首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One major emphasis of reform initiatives in science education is the importance of extended inquiry experiences for students through authentic collaborations with scientists. As such, unique partnerships have started to emerge between science and education in an ongoing effort to capture the interest and imaginations of students as they make sense of the world around them. One such partnership is called the student–teacher–scientist partnership, in which teachers and their students participate in and contribute to the research of scientists. This article explores a partnership between a 10th-grade biology teacher, her students, and practicing scientists who collaborated in the design, implementation and evaluation of a horse evolution unit. The primary goal of the collaborative activity was to involve teachers and students in a process of conceptual change as a means of eliminating common misconceptions implicit in horse evolution displays in museums in various parts of the country. The evidence-based lessons developed enhanced students’ understanding of concepts in macroevolution but also connected the science classroom with a community of scientists whose personalization of the horse evolution unit situated biological concepts and the learning experience within the context of real-world issues.  相似文献   

2.
As rates of traditional sources of scientific funding decline, scientists have become increasingly interested in crowdfunding as a means of bringing in new money for research. In fields where crowdfunding has become a major venue for fundraising such as the arts and technology, building an audience for one''s work is key for successful crowdfunding. For science, to what extent does audience building, via engagement and outreach, increase a scientist''s abilities to bring in money via crowdfunding? Here we report on an analysis of the #SciFund Challenge, a crowdfunding experiment in which 159 scientists attempted to crowdfund their research. Using data gathered from a survey of participants, internet metrics, and logs of project donations, we find that public engagement is the key to crowdfunding success. Building an audience or “fanbase” and actively engaging with that audience as well as seeking to broaden the reach of one''s audience indirectly increases levels of funding. Audience size and effort interact to bring in more people to view a scientist''s project proposal, leading to funding. We discuss how projects capable of raising levels of funds commensurate with traditional funding agencies will need to incorporate direct involvement of the public with science. We suggest that if scientists and research institutions wish to tap this new source of funds, they will need to encourage and reward activities that allow scientists to engage with the public.  相似文献   

3.
The Vanderbilt University Center for Science Outreach (CSO) connects university scientists to the K-12 community to enhance and improve science education. The Virtual Scientist program utilizes interactive videoconference (IVC) to facilitate this connection, providing 40-50 sessions per academic year to a national audience. Scientists, defined as research faculty members, clinicians, postdoctoral fellows, graduate and medical students, and professional staff, participate through conventional volunteer recruitment and program announcements as well as outreach partnership efforts with other Vanderbilt centers. These experts present 30- to 45-min long, grade-appropriate content sessions from the CSO IVC studio or their own laboratory. Teachers register for sessions via an on-line application process. After the session, teachers, students, and experts are requested to complete an anonymous on-line evaluation that addresses both technical- and content-associated issues. Results from 2003 to the present indicated a favorable assessment for a promising program. Results showed that 69% of students (n = 335) and 88% of teachers (n = 111) felt that IVC improved access to scientists, whereas 97% of students (n = 382) and teachers (n = 126) and 100% of scientists (n = 23) indicated that they would participate in future videoconferences. Students and teachers considered that the Virtual Scientist program was effective [76% (n = 381) and 89% (n = 127), respectively]. In addition, experts supported IVC as effective in teaching [87% (n = 23)]. Because of the favorable responses from experts, teachers, and students, the CSO will continue to implement IVC as a tool to foster interactions of scientists with K-12 classrooms.  相似文献   

4.
In this study we designed, implemented, and evaluated an outreach programme for high-school biology students rooted in the ‘science as inquiry’ approach. Accordingly, students learn about science from experts in the field, as well as through in-class exposure to the history and philosophy of science. Our sample consisted of 11th graders (n?=?497), ages 16–17, attending advanced biology classes. Our goal was to determine whether this programme had a significant effect on students’ understanding of the ‘nature of science’ (NOS) and on their attitudes towards science. Using a controlled pre-post research design, we asked participants to complete a Likert-like questionnaire. Also, we conducted post-programme semi-structured interviews with 35 of the participants. Results show that completion of the programme significantly enhanced participants’ NOS understanding and improved their attitudes towards science. Participants expressed a deep level of NOS understanding and explicitly stated that the field visits to experts’ labs had changed their attitude towards science. We believe that our outreach programme can be adapted for teaching other sciences and for societies worldwide, as long as there is access to university laboratories and researchers willing to interact with young citizens and potential future scientists.  相似文献   

5.
Dolan EL  Soots BE  Lemaux PG  Rhee SY  Reiser L 《Genetics》2004,166(4):1601-1609
The National Science Foundation's recent mandate that all Principal Investigators address the broader impacts of their research has prompted an unprecedented number of scientists to seek opportunities to participate in precollege education and outreach. To help interested geneticists avoid duplicating efforts and make use of existing resources, we examined several precollege genetics, genomics, and biotechnology education efforts and noted the elements that contributed to their success, indicated by program expansion, participant satisfaction, or participant learning. Identifying a specific audience and their needs and resources, involving K-12 teachers in program development, and evaluating program efforts are integral to program success. We highlighted a few innovative programs to illustrate these findings. Challenges that may compromise further development and dissemination of these programs include absence of reward systems for participation in outreach as well as lack of training for scientists doing outreach. Several programs and institutions are tackling these issues in ways that will help sustain outreach efforts while allowing them to be modified to meet the changing needs of their participants, including scientists, teachers, and students. Most importantly, resources and personnel are available to facilitate greater and deeper involvement of scientists in precollege and public education.  相似文献   

6.
The fast interconnections of the presently available distributed platforms allow scientists to target highly complex problems by chaining software developed and maintained by experts of the relevant fields. A pillar of such cooperative endeavor in molecular and materials science and technologies is the so-called grid empowered molecular simulator that combines the expertise of molecular science theorists (electronic structure and nuclei dynamics) and experimentalists in order to build and validate ab initio models. This line has prompted an unprecedented level of data format standardization procedures, the bridging of high throughput and high performance platforms, the assemblage of ad hoc designed virtual experiments. In addition this approach has prompted the design and development of tools allowing the evaluation of the quality of the cooperative effort produced by the members of a given research community as well as its rewards to such effort through a credit economy is reported.  相似文献   

7.
With the rapid pace of advancements in biological research brought about by the application of computer science and information technology, we believe the time is right for introducing genomics and bioinformatics tools and concepts to secondary school students. Our approach has been to offer a full-day field trip in our research facility where secondary school students carry out experiments at the laboratory bench and on a laptop computer. This experience offers benefits for students, teachers, and field trip instructors. In delivering a wide variety of science outreach and education programs, we have learned that a number of factors contribute to designing a successful experience for secondary school students. First, it is important to engage students with authentic and fun activities that are linked to real-world applications and/or research questions. Second, connecting with a local high school teacher to pilot programs and linking to curricula taught in secondary schools will enrich the field trip experience. Whether or not programs are linked directly to local teachers, it is important to be flexible and build in mechanisms for collecting feedback in field trip programs. Finally, graduate students can be very powerful mentors for students and should be encouraged to share their enthusiasm for science and to talk about career paths. Our experiences suggest a real need for effective science outreach programs at the secondary school level and that genomics and bioinformatics are ideal areas to explore.  相似文献   

8.
Perspective: evolution's struggle for existence in America's public schools   总被引:1,自引:1,他引:0  
The ongoing creation-evolution controversy in North America thrives on the widespread special creationist beliefs of a significant portion of the public. Creation science supports a literal interpretation of the Judeo-Christian Bible, an earth that is no more than 10.000 years old and created ex nihilo in six days by a monotheistic God, with no new kinds arising since the period of creation, and with a single flood of staggering force shaping layers of rocks and trapping the organisms fossilized within them. Despite decisions in numerous court cases that specifically exclude creationism and creation science from primary and secondary biology classes in America's public schools, creationists now work locally to minimize or remove evolution from science teaching standards. The nationally organized movement to resist the teaching of evolution has proven highly effective, influencing state and district school boards in addition to individual teachers and schools. Thus, if teaching about evolution and the nature of science is to survive in America's primary and secondary schools, scientists must likewise work with teachers and reach out to state and local school boards. In this perspective we outline the typical creationist arguments we encounter from students, teachers, school board members, and neighbors. We explain briefly how knowledge of both microevolution and macroevolution is important in medicine, agriculture, and biotechnology. We describe a science education controversy that arose within our own school district, how we responded, and what we learned from it. Finally, we argue that even modest outreach efforts to science teachers will be richly repaid.  相似文献   

9.
《应用发育科学》2013,17(2):73-87
Universities have launched outreach programs to enhance their ethnic diversity, yet little developmental research examines students' pathways to college. This study compares capital models (highlighting family background) with challenge models (highlighting students' challenges and resources) in predicting pathways to college. The Bridging Multiple Worlds Model frames this longitudinal study of 120 African American and Latino youth in outreach programs. We examined students' family backgrounds; challenges and resources across family, school, peer, and community worlds; and high school math pathways as predictors of college eligibility and enrollment. African American students more typically had U. S. born, college-educated parents, and Latino students, immigrant parents with high school education or less. Second, students saw parents as greater resources than teachers, siblings, and themselves; peers and teachers were their greatest challenges. Youth distinguished resources and challenges more by their source than form. Third, high school math and English grades rose and fell together, with early math grades predicting college eligibility. Five math pathways emerged: steady, slowly declining, rapidly declining, increasing, and "back on track" toward college, but pathways did not always predict college choices. Fourth, although family background predicted few outcomes, parents' and teachers' help and siblings' challenges predicted grades, eligibility, and admission to prestigious colleges. Findings highlight both capital and challenge models for science, policy, and programs involving diversity and equity.  相似文献   

10.
Public engagement is an important role for the university academic, but is often neglected due to perceived lack of time and prioritized commitments in research and teaching. Yet, public engagement events offer an untapped opportunity for researchers to collect data from members of the general public who arrive on site at university labs. These engagement events could allow for data collection as part of didactic and demonstrative outreach events to be used in research and science. In this proof of concept study, a collaborative group of international researchers investigated the feasibility of embedding research quality assessment into events surrounding National Biomechanics Day. The Big Experiment collected data on 501 secondary school students (age range: 13 to 18 years) across 9 university sites within a 24-hour period. Data included maximal vertical jump height and self-reported physical activity levels. Vertical jump height was positively correlated to participant height, but not age or body mass. Very physically active students had significantly higher vertical jump heights than individuals who reported being somewhat or not physically active. This feasibility project demonstrates that with substantial preparation and a simple research design, focused research questions can be incorporated into educational outreach initiatives and ultimately provide a rich data source.  相似文献   

11.
Scholars and pundits alike argue that U.S. scientists could do more to reach out to the general public. Yet, to date, there have been few systematic studies that examine how scientists understand the barriers that impede such outreach. Through analysis of 97 semi-structured interviews with academic biologists and physicists at top research universities in the United States, we classify the type and target audiences of scientists' outreach activities. Finally, we explore the narratives academic scientists have about outreach and its reception in the academy, in particular what they perceive as impediments to these activities. We find that scientists' outreach activities are stratified by gender and that university and disciplinary rewards as well as scientists' perceptions of their own skills have an impact on science outreach. Research contributions and recommendations for university policy follow.  相似文献   

12.
The importance of diversity is self-evident in medicine and medical research. Not only does diversity result in more impactful scientific work, but diverse teams of researchers and clinicians are necessary to address health disparities and improve the health of underserved communities. MD/PhD programs serve an important role in training physician-scientists, so it is critical to ensure that MD/PhD students represent diverse backgrounds and experiences. Groups who are underrepresented in medicine and the biomedical sciences include individuals from certain racial and ethnic backgrounds, individuals with disabilities, individuals from disadvantaged backgrounds, and women. However, underrepresented students are routinely discouraged from applying to MD/PhD programs due to a range of factors. These factors include the significant cost of applying, which can be prohibitive for many students, the paucity of diverse mentors who share common experiences, as well as applicants’ perceptions that there is inadequate support and inclusion from within MD/PhD programs. By providing advice to students who are underrepresented in medicine and describing steps programs can take to recruit and support minority applicants, we hope to encourage more students to consider the MD/PhD career path that will yield a more productive and equitable scientific and medical community.  相似文献   

13.
National educational organizations have called upon scientists to become involved in K-12 education reform. From sporadic interaction with students to more sustained partnerships with teachers, the engagement of scientists takes many forms. In this case, scientists from the American Society of Human Genetics (ASHG), the Genetics Society of America (GSA), and the National Society of Genetic Counselors (NSGC) have partnered to organize an essay contest for high school students as part of the activities surrounding National DNA Day. We describe a systematic analysis of 500 of 2443 total essays submitted in response to this contest over 2 years. Our analysis reveals the nature of student misconceptions in genetics, the possible sources of these misconceptions, and potential ways to galvanize genetics education.  相似文献   

14.
Both scientists and the public would benefit from improved communication of basic scientific research and from integrating scientists into education outreach, but opportunities to support these efforts are limited. We have developed two low-cost programs—"Present Your PhD Thesis to a 12-Year-Old" and "Shadow a Scientist”—that combine training in science communication with outreach to area middle schools. We assessed the outcomes of these programs and found a 2-fold benefit: scientists improve their communication skills by explaining basic science research to a general audience, and students'' enthusiasm for science and their scientific knowledge are increased. Here we present details about both programs, along with our assessment of them, and discuss the feasibility of exporting these programs to other universities.  相似文献   

15.
The author provides information on how science teachers can write science literacy objectives that help English language learners (ELLs) develop the scientific literacy needed for academic success in the science classroom. The article offers suggestions on how teachers can determine the vocabulary, language functions, and sentence structures that their students need to engage in critical thinking in science. An approach for collaboration with students' English as a second language (ESL) teacher is discussed.  相似文献   

16.
Advocacy engagement has been at the forefront of National Cancer Institute (NCI) efforts to advance scientific discoveries and transform medical interventions. Nonetheless, the journey for advocates has been uneven. Case in Point: NCI publication affiliation rules of engagement pose unique equity challenges while raising questions about structural representation in biomedical research. Abiding by the core rationale that publication affiliation should be tailored to employment status, the NCI has systematically denied research advocate volunteers the opportunity to specifically list NCI as an institutional affiliation on academic publications. Unpacking advocate NCI publication affiliation restrictions and its links with advocacy heritage preservation and convergent science goals poses unique diversity, equity, and inclusion challenges and opportunities. Improving the quality of structural representation in biomedical research requires new theories of action and flexible planning to advance, promote and build capacity for strategic advocacy inclusion and equity within publication affiliation initiatives. Here we highlight several opportunities for how leadership might formulate a radically different vision for NCI's approach. This perspective interrogates the best way forward for ensuring that biomedical employee and volunteer advocate workforce publication affiliation intersections are characterized by increased creativity and representation parity. Imbuing the scientist and clinical researcher archetype with social dimensions, we join NCI critical thinkers in urging employees, funded academics, and volunteer citizen scientists to collectively assume the role as paladins of science and integrity who view the triumphs of making a difference in science alongside the social responsibility of promoting transdisciplinary professionalism and the democratization of science.  相似文献   

17.
Centralized banks for human embryonic stem cells: a worthwhile challenge   总被引:2,自引:0,他引:2  
Centralized banking of human embryonic stem (hES) cells is an endeavor that can benefit individual research efforts and enhance international collaboration but is complicated by the fact that the science is rapidly evolving in an environment of heterogeneous laws, guidelines, and ethical standards. Written from the vantage point of regulatory professionals, this article provides an overview of the benefits of and challenges facing hESC banking enterprises in general with a focus on a global centralized banking effort.  相似文献   

18.
I describe a number of valuable lessons I learned from participating in California's Proposition 71 effort about the role that scientists and rigorous scientific advice can play in a public political process. I describe how scientists can provide valuable information and advice and how they can also gain a great deal from the experience that is valuable to a practicing research scientist. Finally, I argue that in the future, building similar broad coalitions to support biomedical and other areas of scientific research will be essential to protect publicly funded science. Thus, a key lesson from the Proposition 71 experience is that engagement of scientists with diverse nonscientific groups can make a big difference and that scientists must actively engage with the public in the future if we are to contribute robustly to the medical and economic health of our communities.  相似文献   

19.
Gaming, an integral part of many students’ lives outside school, can provide an engaging platform for focusing students on important disciplinary core concepts as an entry into developing students’ understanding of these concepts through science practices. This article highlights how S’cape can be used to support student learning aligned with the most recent standards documents. Through combining students’ initial engagement in a motivating gaming experience with a two-experiment scaffolded inquiry sequence enhanced with information literacy-targeted homework, this article reveals how support can be offered for asking questions, planning and carrying out investigations, analyzing and interpreting data, constructing explanations, and engaging in argument from evidence to refine understandings of core concepts. We believe that as science teachers strive to explore important concepts with students through allowing them to actually practice science, games such as S’cape strategically leveraged and sequenced with scaffolded inquiry experiences can support these efforts.  相似文献   

20.
T. R. Manney  M. L. Manney 《Genetics》1993,134(1):387-391
Many of the same features of the yeast Saccharomyces cerevisiae that have made it so useful as a genetics and molecular biology research organism make it equally useful as a teaching organism. Furthermore, the fact that it is a modern research organism makes it all the more exciting to students and teachers. The unique characteristic of yeast as a unicellular, eukaryotic organism with a complete sexual life cycle is ideal for teaching. A simple monohybrid cross to explore dominance and recessiveness, a dihybrid cross to demonstrate independent assortment, pigmented adenine auxotrophs for investigating the fundamentals of gene action, and easily measured responses to ultraviolet readiation provide an array of appropriate laboratory tools that put real science in the hands of students and teachers. Direct collaborations between scientists and science teachers bring together complementing knowledge and experience, providing an effective and efficient way to adapt and simplify techniques and procedures to accommodate time and money constraints. Collaborations quickly identify technical and theoretical problems that must be solved for implementation in classrooms. They also provide a continuing stimulus to teachers and students to participate in the research process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号