌器官。适量的脂肪组织为人体所必需,但过多或过少的脂肪组织都会引起代谢综合征。脂肪细胞起源于血管基质中多潜能干细胞,这类干细胞具有自我更新和多向分化的潜能,在合适的条件下不仅可以分化为脂肪细胞,还可分化为肌肉细胞、软骨细胞和成骨细胞等中胚层来源的细胞。从多潜能干细胞到脂肪细胞的发育阶段可被分为三个阶段:(1)多潜能干细胞;(2)前脂肪细胞;(3)脂肪细胞。目前本领域的研究集中在干细胞定向为前脂肪细胞的机理以及这些定向为前脂肪细胞的干细胞的来源。该文将对从多潜能干细胞发育分化为成熟脂肪细胞的过程进行详细的阐述。  相似文献   

4.
The intraperitoneal administration of [3H]thymidine to adult rats resulted in the rapid appearance of label in the adipocyte fraction of collagenase digests of adipose tissue. Low-speed centrifugation followed by freezing and slicing showed the label to be uniformly distributed in the adipocyte fraction. The presence of label in DNA was confirmed by hydrolysis with deoxyribonuclease and by inhibition of incorporation with hydroxyurea. Organelle fractionation revealed that the label was predominantly in nuclei, and radioautography showed that only a few adipocyte nuclei were labeled. The label in the adipocyte fraction could not be reduced by increased collagenase digestion or by trypsin treatment. Mixing of labeled adipocytes with unlabeled stroma did not result in decrease of label and addition of labeled stroma to unlabeled adipocytes did not cause significant transfer of radioactivity. Addition of [3H]thymidine to the collagenase digestion medium of unlabeled adipose tissue resulted in more incorporation by adipocytes than by stroma, suggesting the presence of a very rapidly proliferating cell type associated more with adipocytes than with stroma. In vivo turnover studies of labeled DNA indicated that there are two components in both adipocytes and stroma, a rapidly labeled component with a half-life of only several days and another with a half-life of several months. These experiments suggest that there is a rapidly proliferating cell type in adipose tissue, closely associated with mature adipocytes, that may be an adipocyte progenitor or may have some other unknown function.  相似文献   

5.
Apolipoprotein E (apoE) is a multifunctional protein that is highly expressed in human and murine adipose tissue. Endogenous adipocyte apoE expression influences adipocyte triglyceride turnover and modulates the expression of genes involved in lipid synthesis and oxidation. We now demonstrate the regulation of adipose tissue apoE expression by nutritional status in lean and obese mice. Obesity induced by high-fat diet, or by hyperphagia in ob/ob mice, produces significant reduction of adipose tissue apoE expression at the protein and messenger RNA level. Fasting in C57BL/6J mice for 24 h significantly increased apoE protein and messenger RNA levels. In ob/ob mice, transplantation of adipose tissue from lean littermate controls to restore circulating leptin levels produced significant weight loss over 12 wk and also produced an increase in adipose tissue apoE expression. The increase in adipose tissue apoE expression in this model, however, did not require leptin. Adipose tissue apoE was also significantly increased in ob/ob mice after a 48-h fast or after 7 days of caloric restriction. In summary, obesity suppresses adipose tissue apoE expression, whereas fasting or weight loss increases it. From our previous observations, these changes in adipose tissue apoE expression will have significant impact on adipose tissue lipid flux and lipoprotein metabolism. Furthermore, these results suggest adipose tissue apoE participates in defending adipose tissue and organismal energy homeostasis in response to nutritional perturbation.  相似文献   

6.
Adipose tissue is a structure highly specialized in energy storage. The adipocyte is the parenchymal component of adipose tissue and is known to be mesoderm or neuroectoderm in origin; however, adipocyte development remains poorly understood. Here, we investigated the development of adipose tissue by analyzing postnatal epididymal adipose tissue (EAT) in mouse. EAT was found to be generated from non-adipose structure during the first 14 postnatal days. From postnatal day 1 (P1) to P4, EAT is composed of multipotent progenitor cells that lack adipogenic differentiation capacity in vitro, and can be regarded as being in the 'undetermined' state. However, the progenitor cells isolated from P4 EAT obtain their adipogenic differentiation capacity by physical interaction generated by cell-to-matrix and cell-to-cell contact both in vitro and in vivo. In addition, we show that impaired angiogenesis caused by either VEGFA blockade or macrophage depletion in postnatal mice interferes with adipose tissue development. We conclude that appropriate interaction between the cellular and matrix components along with proper angiogenesis are mandatory for the development of adipose tissue.  相似文献   

7.
Using cell specific anti-adipocyte sera and an immuno-precipitation procedure, the nature of the cell surface antigens characterizing adipocytes from rat brown adipose tissue was investigated. Initially the ability of anti-sera, raised against adipose plasma membrane preparations of white or brown adipose tissue, to distinguish between membrane preparations derived from either tissue was confirmed. Analysis of the plasma membranes derived from brown adipose and similar preparations labelled with 125I revealed the presence of specific externally disposed mature brown adipocyte-specific antigens. The specifically immunoprecipated antigens had molecular weights of 70,000, 56,000 and 23,000. None of these antigens were cross immunoprecipated by antisera to mature white adipocyte membranes. The presence of the brown adipose specific antigens on the surface of differentiating adipocyte precursor cells derived from rat brown adipose tissue was demonstrated using a labelled-secon antibody cellular immunoassay. The expression of the immunoreactivity associated with these antigens was shown to be an early event in the differentiation programme of the cells in vitro. The functional identity and possible roles of these antigens in the control of brown adipocyte differentiation now becomes accessible to further experimental investigation.  相似文献   

8.
The purpose of the present work was to study age- and weight-controlled rats to determine which is the primary factor in reducing the lipolytic response of free fat cells and which has the greater effect on the ratio of fat cells to nonfat cells in adipose tissue. The method for estimating fat cell and nonfat cell numbers is based on the analysis of adipose tissue and fat cell DNA and lipid. In adequately fed rats, epididymal adipocyte hyperplasia is complete between 9 and 14 wk of age. Chronic underfeeding delays, but does not eliminate, normal fat cell hyperplasia and is accompanied by a net loss in the nonfat cell population. During 9-14 wk of age, rat epididymal adipose tissue enlarges mainly through adipocyte hypertrophy. Total fat cells from the epididymal adipose tissue of control rats represent only 20-23% of the total cell population. Chronic underfeeding increases the percentage of fat cells in the fat pad from 23 to 28%. Noradrenaline-stimulated lipolysis is proportional to fat cell numbers but is inhibited when fat cell lipid increases to over 80% of fat pad wet weight. Rat age is apparently not primarily responsible for the decreased noradrenaline-stimulated lipolysis in fat cells of 350-g rats in vitro.  相似文献   

9.
The feeding of a high-fat diet to adult rats was shown to increase the incorporation of [3H]thymidine into DNA of the adipocyte and stromal fractions. After only 2 days on a high-fat diet there was a marked increase in the incorporation of label. When a 2-week period was interposed between [3H]thymidine administration and determination of DNA specific activity, the greatest increase in incorporation of label was found after 1 week on the diet, when incorporation increased 6-fold or more in both adipocytes and stroma and subsequently decreased to stabilize at a level two or three times that of chow-fed rats in the adipocyte fraction. Rats labeled when young and later placed on a high-fat diet showed a decrease in DNA specific activity in both adipocytes and stroma, confirming that cellular proliferation had occurred in both fractions. The specific activities of both stromal and adipocyte DNA were very similar at all time points studied. An attempt to increase the difference in specific activities by waiting many weeks after [3H]thymidine injection before isolating DNA was not successful. This may be because the total amount of DNA in the stromal and adipocyte fractions increases in parallel on the diet. The significance of these findings in terms of the normal turnover of adipose tissue DNA and the responsiveness to diet is discussed.  相似文献   

10.
Triglycerides within the cytosol of cells are stored in a phylogenetically conserved organelle called the lipid droplet (LD). LDs can be formed at the endoplasmic reticulum, but mechanisms that regulate the formation of LDs are incompletely understood. Adipose tissue has a high capacity to form lipid droplets and store triglycerides. Fat storage-inducing transmembrane protein 2 (FITM2/FIT2) is highly expressed in adipocytes, and data indicate that FIT2 has an important role in the formation of LDs in cells, but whether FIT2 has a physiological role in triglyceride storage in adipose tissue remains unproven. Here we show that adipose-specific deficiency of FIT2 (AF2KO) in mice results in progressive lipodystrophy of white adipose depots and metabolic dysfunction. In contrast, interscapular brown adipose tissue of AF2KO mice accumulated few but large LDs without changes in cellular triglyceride levels. High fat feeding of AF2KO mice or AF2KO mice on the genetically obese ob/ob background accelerated the onset of lipodystrophy. At the cellular level, primary adipocyte precursors of white and brown adipose tissue differentiated in vitro produced fewer but larger LDs without changes in total cellular triglyceride or triglyceride biosynthesis. These data support the conclusion that FIT2 plays an essential, physiological role in fat storage in vivo.  相似文献   

11.
12.
We have previously reported high immunoglobulin expression in human omental adipose tissue. The aim of this work was to investigate plasma cell density and Fc receptor (FcR) expression in human adipose tissue depots and in vitro effects of immunoglobulins on adipocyte function. Plasma cell density was higher in the visceral compared to the subcutaneous depot (10.0+/-1.56% and 5.2+/-0.98%, respectively, n=20, p<0.05). Microarray analysis revealed expression of four FcR genes in adipose tissue; FCGR2A, FCGR2B, FCER1G, and FCGRT. FCGR2A was highly expressed in adipocytes in both depots and this was verified by immunohistochemistry. Expression of IL-1beta and IL-6 was markedly reduced in adipocytes after incubation with the Fc moiety of immunoglobulin G (Fc) (p<0.01). Furthermore, Fc stimulated adipocyte lipogenesis as potently as insulin (p<0.05), but did not influence lipolysis. In conclusion, immunoglobulins produced by plasma cells in human adipose tissue could influence adipocyte metabolism and cytokine production.  相似文献   

13.
Chronic activation of β3-adrenergic receptors (β3-ARs) expands the catabolic activity of both brown and white adipose tissue by engaging uncoupling protein 1 (UCP1)-dependent and UCP1-independent processes. The present work examined de novo lipogenesis (DNL) and TG/glycerol dynamics in classic brown, subcutaneous “beige,” and classic white adipose tissues during sustained β3-AR activation by CL 316,243 (CL) and also addressed the contribution of TG hydrolysis to these dynamics. CL treatment for 7 days dramatically increased DNL and TG turnover similarly in all adipose depots, despite great differences in UCP1 abundance. Increased lipid turnover was accompanied by the simultaneous upregulation of genes involved in FAS, glycerol metabolism, and FA oxidation. Inducible, adipocyte-specific deletion of adipose TG lipase (ATGL), the rate-limiting enzyme for lipolysis, demonstrates that TG hydrolysis is required for CL-induced increases in DNL, TG turnover, and mitochondrial electron transport in all depots. Interestingly, the effect of ATGL deletion on induction of specific genes involved in FA oxidation and synthesis varied among fat depots. Overall, these studies indicate that FAS and FA oxidation are tightly coupled in adipose tissues during chronic adrenergic activation, and this effect critically depends on the activity of adipocyte ATGL.  相似文献   

14.
More effective techniques should be employed for isolation of human mesenchymal stromal cells derived from adipose tissue (ADSC), seeking to make adipose tissue biopsies smaller in volume and thus less invasive. In this study, we compared properties of ADSC isolated by several different methods from the same samples of adipose tissue in order to enhance yields of potential ADSC. The mature adipocyte fraction was investigated using the ceiling culture method, including both ceiling and bottom cell fractions, and the control culture method with standard amount of medium. The results were also compared using the stromal vascular fraction from the same samples. The most efficient was the bottom cell population isolated from the mature adipocyte fraction by ceiling culture method. These cells readily differentiated into osteogenic, adipogenic and chondrogenic lineages and, similar to stromal vascular fraction cells, displayed high proliferation potential. Cultures of mature adipocyte fractions with standard amount of medium were considerably less effective. Mature adipocyte fractions yields large quantities of adipose-derived stem cells that have properties comparable with stromal vascular fraction cells suitable for tissue regeneration, especially when only small biopsies can be taken.  相似文献   

15.

Background

The adipose tissue is important for development of insulin resistance and type 2 diabetes and adipose tissue dysfunction has been proposed as an underlying cause. In the present study we investigated presence of adipocyte hypertrophy, and gene expression pattern of adipose tissue dysfunction in the subcutaneous adipose tissue of healthy, non-obese subjects predisposed to type 2 diabetes compared to matched control subjects with no known genetic predisposition for type 2 diabetes.

Method

Seventeen healthy and non-obese subjects with known genetic predisposition for type 2 diabetes (first-degree relatives, FDRs) and 17 control subjects were recruited. The groups were matched for gender and BMI and had similar age. Glucose tolerance was determined by an oral glucose tolerance test and insulin sensitivity was calculated using HOMA-index. Blood samples were collected and subcutaneous abdominal adipose tissue biopsies obtained for gene expression analysis and adipocyte cell size measurement.

Results

Our findings show that, in spite of similar age, BMI and percent body fat, FDRs displayed adipocyte hypertrophy, as well as higher waist/hip ratio, fasting insulin levels, HOMA-IR and serum triglycerides. Adipocyte hypertrophy in the FDR group, but not among controls, was associated with measures of impaired insulin sensitivity. The adipocyte hypertrophy was accompanied by increased inflammation and Wnt-signal activation. In addition, signs of tissue remodeling and fibrosis were observed indicating presence of early alterations associated with adipose tissue dysfunction in the FDRs.

Conclusion

Genetic predisposition for type 2 diabetes is associated with impaired insulin sensitivity, adipocyte hypertrophy and other markers of adipose tissue dysfunction. A dysregulated subcutaneous adipose tissue may be a major susceptibility factor for later development of type 2 diabetes.  相似文献   

16.
In the subcutaneous adipose tissue of 20 normal weight and overweight subjects with normo- or hypertriglyceridemia, the relation is examined between the lipoprotein lipase activity (LPLA) per gram adipose tissue and adipocyte volume. The following findings were obtained: 1. Significant positive correlations between the LPLA per gram adipose tissue and the adipocyte volume were ascertained in the groups of subjects having normal triglyceridemia or exhibiting hypertriglyceridemia. 2. The negative relation between the LPLA in the adipose tissue and the triglyceride level in serum described in literature could not be verified. Across a glyceride span of 76 to 600 mg% in serum we found a correlation coefficient of +0.34. 3. It can therefore be assumed that the LPLA per gram adipose tissue with increasing adipocyte volume does not represent an inhibiting factor to the triglyceride in serum breakdown in the development of hypertriglyceridemia.  相似文献   

17.
1. The gross mass, mean adipocyte volume and activities of hexokinase (HK) and phosphofructokinase (PFK) were measured in adipose tissue from precisely identified intermuscular, superficial and intra-abdominal depots of 56 randomly collected wild and captive mammals and one bird. 2. In all intermuscular depots studied except that medial to the trapezius muscle, the activities of HK and PFK per adipocyte in adipose tissue in the centre of the depot were greater than in superficial and intra-abdominal depots of the same specimen. 3. These data are consistent with the suggestion that intermuscular adipose tissue may act as a local energy supply for adjacent muscles.  相似文献   

18.
The interaction of high-density lipoproteins (HDL) with adipocytes is important in the regulation of cellular cholesterol flux. To study the mechanisms of HDL binding and cellular processing, we incubated adipocytes isolated from epididymal and perirenal adipose tissue of male Wistar rats (300 g) with HDL1 (1.07-1.10 g/mL) and HDL2 (1.10-1.14 g/mL) fractions separated from rat plasma by gradient ultracentrifugation. Freshly isolated adipocytes were incubated with 125I-labeled HDL for 2 h at 37 degrees C to determine cell-associated uptake and degradation. Adipocytes from both fat regions showed significant cell-associated HDL1 and HDL2 uptake and very high medium degradation (2- to 6-fold higher than uptake). To assess 125I-labeled HDL binding independent of cellular metabolism, we purified adipocyte plasma membranes from isolated adipocytes and used them in binding assays. Binding of HDL1 and HDL2 in the membrane system was 85-95% specific, sensitive to high NaCl concentrations, and abolished by pronase treatment. In contrast to HDL2 binding, the maximum HDL1 binding to perirenal plasma membranes was significantly higher than its binding to epididymal membranes (7.2 +/- 1.3 vs. 4.4 +/- 0.2 micrograms/mg, n = 6, p less than 0.05). This increment in HDL1 binding to perirenal membranes represented an EDTA- sensitive, calcium-dependent component. These results indicate that HDL binding to adipocyte plasma membranes depends on both adipose tissue region and HDL subtype. The membrane binding characteristics, taken together with the cellular uptake results, suggest that adipocytes bind and metabolize HDL and that this interaction may involve a protein receptor.  相似文献   

19.
Production of CO2 and fatty acids from acetate, glucose and lactate was determined in slices of liver and adipose tissue from prairie voles fed either a high-starch or a high-cellulose diet. Acetate and lactate were oxidized to CO2 and converted to fatty acids at greater rates than was glucose in both liver and adipose tissue. Fatty acid synthesis occurred at greater rates in adipose tissue than in liver. Fatty acid synthesis per adipocyte increased with increased adipocyte diameter. Fiber content of diets had only minimal effect on metabolic activities of liver and adipose tissue.  相似文献   

20.
PURPOSE OF REVIEW: Fatty acid and triacylglycerol metabolism in adipose tissue may be involved in the generation of risk factors for cardiovascular disease and type 2 diabetes. Pharmaceutical companies are targeting adipocyte metabolism in their search for drugs for treating, or reducing the risk of, these conditions. We review new developments in adipose tissue fatty acid metabolism and how that might relate to cardiovascular disease. RECENT FINDINGS: Fatty acid release from human adipose tissue is oscillatory, with a period of about 12 min. Remarkably, oscillatory fatty acid release is also seen in isolated adipocytes. Further evidence has emerged that not all adipose depots are equal, and that lower-body adipose tissue may exert protective effects against cardiovascular disease. There have been a number of developments in the area of fatty acid handling by adipocytes. Fatty acid binding proteins are clearly important in regulating fatty acid metabolism, with striking protection against atherosclerosis in mice deficient in both the binding proteins expressed in adipocytes. The demonstration that adipocytes lacking hormone-sensitive lipase still display lipolysis has led to the identification of novel lipases that may play crucial roles in adipose tissue fatty acid metabolism. Further evidence has accrued of the interaction between hormone-sensitive lipase and perilipin, the protein that coats the adipocyte lipid droplet. SUMMARY: Recent developments in our understanding of adipose tissue fatty acid metabolism open up the possibility of new pharmaceutical targets. However, interference with adipose tissue fatty acid metabolism is not to be undertaken lightly and needs a clear understanding of the normal role of adipocyte lipolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号