首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
To study nuclear and mitochondrial deoxyribonucleic acid (DNA) synthesis during the cell cycle, a 15N-labeled log-phase population of Saccharomyces cervisiae was shifted to 14N medium. After one-half generation, the cells were centrifuged on a sorbitol gradient in a zonal rotor to fractionate the population according to cell size and age into fractions representing the yeast cell cycle. DNA samples isolated from the zonal rotor cell samples were centrifuged to equilibrium in CsC1 in an analytical ultracentrifuge to separate the nuclear and mitochondrial DNA components. The amount of 14N incorporated into each 15N-labeled DNA species was measured. The extent of nuclear DNA replication per sample was obtained by measuring the amount of hybrid DNA. The percentage of hybrid nuclear DNA increased from 6 to 68% and then decreased to 44% during the cell cycle. Upon ultracentrifugation, mitochondrial DNA banded as a unimodal peak in all zonal rotor samples. Mitochondrial DNA replication could be ascertained only by the 14N level in each mitochondrial peak and not, as with nuclear DNA, by hybrid DNA level. In contrast to the nuclear incorporation pattern, the 14N percentage in mitochondrial DNA remained effectively constant during the cell cycle. Comparison of the data to theoretical distributions showed that nuclear DNA was replicated discontinuously during the cell cycle, whereas mitochondrial DNA was replicated continuously throughout the entire mitotic cycle.  相似文献   

2.
Mitochondrial (mt) DNA of the higher basidiomycetes Lentinus edodes with a molecular weight of about 69 kb was partially digested with Sau3AI, cloned with plasmid YIp32 (a hybrid of pBR322 and the yeast leu2 gene) and analyzed for sequences capable of autonomous replication (ARSs) in the eukaryote Saccharomyces cerevisiae. One recombinant plasmid was isolated which contained 3.2 kb fragment of the mtDNA with ARS activity. This plasmid (named pSK52) exhibited a high-frequency yeast transformation and was found to be maintained within the cell as an extrachromosomal element. The stability and copy number properties of pSK52 were similar to those of the recombinant plasmid of YIp32 and S. cerevisiae mt-ARS constructed as a reference. Subcloning experiments were carried out to assess the localization of ARS on the above 3.2 kb fragment, revealing that the fragment contains at least two ARSs.  相似文献   

3.
DNA复制是最基本的生命活动之一。DNA复制本身的错误及其过程控制的异常是细胞内基因组不稳定的主要来源,会导致细胞生长异常、衰老、癌变乃至死亡。为了保证基因组DNA能够精确且完整的复制,DNA复制受到严格的调控。在G1期,DNA复制解旋酶的核心组分Mcm2-7复合体被招募到复制起点,获得复制许可资格。进入S期后,在两个周期性蛋白激酶及多个支架蛋白的作用下,复制解旋酶的激活因子Cdc45和GINS复合体被招募至Mcm2-7,形成解旋酶全酶Cdc45-Mcm2-7-GINS (CMG)复合体。随后,众多复制相关蛋白在精准的时空控制下被招募至CMG平台并组装成复制机器,起始DNA双向复制。当相向而行的两个复制叉相遇,复制机器会从DNA链上解离下来,从而完成DNA复制。关于DNA复制过程的研究在近十年来取得了跨越式的突破。本文以酿酒酵母为例,围绕所有真核生物中都高度保守的DNA复制控制开关——CMG解旋酶,对真核生物DNA复制的最新进展进行综述。  相似文献   

4.
We have isolated a thermosensitive mutant which is transformed into a population of cells devoid of mitochondrial DNA (rho 0 cells) at 35 degrees C and is deficient in mitochondrial (mt) DNA polymerase activity. A single recessive nuclear mutation (mip1) is responsible for rho 0 phenotype and mtDNA polymerase deficiency in vitro. At 25 degrees C (or 30 degrees C) a dominant suppressor mutation (SUP) masks the deficiency in vivo. The meiotic segregants (mip1 sup) which do not harbor the suppressor have a rho 0 phenotype both at 25 and 35 degrees C. They have no mtDNA polymerase activity, in contrast with MIP rho 0 mutants of mitochondrial inheritance which do exhibit mtDNA polymerase activity. In the thermosensitive mutant (mip1 SUP), the replication of mtDNA observed in vivo at 30 degrees C is completely abolished at 35 degrees C. In the meiotic segregants (mip1 sup), no mtDNA replication takes place at 30 and 35 degrees C. The synthesis of nuclear DNA is not affected. DNA polymerases may have replicative and/or repair activity. There is no evidence that mip mutants are deficient in mtDNA repair. In contrast the MIP gene product is strictly required for the replication of mtDNA and for the expression of the mtDNA polymerase activity. This enzyme might be the replicase of mtDNA.  相似文献   

5.
6.
7.
Summary Mitochondrial mutants of indstrial yeast strains with different flocculation efficiencies were assayed for involvement of mitochondrial DNA (mtDNA) in flocculation. Most of the mutants exhibited a decreased flocculation rate in comparison to that of the wild strains. The mtDNA of a moderately flocculating wild strain was characterized by restriction enzyme analysis and by the localization of several mitochondrial genes. This molecular analysis of mitochondrial mutants revealed two areas of mtDNA involvement in flocculation, namely a region of the subunit 9 of the ATPase gene (oli 1) and a region of the subunit 3 of the cytochrome-c-oxidase gene (oxi 2).  相似文献   

8.
Summary Fourteen mutants have been identified in which the frequency of spontaneous mutations in mitochondrial DNA is increased. As well as increasing the frequency of mutations to resistance to erythromycin, oligomycin and spiramycin, all the mutants also show changes in the frequency of spontaneous petite induction. None of the mutants has any effect on the frequency of spontaneous nuclear mutations. Nine of the mutants are in one complementation group and five are in another. The phenotype of both groups is caused by a single nuclear mutation.  相似文献   

9.
10.
11.
12.
A B Sudarikov  A P Surguchev 《Genetika》1988,24(9):1525-1538
The mechanisms of interaction of nuclear and mitochondrial genes in biogenesis of mitochondria are discussed in this review. Brief characterization of yeast mitochondrial genes and their products is presented. The mechanism of nuclear and mitochondrial control of expression of the mosaic genes in mitochondria is described. The data on the processing of imported mitochondrial proteins synthesized on cytoplasmic ribosomes are presented. The possibility of existence of common proteins encoded for by common genes and possessing similar functions in the cytoplasm and mitochondria is discussed. A hypothesis is put forward considering the role of common proteins in coordination of nuclear and mitochondrial genes' expression in biogenesis of mitochondria.  相似文献   

13.
14.
We have examined the roles of eukaryotic DNA topoisomerases I and II in DNA replication by the use of a set of four isogenic strains of Saccharomyces cerevisiae that are TOP1+ TOP2+, TOP1+ top2 ts, delta top1 TOP2+, and delta top1 top2 ts. Cells synchronized by treatment with the alpha-mating factor, or by cycles of feeding and starvation, were released from cell-cycle arrest, and the size distribution of DNA chains that were synthesized after the cells reentered the S-phase was determined as a function of time. The results indicate that synthesis of short DNA chains several thousand nucleotides in length can initiate in the absence of both topoisomerases, but their further elongation requires at least one of the two topoisomerases. Inactivation of DNA topoisomerase II does not alter significantly the time dependence of the patterns of nascent DNA chain synthesis, which is consistent with the notion that the requirement of this enzyme for viability is due to its essential role during mitosis, when pairs of intertwined newly replicated chromosomes are being segregated. The absence of DNA topoisomerase I leads to a temporary delay in the extension of the short DNA chains; this delay in chain elongation is also reflected in the rate of total DNA synthesis in the delta top1 mutant during the early S-phase. Thus, in wild-type cells, DNA topoisomerase I is probably the major replication swivel. The patterns of DNA synthesis in asynchronously grown delta top1 top2 ts cells at permissive and non-permissive temperatures are also consistent with the above conclusions.  相似文献   

15.
16.
We studied the replication of random genomic DNA fragments from Saccharomyces cerevisiae in a long-term assay in human cells. Plasmids carrying large yeast DNA fragments were able to replicate autonomously in human cells. Efficiency of replication of yeast DNA fragments was comparable to that of similarly sized human DNA fragments and better than that of bacterial DNA. This result suggests that yeast genomic DNA contains sequence information needed for replication in human cells. To examine whether DNA replication in human cells would initiate specifically at a yeast origin of replication, we monitored initiation on a plasmid containing the yeast 2-micron autonomously replicating sequence (ARS) in yeast and human cells. We found that while replication initiates at the 2-micron ARS in yeast, it does not preferentially initiate at the ARS in human cells. This result suggests that the sequences that direct site specific replication initiation in yeast do not function in the same way in human cells, which initiate replication at a broader range of sequences.by J.A. Huberman  相似文献   

17.
18.
Mitochondria contain their own genome, the integrity of which is required for normal cellular energy metabolism. Reactive oxygen species (ROS) produced by normal mitochondrial respiration can damage cellular macromolecules, including mitochondrial DNA (mtDNA), and have been implicated in degenerative diseases, cancer, and aging. We developed strategies to elevate mitochondrial oxidative stress by exposure to antimycin and H(2)O(2) or utilizing mutants lacking mitochondrial superoxide dismutase (sod2Delta). Experiments were conducted with strains compromised in mitochondrial base excision repair (ntg1Delta) and oxidative damage resistance (pif1Delta) in order to delineate the relationship between these pathways. We observed enhanced ROS production, resulting in a direct increase in oxidative mtDNA damage and mutagenesis. Repair-deficient mutants exposed to oxidative stress conditions exhibited profound genomic instability. Elimination of Ntg1p and Pif1p resulted in a synergistic corruption of respiratory competency upon exposure to antimycin and H(2)O(2). Mitochondrial genomic integrity was substantially compromised in ntg1Delta pif1Delta sod2Delta strains, since these cells exhibit a total loss of mtDNA. A stable respiration-defective strain, possessing a normal complement of mtDNA damage resistance pathways, exhibited a complete loss of mtDNA upon exposure to antimycin and H(2)O(2). This loss was preventable by Sod2p overexpression. These results provide direct evidence that oxidative mtDNA damage can be a major contributor to mitochondrial genomic instability and demonstrate cooperation of Ntg1p and Pif1p to resist the introduction of lesions into the mitochondrial genome.  相似文献   

19.
Glutaredoxins are thiol oxidoreductases that regulate protein redox state. In Saccharomyces cerevisiae, Grx1 and Grx2 are cytosolic dithiol glutaredoxins, whereas Grx3, Grx4, and Grx5 are monothiol glutaredoxins. Grx5 locates at the mitochondrial matrix and is needed for iron/sulfur cluster biogenesis. Its absence causes phenotypes such as inactivation of iron/sulfur enzymes and sensitivity to oxidative stress. Whereas Grx5 contains a single glutaredoxin domain, in Grx3 and Grx4 a thioredoxin-like domain is fused to the glutaredoxin domain. Here we have shown that Grx3 locates at the nucleus and that the thioredoxin-like domain is required for such location. We have addressed the functional divergence among glutaredoxins by targeting Grx2/3/4 molecules to the mitochondrial matrix using the Grx5 targeting sequence. The mitochondrial forms of Grx3 and Grx4 partially rescue the defects of a grx5 null mutant. On the contrary, mitochondrially targeted Grx2 does not suppress the mutant phenotype. Both the thioredoxin-like and glutaredoxin domains are needed for the mitochondrial activity of Grx3, although none of the cysteine residues at the thioredoxin-like domain is required for rescue of the grx5 phenotypes. We have concluded that dithiol glutaredoxins are functionally divergent from monothiol ones, but the latter can interchange their biological activities when compartment barriers are surpassed.  相似文献   

20.
To investigate the relationship between the DNA replication apparatus and the control of telomere length, we examined the effects of several DNA replication mutations on telomere length in Saccharomyces cerevisiae. We report that a mutation in the structural gene for the large subunit of DNA replication factor C (cdc44/rfc1) causes striking increases in telomere length. A similar effect is seen with mutations in only one other DNA replication gene: the structural gene for DNA polymerase alpha (cdc17/pol1) (M.J. Carson and L. Hartwell, Cell 42:249-257, 1985). For both genes, the telomere elongation phenotype is allele specific and appears to correlate with the penetrance of the mutations. Furthermore, fluorescence-activated cell sorter analysis reveals that those alleles that cause elongation also exhibit a slowing of DNA replication. To determine whether elongation is mediated by telomerase or by slippage of the DNA polymerase, we created cdc17-1 mutants carrying deletions of the gene encoding the RNA component of telomerase (TLC1). cdc17-1 strains that would normally undergo telomere elongation failed to do so in the absence of telomerase activity. This result implies that telomere elongation in cdc17-1 mutants is mediated by the action of telomerase. Since DNA replication involves transfer of the nascent strand from polymerase alpha to replication factor C (T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1950-1960, 1991; T. Tsurimoto and B. Stillman, J. Biol. Chem. 266:1961-1968, 1991; S. Waga and B. Stillman, Nature [London] 369:207-212, 1994), one possibility is that this step affects the regulation of telomere length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号