首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
In the present study the metabolic actions of n-propyl gallate on hepatic gluconeogenesis, oxygen uptake and related parameters were investigated. Experiments were done in the isolated perfused rat liver. n-Propyl gallate inhibited gluconeogenesis and stimulated oxygen uptake at concentrations up to 200 μM. The inhibitory effects on lactate gluconeogenesis (ED50 86.4 μM) and alanine gluconeogenesis were considerably more pronounced than those on glycerol and fructose gluconeogenesis. n-Propyl gallate also stimulated oxygen uptake in both the mitochondrial (63%) and microsomal (37%) electron transport chains. The first one is due mainly to the oxidation of n-propanol, as a metabolite of the first step of n-propyl gallate transformation. The second one results from a direct stimulation of the microsomal electron transport chain. n-Propyl gallate inhibited pyruvate carboxylation (ED50 142.2 μM) in consequence of an inhibition of pyruvate transport into the mitochondria an effect not found for gallic acid. This is probably the main cause for glucose output inhibition. Secondary causes are (1) deviation of intermediates for the production of NADPH to be used in microsomal electron transport; (2) deviation of glucose 6-phosphate for glucuronidation reactions; (3) gluconeogenesis inhibition by n-propanol, produced intracellularly from n-propyl gallate. Inhibition of mitochondrial energy metabolism is not significant in the range up to 200 μM, as indicated by the very small effect on the cellular ATP levels (5% decreased). n-Propyl gallate can be considered a kind of metabolic effector, whose actions on the liver metabolism are relatively mild although they can become harmful for the organ and the whole organism at high doses and concentrations.  相似文献   

2.
Oxamate, a structural analog of pyruvate, known as a potent inhibitor of lactic dehydrogenase, lactic dehydrogenase, produces an inhibition of gluconeogenic flux in isolated perfused rat liver or hepatocyte suspensions from low concentrations of pyruvate (less than 0.5 mM) or substrates yielding pyruvate. The following observations indicate that oxamate inhibits flux through pyruvate carboxylase: accumulation of substrates and decreased concentration of all metabolic intermediates beyond pyruvate; decreased levels of aspartate, glutamate, and alanine; and enhanced ketone body production, which is a sensitive indicator of decreased mitochondrial free oxaloacetate levels. The decreased pyruvate carboxylase flux does not seem to be the result of a direct inhibitory action of oxamate on this enzyme but is secondary to a decreased rate of pyruvate entry into the mitochondria. This assumption is based on the following observations: Above 0.4 mM pyruvate, no significant inhibitory effect of oxamate on gluconeogenesis was observed. The competitive nature of oxamate inhibition is in conflict with its effect on isolated pyruvate carboxylase which is noncompetitive for pyruvate. Fatty acid oxidation was effective in stimulating gluconeogenesis in the presence of oxamate only at concentrations of pyruvate above 0.4 mM. Since only at low pyruvate concentrations its entry into the mitochondria occurs via the monocarboxylate translocator, from these observations it follows that pyruvate transport across the mitochondrial membrane, and not its carboxylation, is the first nonequilibrium step in the gluconeogenic pathway. In the presence of oxamate, fatty acid oxidation inhibited gluconeogenesis from lactate, alanine, and low pyruvate concentrations (less than 0.5 mM), and the rate of transfer of reducing equivalents to the cytosol was significantly decreased. Whether fatty acids stimulate or inhibit gluconeogenesis appears to correlate with the rate of flux through pyruvate carboxylase which ultimately seems to rely on pyruvate availability. Unless adequate rates of oxaloacetate formation are maintained, the shift of the mitochondrial NAD couple to a more reduced state during fatty acid oxidation seems to decrease mitochondrial oxaloacetate resulting in a decreased rate of transfer of carbon and reducing power to the cytosol.  相似文献   

3.
Summary The pathway of gluconeogenesis from pyruvate, lactate and alanine was investigated in isolated liver cells of the eel. Amino-oxyacetate, a transaminase inhibitor, inhibited gluconeogenesis not only from lactate, but also from pyruvate by 60%.d-Malate did not inhibit gluconeogenesis from either of the substrates (Table 1 A).The effects of various amino acids on gluconeogenesis were investigated. Leucine accelerated gluconeogenesis from pyruvate or alanine (Table 2). Leucine promoted the incorporation of14C-pyruvate into glutamate and aspartate, and increased the glutamate content. The specific activity of14C-aspartate was increased markedly by leucine (Table 5).From the investigation of subcellular distribution of enzymes unique to gluconeogenesis, it was found that pyruvate carboxylase was located almost exclusively in the mitochondrial fraction, and that phophoenolpyruvate carboxykinase and aspartate transaminase were located in both the mitochondrial and the cytosolic fractions (Table 7).From these results it is concluded that the oxaloacetate-aspartate pathway is a major route in gluconeogenesis from any of the substrates in the eel liver.Abbreviations AOA amino-oxyacetate - PEP phosphoenolpyruvate  相似文献   

4.
N‐Linolenoyl‐L ‐glutamine is one of several structurally similar fatty acid–amino acid conjugate (FAC) elicitors found in the oral secretions of Lepidopterous caterpillars and its biosynthesis is catalyzed by membrane‐associated alimentary tissue enzyme(s). FAC elicitors comprise 17‐hydroxylated or non‐hydroxylated linolenic acid coupled with L ‐glutamine or L ‐glutamate by an amide bond. We demonstrate in vitro biosynthesis of N‐linolenoyl‐L ‐glutamine by Manduca sexta, Heliothis virescens, and Helicoverpa zea tissue microsomes. Comparison of N‐linolenoyl‐L ‐glutamine biosynthesis kinetics for these species suggests that concurrent biosynthesis and hydrolysis contribute to proportions of FAC elicitors found in their oral secretions. The apparent Km values for coupling of sodium linolenate were 8.75±0.79, 14.3±3.7 and 20.7±3.4 mM and Vmax values were 2.92±0.14, 6.81±1.2 and 4.95±0.55 nmol/min/mg protein for H. zea, H. virescens and M. sexta, respectively. The Km values for coupling of L ‐glutamine were 10.5±0.26, 22.3±2.0 and 18.9±2.4 mM and Vmax values were 1.78±0.21, 3.71±0.50 and 2.49±0.41 nmol/min/mg of protein for H. zea, H. virescens and M. sexta, respectively. © 2010 Wiley Periodicals, Inc.  相似文献   

5.
It is well established that the development of insulin resistance shows a temporal sequence in different organs and tissues. Moreover, considering that the main aspect of insulin resistance in liver is a process of glucose overproduction from gluconeogenesis, we investigated if this metabolic change also shows temporal sequence. For this purpose, a well‐established experimental model of insulin resistance induced by high‐fat diet (HFD) was used. The mice received HFD (HFD group) or standard diet (COG group) for 1, 7, 14 or 56 days. The HFD group showed increased (P < 0.05 versus COG) epididymal, retroperitoneal and inguinal fat weight from days 1 to 56. In agreement with these results, the HFD group also showed higher body weight (P < 0.05 versus COG) from days 7 to 56. Moreover, the changes induced by HFD on liver gluconeogenesis were progressive because the increment (P < 0.05 versus COG) in glucose production from l ‐lactate, glycerol, l ‐alanine and l ‐glutamine occurred 7, 14, 56 and 56 days after the introduction of the HFD schedule, respectively. Furthermore, glycaemia and cholesterolemia increased (P < 0.05 versus COG) 14 days after starting the HFD schedule. Taken together, the results suggest that the intensification of liver gluconeogenesis induced by an HFD is not a synchronous ‘all‐or‐nothing process’ but is specific for each gluconeogenic substrate and is integrated in a temporal manner with the progressive augmentation of fasting glycaemia. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
2‐Phenylethanol is a widely used aroma compound with rose‐like fragrance and L ‐homophenylalanine is a building block of angiotensin‐converting enzyme (ACE) inhibitor. 2‐phenylethanol and L ‐homophenylalanine were synthesized simultaneously with high yield from 2‐oxo‐4‐phenylbutyric acid and L ‐phenylalanine, respectively. A recombinant Escherichia coli harboring a coupled reaction pathway comprising of aromatic transaminase, phenylpyruvate decarboxylase, carbonyl reductase, and glucose dehydrogenase (GDH) was constructed. In the coupled reaction pathway, the transaminase reaction was coupled with the Ehrlich pathway of yeast; (1) a phenylpyruvate decarboxylase (YDR380W) as the enzyme to generate the substrate for the carbonyl reductase from phenylpyruvate (i.e., byproduct of the transaminase reaction) and to shift the reaction equilibrium of the transaminase reaction, and (2) a carbonyl reductase (YGL157W) to produce the 2‐phenylethanol. Selecting the right carbonyl reductase showing the highest activity on phenylacetaldehyde with narrow substrate specificity was the key to success of the constructing the coupling reaction. In addition, NADPH regeneration was achieved by incorporating the GDH from Bacillus subtilis in the coupled reaction pathway. Based on 40 mM of L ‐phenylalanine used, about 96% final product conversion yield of 2‐phenylethanol was achieved using the recombinant E. coli. Biotechnol. Bioeng. 2009;102: 1323–1329. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
Poly‐ε‐lysine produced by streptomyces species is a promising biopolymer owing to its antimicrobial activity and safety for humans. A number of nutritional factors influencing poly‐ε‐lysine production by Streptomyces noursei NRRL 5126 were studied. Various metabolic precursors such as amino acids, tricarboxylic acid cycle intermediates and cofactors were investigated for improved production of poly‐ε‐lysine. Results indicated L ‐aspartate (2 mM) and citric acid (5 mM) to substantially increase the poly‐ε‐lysine production from 97.08 to 409.94 mg/L. Addition of citric acid after 24 h and L ‐aspartate after 36 h of fermentation medium further enhanced poly‐ε‐lysine production to 497.67 mg/L after a total fermentation time of 108 h. However, the use of cofactors of enzymes involved in the biosynthesis of poly‐ε‐lysine inhibited its production which is believed to be due to diversion of the flux to other metabolites.  相似文献   

8.
Infusion of 67 g ethanol over four hours in fasted, non-obese normal men (a) induced hypoglycaemia by inhibiting gluconeogenesis; (b) produced noticeable increases in blood lactate, 3-hydroxybutyrate, and free fatty acid concentrations; (c) depressed plasma growth hormone concentrations, despite hypoglycaemia; and (d) raised plasma cortisol concentrations before significant hypoglycaemia occurred. These metabolic changes were explained by the reduction of redox state which accompanies ethanol oxidation. The pronounced changes in metabolic values recorded during this study suggested that the use of parenteral feeding regimens including ethanol needs to be reconsidered.  相似文献   

9.
Oxamate, structural analog of pyruvate, inhibits gluconeogenesis from pyruvate or substrates yielding pyruvate. The inhibitory effect is the result of a decreased mitochondrial pyruvate utilization. Although the inhibition of gluconeogenesis is competitive for pyruvate, in isolated mitochondria oxamate displays a mixed type kinetics inhibitory pattern of pyruvate utilization. Evidence is presented indicating that this mixed type pattern of inhibition is the result of the action of oxamate on two different sites: noncompetitive inhibition of pyruvate carboxylation, and competitive inhibition of pyruvate entry into the mitochondria. At concentrations of pyruvate above 0.4 mM, although pyruvate carboxylation is decreased by 40% by oxamate, no detectable effects on the gluconeogenic flux were observed. This finding strongly indicates that pyruvate carboxylase is not an important rate-limiting step for hepatic gluconeogenesis. Thus, the inhibition of gluconeogenesis at low pyruvate concentrations (less than 0.4 mM) seems to be the result of an interaction of oxamate with the mitochondrial pyruvate translocator, indicating that pyruvate transport across the mitochondrial membrane is the first nonequilibrium step in the gluconeogenic pathway when low physiological concentrations of this substrate are utilized.  相似文献   

10.
Lietz T  Rybka J  Bryła J 《Amino acids》1999,16(1):41-58
Summary In isolated rabbit renal cortical tubules, glucose synthesis from 1 mM alanine is negligible, while the amino acid is metabolized to glutamine and glutamate. The addition of 0.5 mM octanoate plus 2 mM glycerol induces incorporation of [U-14C]Alnine into glucose and decreases glutamine synthesis, whereas oleate and palmitate in the presence of glycerol are less potent than octanoate. Gluconeogenesis is also significantly accelerated when glycerol is substituted by lactate. In view of an increase in14CO2 fixation and elevation of both cytosolic and mitochondrial NADH/NAD+ ratios, the activation of glucose formation from alanine upon the addition of glycerol and octanoate is likely due to (i) stimulation of pyruvate carboxylation, (ii) increased availability of NADH for glyceraldehyde-3-phosphate dehydrogenase and (iii) elevation of mitochondrial redox state causing a diminished provision of ammonium for glutamine synthesis. The induction of gluconeogenesis in the presence of alanine, glycerol and octanoate is not related to cell volume changes. The results presented in this paper show the importance of free fatty acids and glycerol for regulation of renal gluconeogenesis from alanine. The possible physiological significance of the data is discussed.  相似文献   

11.
Gluconeogenesis in livers from overnight fasted weaned rats submitted to short‐term insulin‐induced hypoglycaemia (IIH) was investigated. For this purpose, a condition of hyperinsulinemia/hypoglycaemia was obtained with an intraperitoneal (ip) injection of regular insulin (1.0 U kg?1). Control group (COG group) received ip saline. The studies were performed 30 min after insulin (IIH group) or saline (COG group) injection. The livers from IIH and COG rats were perfused with L‐alanine (5 mM), L‐lactate (2 mM), L‐glutamine (10 mM) or glycerol (2 mM). Hepatic glucose, L‐lactate and pyruvate production from L‐alanine was not affected by IIH. In agreement with this result, the hepatic ability in producing glucose from L‐lactate or glycerol remained unchanged (IIH group vs. COG group). However, livers from IIH rats showed higher glucose production from L‐glutamine than livers from COG rats and, in the IIH rats, the production of glucose from L‐glutamine was higher than that from L‐alanine. The higher glucose production in livers from the IIH group, when compared with the COG group was due to its entrance further on gluconeogenic pathway. Taken together, the results suggest that L‐glutamine is better than L‐alanine, as gluconeogenic substrate in livers of hypoglyceaemic weaned rats. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
Methylmalonic acidemia (MMAemia) is an inherited metabolic disorder of branched amino acid and odd-chain fatty acid metabolism, involving a defect in the conversion of methylmalonyl-coenzyme A to succinyl-coenzyme A. Systemic and neurological manifestations in this disease are thought to be associated with the accumulation of methylmalonate (MMA) in tissues and biological fluids with consequent impairment of energy metabolism and oxidative stress. In the present work we studied the effect of MMA and two other inhibitors of mitochondrial respiratory chain complex II (malonate and 3-nitropropionate) on the activity of lactate dehydrogenase (LDH) in tissue homogenates from adult rats. MMA potently inhibited LDH-catalyzed conversion of lactate to pyruvate in liver and brain homogenates as well as in a purified bovine heart LDH preparation. LDH was about one order of magnitude less sensitive to inhibition by MMA when catalyzing the conversion of pyruvate to lactate. Kinetic studies on the inhibition of brain LDH indicated that MMA inhibits this enzyme competitively with lactate as a substrate (K i=3.02±0.59 mM). Malonate and 3-nitropropionate also strongly inhibited LDH-catalyzed conversion of lactate to pyruvate in brain homogenates, while no inhibition was observed by succinate or propionate, when present in concentrations of up to 25 mM. We propose that inhibition of the lactate/pyruvate conversion by MMA contributes to lactate accumulation in blood, metabolic acidemia and inhibition of gluconeogenesis observed in patients with MMAemia. Moreover, the inhibition of LDH in the central nervous system may also impair the lactate shuttle between astrocytes and neurons, compromising neuronal energy metabolism.S. R. Mirandola and E. N. Maciel contributed equally to this work.  相似文献   

13.
L ‐Lysine is a potential feedstock for the production of bio‐based precursors for engineering plastics. In this study, we developed a microbial process for high‐level conversion of L ‐lysine into 5‐aminovalerate (5AVA) that can be used as a monomer in nylon 6,5 synthesis. Recombinant Escherichia coli WL3110 strain expressing Pseudomonas putida delta‐aminovaleramidase (DavA) and lysine 2‐monooxygenase (DavB) was grown to high density in fed‐batch culture and used as a whole cell catalyst. High‐density E. coli WL3110 expressing DavAB, grown to an optical density at 600 nm (OD600) of 30, yielded 36.51 g/L 5AVA from 60 g/L L ‐lysine in 24 h. Doubling the cell density of E. coli WL3110 improved the conversion yield to 47.96 g/L 5AVA from 60 g/L of L ‐lysine in 24 h. 5AVA production was further improved by doubling the L ‐lysine concentration from 60 to 120 g/L. The highest 5AVA titer (90.59 g/L; molar yield 0.942) was obtained from 120 g/L L ‐lysine by E. coli WL3110 cells grown to OD600 of 60. Finally, nylon 6,5 was synthesized by bulk polymerization of ?‐caprolactam and δ‐valerolactam prepared from microbially synthesized 5AVA. The hybrid system demonstrated here has promising possibilities for application in the development of industrial bio‐nylon production processes.  相似文献   

14.
Ketogulonicigenium vulgare WSH‐001 is an industrial strain used for vitamin C production. Based on genome sequencing and pathway analysis of the bacterium, some of its potential pyrroloquinoline quinone (PQQ)‐dependent dehydrogenases were predicted, including KVU_pmdA_0245, KVU_2142, KVU_2159, KVU_1366, KVU_0203, KVU_0095, and KVU_pmdB_0115. BLAST and function domain searches showed that enzymes encoded by these genes may act as putative PQQ‐dependent L ‐sorbose dehydrogenases (SDH) or L ‐sorbosone dehydrogenases (SNDH). To validate whether these dehydrogenases are PQQ‐dependent or not, these seven putative dehyrogenases were overexpressed in Escherichia coli BL21 (DE3) and purified for characterization. Biochemical and kinetic characterization of the purified proteins have led to the identification of seven enzymes that possess the ability to oxidize L ‐sorbose or L ‐sorbosone to varying degrees. In addition, the dehydrogenation of sorbose in K. vulgare is validated to be PQQ dependent, identification of these PQQ‐dependent dehydrogenases expanded the PQQ‐dependent dehydrogenase family. Besides, the optimal combination of enzymes that could more efficiently catalyze the conversion of sorbose to gulonic acid was proposed. These are important in supporting the development of metabolic engineering strategies and engineering of efficient strains for one‐step production of vitamin C in the future. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1398–1404, 2013  相似文献   

15.
Isoprenoids are produced in all organisms but are especially abundant and diverse in plants. Two separate pathways operate in plant cells to synthesize prenyl diphosphate precursors common to all isoprenoids. Cytosolic and mitochondrial precursors are produced by the mevalonic acid (MVA) pathway whereas the recently discovered methylerythritol phosphate (MEP) pathway is located in plastids. However, both pathways may participate in the synthesis of at least some isoprenoids under certain circumstances. Although genes encoding all the enzymes from both pathways have already been cloned, little is known about the regulatory mechanisms that control the supply of isoprenoid precursors. Genetic approaches are providing valuable information on the regulation of both pathways. Thus, recent data from overexpression experiments in transgenic plants show that several enzymes share control over the metabolic flux through the MEP pathway, whereas a single regulatory step has been proposed for the MVA pathway. Identification of Arabidopsis thaliana mutants that are resistant to the inhibition of the MVA and the MEP pathways is a promising approach to uncover mechanisms involved in the crosstalk between pathways. The characterization of some of these mutants impaired in light perception and signaling has recently provided genetic evidence for a role of light as a key factor to modulate the availability of isoprenoid precursors in Arabidopsis seedlings. The picture emerging from recent data supports that a complex regulatory network appears to be at work in plant cells to ensure the supply of isoprenoid precursors when needed.  相似文献   

16.
The present study deals with the possible effects of selected environmental agents upon the uptake and metabolism of d ‐glucose in isolated acinar and ductal cells from the rat submandibular salivary gland. In acinar cells, the uptake of d ‐[U‐14C]glucose and its non‐metabolised analogue 3‐O‐[14C‐methyl]‐d ‐glucose was not affected significantly by phloridzin (0.1 mM) or substitution of extracellular NaCl (115 mM) by an equimolar amount of CsCl, whilst cytochalasin B (20 μM) decreased significantly such an uptake. In ductal cells, both phloridzin and cytochalasin B decreased the uptake of d ‐glucose and 3‐O‐methyl‐d ‐glucose. Although the intracellular space was comparable in acinar and ductal cells, the catabolism of d ‐glucose (2.8 or 8.3 mM) was two to four times higher in ductal cells than in acinar cells. Phloridzin (0.1 mM), ouabain (1.0 mM) and cytochalasin B (20 μM) all impaired d ‐glucose catabolism in ductal cells. Such was also the case in ductal cells incubated in the absence of extracellular Ca2+ or in media in which NaCl was substituted by CsCl. It is proposed that the ductal cells in the rat submandibular gland are equipped with several systems mediating the insulin‐sensitive, cytochalasin B‐sensitive and phloridzin‐sensitive transport of d ‐glucose across the plasma membrane. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
In contrast to fast-twitch skeletal muscle fibers of the chicken, slow-twitch fibers are fatigue-resistant. In fast fibers, the fatigue process has been related to KATP channels. In the present study, we investigated the action of glibenclamide (an anti-diabetic sulphonylurea that acts on KATP channels) on fatigued slow skeletal muscle, studying twitch and tetanus tension after inducing the muscle to fatigue by continuous electrical stimulation. Our results showed that glibenclamide (150 μM) increased post-fatigue twitch tension by about 25% with respect to the fatigued condition (P < 0.05). In addition, glibenclamide (150 μM) increased post-fatigue tetanic tension (83.61 ± 15.7% in peak tension, and 85.0 ± 19.0% in tension-time integral, P = 0.02, and 0.04, respectively; n = 3). Moreover, after exposing the muscle to a condition that inhibits mitochondrial ATP formation in order to activate KATP channels with cyanide (10 mM), tension also diminished, but in the presence of glibenclamide the effect produced by cyanide was abolished. To determine a possible increase in intracellular calcium concentration, the effects of glibenclamide on caffeine-evoked contractures were explored. After muscle pre-incubation with glibenclamide (150 μM), tension of caffeine-evoked contractures increased (6.5 ± 1.5% in maximal tension, and 5.9 ± 3.8% in tension-time integral, P < 0.05). These results suggest a possible role of KATP channels in the fatigue process, since glibenclamide increases twitch and tetanus tension in fatigued slow muscle of the chicken and during metabolic inhibition, possibly by increasing intracellular calcium.  相似文献   

18.
2‐C‐Methyl‐d ‐erythritol‐2,4‐cyclodiphosphate (MEcDP) is an intermediate of the plastid‐localized 2‐C‐methyl‐d ‐erythritol‐4‐phosphate (MEP) pathway which supplies isoprenoid precursors for photosynthetic pigments, redox co‐factor side chains, plant volatiles, and phytohormones. The Arabidopsis hds‐3 mutant, defective in the 1‐hydroxy‐2‐methyl‐2‐(E)‐butenyl‐4‐diphosphate synthase step of the MEP pathway, accumulates its substrate MEcDP as well as the free tetraol 2‐C‐methyl‐d ‐erythritol (ME) and glucosylated ME metabolites, a metabolic diversion also occurring in wild type plants. MEcDP dephosphorylation to the free tetraol precedes glucosylation, a process which likely takes place in the cytosol. Other MEP pathway intermediates were not affected in hds‐3. Isotopic labeling, dark treatment, and inhibitor studies indicate that a second pool of MEcDP metabolically isolated from the main pathway is the source of a signal which activates salicylic acid induced defense responses before its conversion to hemiterpene glycosides. The hds‐3 mutant also showed enhanced resistance to the phloem‐feeding aphid Brevicoryne brassicae due to its constitutively activated defense response. However, this MEcDP‐mediated defense response is developmentally dependent and is repressed in emerging seedlings. MEcDP and ME exogenously applied to adult leaves mimics many of the gene induction effects seen in the hds‐3 mutant. In conclusion, we have identified a metabolic shunt from the central MEP pathway that diverts MEcDP to hemiterpene glycosides via ME, a process linked to balancing plant responses to biotic stress.  相似文献   

19.
Fuel metabolism in fasted newborn rabbits   总被引:1,自引:0,他引:1  
Newborn rabbits delivered by Caesarean section at term were fasted for 72 h at 36 degrees C. Despite the abrupt interruption of maternal supply of energy substrates, glycaemia remains stable for 4 h after birth. This can be related to glucose production via rapid liver glycogenolysis; however, indirect evidence suggests that gluconeogenesis could also contribute to glucose production during this period. There is a selective decrease in the concentrations of gluconeogenic substrates and a suitable hormonal environment for gluconeogenesis as decreased insulin and increased glucagon concentration just after birth. The relative hypoglycaemia which develops after 6 h of life (2.6 mM at 72 h), despite high blood concentrations of non-esterified fatty acids and ketone bodies is not due to a deficient gluconeogenesis per se, as injection of gluconeogenic substrates to 72 h fasted newborns produces a three-fold increase in plasma glucose concentration. It is suggested that this relative hypoglycaemia is secondary to limited gluconeogenic substrate availability in the form of low circulting concentrations of gluconeogenic amino acids.  相似文献   

20.
Myocardial injury due to ischemia‐reperfusion (I‐R) damage remains a major clinical challenge. Its pathogenesis is complex including endothelial dysfunction and heightened oxidative stress although the key driving mechanism remains uncertain. In this study we tested the hypothesis that the I‐R process induces a state of insufficient L ‐arginine availability for NO biosynthesis, and that this is pivotal in the development of myocardial I‐R damage. In neonatal rat ventricular cardiomyocytes (NVCM), hypoxia‐reoxygenation significantly decreased L ‐arginine uptake and NO production (42 ± 2% and 71 ± 4%, respectively, both P < 0.01), maximal after 2 h reoxygenation. In parallel, mitochondrial membrane potential significantly decreased and ROS production increased (both P < 0.01). NVCMs infected with adenovirus expressing the L ‐arginine transporter, CAT1, and NVCMs supplemented with L ‐arginine both exhibited significant (all P < 0.05) improvements in NO generation and mitochondrial membrane potentials, with a concomitant significant fall in ROS production and lactate dehydrogenase release during hypoxia‐reoxygenation. In contrast, L ‐arginine deprived NVCM had significantly worsened responses to hypoxia‐reoxygenation. In isolated perfused mouse hearts, L ‐arginine infusion during reperfusion significantly improved left ventricular function after I‐R. These improved contractile responses were not dependent on coronary flow but were associated with a significant decrease in nitrotyrosine formation and increases in phosphorylation of both Akt and troponin I. Collectively, these data strongly implicate reduced L ‐arginine availability as a key factor in the pathogenesis of I‐R injury. Increasing L ‐arginine availability via increased CAT1 expression or by supplementation improves myocardial responses to I‐R. Restoration of L ‐arginine availability may therefore be a valuable strategy to ameliorate I‐R injury. J. Cell. Biochem. 108: 156–168, 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号