共查询到20条相似文献,搜索用时 15 毫秒
1.
Barry AE Leliwa-Sytek A Tavul L Imrie H Migot-Nabias F Brown SM McVean GA Day KP 《PLoS pathogens》2007,3(3):e34
Var genes encode the major surface antigen (PfEMP1) of the blood stages of the human malaria parasite Plasmodium falciparum. Differential expression of up to 60 diverse var genes in each parasite genome underlies immune evasion. We compared the diversity of the DBLalpha domain of var genes sampled from 30 parasite isolates from a malaria endemic area of Papua New Guinea (PNG) and 59 from widespread geographic origins (global). Overall, we obtained over 8,000 quality-controlled DBLalpha sequences. Within our sampling frame, the global population had a total of 895 distinct DBLalpha "types" and negligible overlap among repertoires. This indicated that var gene diversity on a global scale is so immense that many genomes would need to be sequenced to capture its true extent. In contrast, we found a much lower diversity in PNG of 185 DBLalpha types, with an average of approximately 7% overlap among repertoires. While we identify marked geographic structuring, nearly 40% of types identified in PNG were also found in samples from different countries showing a cosmopolitan distribution for much of the diversity. We also present evidence to suggest that recombination plays a key role in maintaining the unprecedented levels of polymorphism found in these immune evasion genes. This population genomic framework provides a cost effective molecular epidemiological tool to rapidly explore the geographic diversity of var genes. 相似文献
2.
Sequestration and rosetting are key determinants of Plasmodium falciparum pathogenesis. They are mediated by a large family of variant proteins called P. falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 proteins are multispecific binding receptors that are transported to parasite-induced, 'knob-like' binding structures at the erythrocyte surface. To evade immunity and extend infections, parasites clonally vary their expressed PfEMP1. Thus, PfEMP1 are functionally selected for binding while immune selection acts to diversify the family. Here, we describe a new way to analyse PfEMP1 sequence that provides insight into domain function and protein architecture with potential implications for malaria disease. 相似文献
3.
4.
Sequestration of Plasmodium falciparum-infected erythrocytes in the placenta is responsible for many of the harmful effects of malaria during pregnancy. Sequestration occurs as a result of parasite adhesion molecules expressed on the surface of infected erythrocytes binding to host receptors in the placenta such as chondroitin sulphate A (CSA). Identification of the parasite ligand(s) responsible for placental adhesion could lead to the development of a vaccine to induce antibodies to prevent placental sequestration. Such a vaccine would reduce the maternal anaemia and infant deaths that are associated with malaria in pregnancy. Current research indicates that the parasite ligands mediating placental adhesion may be members of the P. falciparum variant surface antigen family PfEMP1, encoded by var genes. Two relatively well-conserved subfamilies of var genes have been implicated in placental adhesion, however, their role remains controversial. This review examines the evidence for and against the involvement of var genes in placental adhesion, and considers whether the most appropriate vaccine candidates have yet been identified. 相似文献
5.
6.
7.
8.
9.
Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. 总被引:2,自引:0,他引:2 下载免费PDF全文
K Fischer P Horrocks M Preuss J Wiesner S Wünsch A A Camargo M Lanzer 《Molecular and cellular biology》1997,17(7):3679-3686
Plasmodium falciparum var genes encode a diverse family of proteins, located on the surfaces of infected erythrocytes, which are implicated in the pathology of human malaria through antigenic variation and adhesion of infected erythrocytes to the microvasculature. We have constructed a complete representative telomere-to-telomere yeast artificial chromosome (YAC) contig map of the P. falciparum chromosome 8 for studies on the chromosomal organization, distribution, and expression of var genes. Three var gene loci were identified on chromosome 8, two of which map close to the telomeres at either end of the chromosome. Analysis of the previously described chromosome 2 contig map and random P. falciparum telomeric YAC clones revealed that most, if not all, 14 P. falciparum chromosomes contain var genes in a subtelomeric location. Mapping the chromosomal location of var genes expressed in a long-term culture of the P. falciparum isolate Dd2 revealed that four of the five different expressed var genes identified map within subtelomeric locations. Expression of var genes from a chromosomal domain known for frequent rearrangements has important implications for the mechanism of var gene switching and the generation of novel antigenic and adhesive phenotypes. 相似文献
10.
ABSTRACT: BACKGROUND: Severe malaria has been attributed to the expression of a restricted subset of the var multigene family, which encodes for Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1). PfEMP1 mediates cytoadherence and sequestration of infected erythrocytes into the post-capillary venules of the vital organs such as the brain, lung or placenta. Var genes are highly diverse and can be classified in three major groups (ups A, B and C) and two intermediate groups (B/A and B/C) based on the genomic location, gene orientation and upstream sequences. The genetic diversity of expressed var genes in relation to severity of disease in Tanzanian children was analysed. METHODS: Children with defined severe (SM) and asymptomatic malaria (AM) were recruited. Fulllength var mRNA was isolated and reversed transcribed into var cDNA. Subsequently, the DBL and N-terminal domains, and up-stream sequences were PCR amplified, cloned and sequenced. Sequences derived from SM and AM isolates were compared and analysed. RESULTS: The analysis confirmed that the var family is highly diverse in natural Plasmodium falciparum populations. Sequence diversity of amplified var DBL-1alpha and upstream regions showed minimal overlap among isolates, implying that the var gene repertoire is vast and most probably indefinite in endemic areas. var DBL-1alpha sequences from AM isolates were more diverse with more singletons found (p<0.05) than those from SM infections. Furthermore, few var DBL-1alpha sequences from SM patients were rare and restricted suggesting that certain PfEMP1 variants might induce severe disease. CONCLUSIONS: The genetic sequence diversity of var genes of P. falciparum isolates from Tanzanian children is large and its relationship to disease severity has been studied. Observed differences suggest that different var genes might have fundamentally different roles in the host-parasite interaction. Further research is required to examine clear disease-associations of var gene subsets in different geographical settings. The importance of very strict clinical definitions and appropriate large control groups needs to be emphasized for future studies on disease associations of PfEMP1. 相似文献
11.
12.
The var genes of Plasmodium falciparum are located in the subtelomeric region of most chromosomes. 总被引:5,自引:1,他引:5 下载免费PDF全文
PfEMP1, a Plasmodium falciparum-encoded protein on the surface of infected erythrocytes is a ligand that mediates binding to receptors on endothelial cells. The PfEMP1 protein, which is encoded by the large var gene family, shows antigenic variation and changes in binding phenotype associated with alterations in antigenicity. We have constructed a yeast artificial chromosome contig of chromosome 12 from P. falciparum and show that var genes are arranged in four clusters; two lie amongst repetitive subtelomeric sequences and two occur in the more conserved central region. Analysis of parasite chromosomes by pulsed field gel electrophoresis (PFGE) demonstrates that most contain var genes and two-dimensional PFGE has shown that var genes are located at chromosome ends interspersed amongst repetitive sequences present in the subtelomeric complex. Analysis of a var gene located in the subtelomeric region of chromosome 12 has shown that it has close homologues at the opposite end of the chromosome and in the subtelomeric region of two other chromosomes. This suggests that recombination between heterologous chromosomes has occurred in the subtelomeric regions of these chromosomes. The subtelomeric location of var genes dispersed amongst repetitive sequences has important implications for generation of antigenic variants and novel cytoadherent specificities of this protein. 相似文献
13.
Song P Malhotra P Tuteja N Chauhan VS 《Biochemical and biophysical research communications》1999,255(2):312-316
RNA helicases play many essential roles including cell development and growth. Using degenerate oligonucleotide primers designed to amplify DNA fragments flanked by the highly conserved helicase motifs VLDEAD and YIHRIG and genomic DNAs from the malarial parasites as a template, we have cloned two putative RNA helicase genes (546 and 540 bp) from P. falciparum and one gene (546 bp) from P. cynomologi. Southern blot analysis revealed that these could be multiple and single-copy genes in P. falciparum and P. cynomolgi, respectively. Several members of the RNA helicase gene family share sequence identity with malarial parasite's helicases ranging from 30 to 76%, suggesting that they are functionally related. The discovery of such a multitude of putative RNA helicase genes in malarial parasites suggested that RNA helicase activities may be involved in many essential biological processes. Further characterization of these helicases may also help in designing parasite-specific inhibitors/drugs which specifically inhibit the parasite's growth without affecting the host. 相似文献
14.
15.
The fact that malaria is still an uncontrolled disease is reflected by the genetic organization of the parasite genome. Efforts to curb malaria should begin with proper understanding of the mechanism by which the parasites evade human immune system and evolve resistance to different antimalarial drugs. We have initiated such a study and presented herewith the results from the in silico understanding of a seventh chromosomal region of the malarial parasite Plasmodium falciparum encompassing the antigenic var genes (coding pfemp1) and the drug-resistant gene pfcrt located at a specified region of the chromosome 7. We found 60 genes of various functions and lengths, majority (61.67%) of them were performing known functions. Almost all the genes have orthologs in other four species of Plasmodium, of which P. chabaudi seems to be the closest to P. falciparum. However, only two genes were found to be paralogous. Interestingly, the drug-resistant gene, pfcrt was found to be surrounded by seven genes coding for several CG proteins out of which six were reported to be responsible for providing drug resistance to P. vivax. The intergenic regions, in this specified region were generally large in size, majority (73%) of them were of more than 500 nucleotide bp length. We also designed primers for amplification of 21 noncoding DNA fragments in the whole region for estimating genetic diversity and inferring the evolutionary history of this region of P. falciparum genome. 相似文献
16.
17.
恶性疟原虫海南株(FCC1)翻译控制肿瘤蛋白(TCTP)基因的克隆及序列测定 总被引:1,自引:0,他引:1
为了获得翻译控制肿瘤蛋白 (TCTP)基因 ,提取恶性疟原虫海南株 (FCC1)总RNA ,直接用总RNA反转录成单链DNA ,再用长距PCR方法扩增出双链cDNA .根据小鼠约氏疟原虫TCTP基因序列设计引物 ,以cDNA为模板合成了恶性疟原虫海南株TCTP基因 .以pMD18 T为载体 ,用大肠杆菌XL1 blue对基因克隆 .测序结果表明 ,此基因序列与小鼠约氏疟原虫TCTP基因序列有 85 %同源性 .由此基因序列推导出的TCTP氨基酸序列 ,与小鼠约氏疟原虫TCTP氨基酸序列有 88%同源性 .进入GenBank国际基因库 (美国 )检索 ,所克隆的基因与基因库中恶性疟原虫基因同源性为 97% ;由所克隆的基因序列推导的TCTP氨基酸序列 ,与国际基因库恶性疟原虫TCTP基因推导的TCTP氨基酸序列仅有 1个氨基酸差异 .恶性疟原虫海南株TCTP基因克隆为进一步研究奠定了基础 相似文献
18.
The actomyosin motor complex of the glideosome provides the force needed by apicomplexan parasites such as Toxoplasma gondii (Tg) and Plasmodium falciparum (Pf) to invade their host cells and for gliding motility of their motile forms. Glideosome Associated Protein 45 (PfGAP45) is an essential component of the glideosome complex as it facilitates anchoring and effective functioning of the motor. Dissection of events that regulate PfGAP45 may provide insights into how the motor and the glideosome operate. We found that PfGAP45 is phosphorylated in response to Phospholipase C (PLC) and calcium signaling. It is phosphorylated by P. falciparum kinases Protein Kinase B (PfPKB) and Calcium Dependent Protein Kinase 1 (PfCDPK1), which are calcium dependent enzymes, at S89, S103 and S149. The Phospholipase C pathway influenced the phosphorylation of S103 and S149. The phosphorylation of PfGAP45 at these sites is differentially regulated during parasite development. The localization of PfGAP45 and its association may be independent of the phosphorylation of these sites. PfGAP45 regulation in response to calcium fits in well with the previously described role of calcium in host cell invasion by malaria parasite. 相似文献
19.
20.
Tanabe K Sakihama N Walliker D Babiker H Abdel-Muhsin AM Bakote'e B Ohmae H Arisue N Horii T Rooth I Färnert A Björkman A Ranford-Cartwright L 《Gene》2007,397(1-2):153-160
Allelic dimorphism is a characteristic feature of the Plasmodium falciparum msp1 gene encoding the merozoite surface protein 1, a strong malaria vaccine candidate. Meiotic recombination is a major mechanism for the generation of msp1 allelic diversity. Potential recombination sites have previously been mapped to specific regions within msp1 (a 5' 1-kb region and a 3' 0.4-kb region) with no evidence for recombination events in a central 3.5-kb region. However, evidence for the lack of recombination events is circumstantial and inconclusive because the number of msp1 sequences analysed is limited, and the frequency of recombination events has not been addressed previously in a high transmission area, where the frequency of meiotic recombination is expected to be high. In the present study, we have mapped potential allelic recombination sites in 34 full-length msp1 sequences, including 24 new sequences, from various geographic origins. We also investigated recombination events in blocks 6 to 16 by population genetic analysis of P. falciparum populations in Tanzania, where malaria transmission is intense. The results clearly provide no evidence of recombination events occurring between the two major msp1 allelic types, K1-type and Mad20-type, in the central region, but do show recombination events occurring throughout the entire gene within sequences of the Mad20-type. Thus, the present study indicates that allelic dimorphism of msp1 greatly affects inter-allelic recombination events, highlighting a unique feature of allelic diversity of P. falciparum msp1. 相似文献