首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Effects of lactobacilli on yeast-catalyzed ethanol fermentations.   总被引:4,自引:1,他引:3       下载免费PDF全文
Normal-gravity (22 to 24 degrees Plato) wheat mashes were inoculated with five industrially important strains of lactobacilli at approximately 10(5), approximately 10(6), approximately 10(7), approximately 10(8), and approximately 10(9) CFU/ml in order to study the effects of the lactobacilli on yeast growth and ethanol productivity. Lactobacillus plantarum, Lactobacillus paracasei, Lactobacillus #3, Lactobacillus rhamnosus, and Lactobacillus fermentum were used. Controls with yeast cells but no bacterial inoculation and additional treatments with bacteria alone inoculated at approximately 10(7) CFU/ml of mash were included. Decreased ethanol yields were due to the diversion of carbohydrates for bacterial growth and the production of lactic acid. As higher numbers of the bacteria were produced (depending on the strain), 1 to 1.5% (wt/vol) lactic acid resulted in the case of homofermentative organisms. L. fermentum, a heterofermentative organism, produced only 0.5% (wt/vol) lactic acid. When L. plantarum, L. rhamnosus, and L. fermentum were inoculated at approximately 10(6) CFU/ml, an approximately 2% decrease in the final ethanol concentration was observed. Smaller initial numbers (only 10(5) CFU/ml) of L. paracasei or Lactobacillus #3 were sufficient to cause more than 2% decreases in the final ethanol concentrations measured compared to the control. Such effects after an inoculation of only 10(5) CFU/ml may have been due to the higher tolerance to ethanol of the latter two bacteria, to the more rapid adaptation (shorter lag phase) of these two industrial organisms to fermentation conditions, and/or to their more rapid growth and metabolism. When up to 10(9) CFU of bacteria/ml was present in mash, approximately 3.8 to 7.6% reductions in ethanol concentration occurred depending on the strain. Production of lactic acid and a suspected competition with yeast cells for essential growth factors in the fermenting medium were the major reasons for reductions in yeast growth and final ethanol yield when lactic acid bacteria were present.  相似文献   

2.
The potential of four yeasts (Debaryomyces hansenii, Rhodotorula minuta, Cryptococcus laurentii and Cryptococcus diffluens) and three bacteria (Bacillus amyloliquefaciens, Bacillus subtilis and Stenotrophomonas rhizophila) with antagonistic capacity against anthracnose caused by Colletotrichum gloeosporioides in mango cv. Ataulfo fruit was investigated. Germination of C. gloeosporioides spores was significantly inhibited by all marine yeasts and bacteria strains of an in vitro test. When yeasts and bacteria were tested on mango fruit, the marine yeast D. hansenii 1R11CB strain and marine bacteria S. rhizophilaKM02 strain were the best antagonists to anthracnose (C. gloeosporioides), which significantly decreased disease incidence by 56% and 89%, respectively, and reduced lesion diameter by 91% and 92%, respectively. All the isolated strains of the phytopathogen, yeasts and bacteria were molecularly identified. Our results from in vitro and in vivo experiments suggest that marine yeasts and bacteria strains can be used as some effective biological control agents for anthracnose in mango.  相似文献   

3.
Batch xanthan fermentations by Xanthomonas campestris NRRL B-1459 at various temperatures ranging between 22 degrees C and 35 degrees C were studied. At 24 degrees C or lower, xanthan formation lagged significantly behind cell growth, resembling typical secondary metabolism. However, at 27 degrees C and higher, xanthan biosynthesis followed cell growth from the beginning of the exponential phase and continued into the stationary phase. Cell growth at 35 degrees C was very slow; the specific growth rate was near zero. The specific growth rate had a maximum value of 0.26 h(-1) at temperatures between 27 degrees C and 31 degrees C. Cell yield decreased from 0.53 g/g glucose at 22 degrees C to 0.28 g/g glucose at 33 degrees C, whereas xanthan yield increased from 54% at 22 degrees C to 90% at 33 degrees C. The specific xanthan formation rate also increased with increasing temperature. The pyruvate content of xanthan produced at various temperatures ranged between 1.9% and 4.5%, with the maximum occurring between 27 degrees C and 30 degrees C. These results suggest that the optimal temperatures for cell growth are between 24 degrees C and 27 degrees C, whereas those for xanthan formation are between 30 degrees C and 33 degrees C. For single-stage batch fermentation, the optimal temperature for xanthan fermentation is thus dependent on the design criteria (i. e., fermentation rate, xanthan yield, and gum qualities). However, a two-stage fermentation process with temperature shift-up from 27 degrees C to 32 degrees C is suggested to optimize both cell growth and xanthan formation, respectively, at each stage, and thus to improve overall xanthan fermentation.  相似文献   

4.
Technique for immobilization using sodium alginate as the matrix to preserve Bacillus thuringiensis var. israelensis isolates for long time storage was developed. Two strains of B. thuringiensis var. israelensis viz., VCRC B-17 and WHO standard strain IPS-82 were immobilized in alginate matrix and preserved at 4 degrees C and when tested both were found to have maintained excellent viability and mosquito larvicidal activity for 10 years. Mosquito larvicidal activity of B-17 and IPS-82 alginate beads, in term of LC(50) values before storage was 72.07 ng/ml and 47.07 ng/ml, respectively and after storage at 4 degrees C for a period of 1 to 10 years the values ranged from 69.88 to 73.86 ng/ml with a mean of 72.38 ng/ml and 45.32 to 48.60 ng/ml with a mean of 47.49 ng/ml, respectively. Similarly spore count of the beads of the respective strains was 4.37 x 10(8) and 3.33 x 10(10) CFU/mg before storage. After storage at 4 degrees C for a period of 1 to 10 years the counts of the beads of the respective strains ranged from 4.23 x 10(8) to 4.83 x 10(8) CFU/mg (mean of 4.49 x 10(8) CFU/mg) and 3.2 x 10(10) to 3.87 x 10(10) CFU/mg (mean of 3.54 x 10(10) CFU/mg). The alginate matrix immobilization technique has many advantages over free cells are that they enhance the stability of both spores and toxin against several physicochemical conditions and confer reduced susceptibility to contamination.  相似文献   

5.
AIMS: To study the survival of bacteria isolated from the surface of smear cheese and monitor their development during cheese ripening. METHODS AND RESULTS: The storage of five potential bacterial surface-ripening cheese cultures, Brevibacterium aurantiacum, Corynebacterium casei, Corynebacterium variable, Microbacterium gubbeenense and Staphylococcus saprophyticus, in maximum recovery diluent (MRD), containing 0.85% w/v or 5% w/v NaCl, at 21 or 4 degrees C for 40 days, was investigated. All five strains studied survived well with a maximum decrease of c. 2.5 log(10) CFU ml(-1) after storage for 40 days at 4 degrees C in 0.85% or 5% w/v NaCl. Survival, especially of C. variable, was less at 21 degrees C. The development of defined ripening cultures containing C. casei and Debaryomyces hansenii on two farmhouse cheeses was also evaluated. Using pulsed-field gel electrophoresis (PFGE) for the bacteria and mitochondrial DNA restriction fragment length polymorphism (mtDNA-RFLP) for the yeast, it was shown that the ripening cultures could be re-isolated in high numbers, 10(8) CFU cm(-2) for C. casei and 10(6) CFU cm(-2) for D. hansenii, from the cheese surface after 2.5 weeks of ripening. CONCLUSIONS: Ripening strains of surface ripening cultures can be stored in MRD containing 5% w/v salt at 4 degrees C for at least 40 days. Such cultures are recovered in high numbers from the cheese during ripening. SIGNIFICANCE AND IMPACT OF STUDY: This study has provided a low-cost and efficient way to store bacteria that could be used as ripening cultures for smear cheese. Such cultures can be recovered in high numbers from the cheese surface during ripening.  相似文献   

6.
Yeast species of sound and sour rot-damaged grapes were analysed during fermentation and grape ripening in the vineyard, using general and selective culture media. During 2003 and 2004 vintages, microvinifications were carried out with sound grapes to which different amounts of grapes with sour rot were added. The wine spoilage species Zygosaccharomyces bailii was only recovered during fermentations with sour rot, reaching 5.00 log CFU mL(-1) (2003) and 2.48 log CFU mL(-1) (2004) at the end of fermentation. The study of yeast populations during the sour rot ripening process (2005 vintage) showed that the veraison-damaged grapes always exhibited higher total yeast counts and a much greater diversity of species. From a total of 22 ascomycetous species, 17 were present only in damaged grapes. The most frequent species were Issatchenkia occidentalis and Zygoascus hellenicus. The spoilage species Z. bailii and Zygosaccharomyces bisporus were consistently isolated exclusively from damaged grapes. This work demonstrates that one of the most dangerous wine spoilage species, Z. bailii, is strongly associated with sour rot grapes and survives during fermentation with Saccharomyces cerevisiae. The use of selective media provides a more accurate characterization of grape contamination species.  相似文献   

7.
AIM: Formulation of an inexpensive cane molasses medium for improved cell-bound phytase production by Pichia anomala. METHODS AND RESULTS: Cell-bound phytase production by Pichia anomala was compared in synthetic glucose-beef extract and cane molasses media. The yeast was cultivated in 250 ml flasks containing 50 ml of the medium, inoculated with a 12 h-old inoculum (3 x 10(6) CFU ml(-1)) and incubated at 25 degrees C for 24 h at 250 rev min(-1). Different cultural parameters were optimized in cane molasses medium in batch fermentation. The cell-bound phytase content increased significantly in cane molasses medium (176 U g(-1) dry biomass) when compared with the synthetic medium (100 U g(-1) dry biomass). In fed-batch fermentation, a marked increase in biomass (20 g l(-1)) and the phytase yield (3000 U l(-1)) were recorded in cane molasses medium. The cost of production in cane molasses medium was pound 0.006 per 1000 U, which is much lower when compared with that in synthetic medium (pound 0.25 per 1000 U). CONCLUSIONS: An overall 86.6% enhancement in phytase yield was attained in optimized cane molasses medium using fed-batch fermentation when compared with that in synthetic medium. Furthermore, the production in cane molasses medium is cost-effective. SIGNIFICANCE AND IMPACT OF THE STUDY: Phytase yield was improved in cane molasses when compared with the synthetic medium, and the cost of production was also significantly reduced. This enzyme can find application in the animal feed industry for improving the nutritional status of feed and combating environmental pollution.  相似文献   

8.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37 degrees C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 10(3) CFU of L. monocytogenes/ml and 10(5) CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37 degrees C for 24 h, 15 degrees C for 14 days, 8 degrees C for 21 days, and 4 degrees C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37 degrees C, two at 15 and 8 degrees C, and three at 4 degrees C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4 degrees C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log(10) CFU of L. monocytogenes/cm(2)). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37 degrees C.  相似文献   

9.
Anthracnose is the major postharvest disease of mango and occurs throughout mango producing areas of the world including Ethiopia. Evaluating effect of hot water treatment on development of anthracnose and quality of mango fruit is imperative. A total of three hot water levels 48, 52 and 56 °C at two time interval (5 and 10 min) were tested with factorial arrangement in completely randomised design. The study indicated that hot water treatment at different temperatures and time interval significantly (p < 0.001) affects disease development and shelf life and postharvest quality of mango fruits. Hot water treatments reduced the incidence and severity of anthracnose disease significantly (p < 0.001) in mango fruits as compared to control. There was a highly significant difference (p < 0.0001) on weight loss, total soluble solids, titratable acidity and fruit firmness of mango fruits due to treatment. The present study reviled that hot water treatment has a potential in reducing the postharvest loss due to anthracnose and improving the shelf life and quality of mango fruits. However, the reduction of disease pressure on fruits was not at applicable level, which call ups future effort on developing on integrated disease management strategies for reduction of postharvest loss of mango fruits.  相似文献   

10.
Lee K 《Bioresource technology》2005,96(13):1505-1510
The aim of this study was to investigate industrial media for lactic acid fermentation to reduce the cost of nitrogen sources. Corn steep liquor (CSL) was successfully used at 5% (v/v) in batch fermentations. Use of soluble CSL improved the productivity approximately 20% with an advantage of clearer fermentation broth. Yeast extract (YE)-complemented CSL media further increased the productivity. It was found that 3.1 g L(-1) yeast extract and 5% CSL could be an effective substitute for 15 g L(-1) yeast extract in 10% glucose medium. Spent brewery yeast was also used as a sole nitrogen source equivalent to 5% CSL. Lactic acid was recovered by electrodialysis from the cell free broth. Depleted cell free broth supplemented with 5 g L(-1) of yeast extract performed reasonably in batch cultures. Reuse of the fermentation broth may reduce the cost of raw materials as well as minimize the fermentation wastes.  相似文献   

11.
AIMS: To evaluate the effect of yeast extract (YE) concentration, temperature and pH on growth and exopolysaccharide (EPS) production in a whey-based medium by Streptococcus thermophilus SY and to characterize the partially purified EPS. METHODS AND RESULTS: Factorial experiments and empirical model building were used to optimize fermentation conditions and the chemical composition, average molecular weight (MW) and rheological properties of aqueous dispersions of the EPS were determined. Exopolysaccharide production was growth associated and was higher (152 mg l(-1)) at pH 6.4 and 36 degrees C with 4 g l(-1) YE. High performance size exclusion chromatography of the partially purified EPS showed two peaks, with a weight average MW of 2 x 10(6) and 5 x 10(4), respectively. The EPS was a heteropolysaccharide, with a glucose : galactose : rhamnose ratio of 2 : 4.5 : 1. Its water dispersions had a pseudoplastic behaviour and showed a higher viscosity of xanthan solutions. SIGNIFICANCE AND IMPACT OF THE STUDY: The fermentation conditions and some properties of an EPS produced by Strep. thermophilus, a dairy starter organism, were described.  相似文献   

12.
Large-scale nosocomial outbreaks of Serratia marcescens septicaemia in Japan have had a fatality rate of 20-60% within 48 h. As a countermeasure, a real-time PCR assay was constructed for the rapid diagnosis of S. marcescens septicaemia. This assay indeed detected S. marcescens in clinical blood specimens (at ca. 10(2)CFU ml(-1)), at a frequency of 0.5% in suspected cases of septicaemia. In mice, the assay provided estimates of blood S. marcescens levels at various infectious stages: namely, 10(7) to 10(8)CFU ml(-1) at a fatal stage (resulting in 100% death), 10(4)-10(5)CFU ml(-1) at a moderately fatal stage (resulting in 50% or more death), and <10(3)CFU ml(-1) at a mild stage (resulting in 100% survival), consistent with actual CFU measurements. Blood bacterial levels could be an important clinical marker that reflects the severity of septicaemia. The simultaneous detection of S. marcescens and the carbapenem resistance gene was also demonstrated.  相似文献   

13.
AIMS: To develop new measures for controlling both spoilage and pathogenic micro-organisms in unpasteurized apple juice using chitosan. METHODS AND RESULTS: Micro-organisms were isolated and identified from apple juice treated or untreated with chitosan using enrichment, selective media, microscopy, substrate assimilation patterns and ribosomal DNA profiling. Chitosan (0.05-0.1%) delayed spoilage by yeasts at 25 degrees C for up to 12 days but the effect was species specific: Kloeckera apiculata and Metschnikowia pulcherrima were inactivated but Saccharomyces cerevisiae and Pichia spp. multiplied slowly. In challenge experiments at 25 degrees C, total yeast counts were 3-5 log CFU ml(-1) lower in chitosan-treated juices than in the controls for 4 days but the survival of Escherichia coli O157:H7 was extended from 1 to 2 days; at 4 degrees C, chitosan reduced the yeast counts by 2-3 log CFU ml(-1) for up to 10 days but survival of the pathogen was prolonged from 3 to 5 days. The survival of Salmonella enterica serovar Typhimurium was unaffected by chitosan at either temperature. CONCLUSIONS: The addition of chitosan to apple juice delayed spoilage by yeasts but enhanced the survival of E. coli O157:H7. SIGNIFICANCE AND IMPACT OF THE STUDY: The results suggest that the use of chitosan in the treatment of fruit juices may potentially lead to an increased risk of food poisoning from E. coli O157:H7.  相似文献   

14.
Although available kinetic data provide a useful insight into the effects of medium composition on xanthan production by Xanthomonas campestris, they cannot account for the synergetic effects of carbon (glucose) and nitrogen (yeast extract) substrates on cell growth and xanthan production. In this work, we studied the effects of the glucose/yeast-extract ratio (G/YE) in the medium on cell growth and xanthan production in various operating modes, including batch, two-stage batch, and fed-batch fermentations. In general, both the xanthan yield and specific production rate increased with increasing G/YE in the medium, but the cell yield and specific growth rate decreased as G/YE increased. A two-stage batch fermentation with a G/YE shift from an initial low level (2.5% glucose/0.3% yeast extract) to a high level (5.0% glucose/0.3% yeast extract) at the end of the exponential growth phase was found to be preferable for xanthan production. This two-stage fermentation design both provided fast cell growth and gave a high xanthan yield and xanthan production rate. In contrast, fed-batch fermentation with intermittent additions of glucose to the fermentor during the stationary phase was not favorable for xanthan production because of the relatively low G/YE resulting in low xanthan production rate and yield. It is also important to use a moderately high yeast extract concentration in the medium in order to reach a high cell density before the culture enters the stationary phase. A high cell density is also important to the overall xanthan production rate. Received: 30 September 1996 / Received revision: 21 January 1997 / Accepted: 10 February 1997  相似文献   

15.
The conditions for batch and continuous production of ethanol, using immobilized growing yeast cells of Kluyveromyces lactis, have been optimized. Yeast cells have been immobilized in hydrogel copolymer carriers composed of polyvinyl alcohol (PVA) with various hydrophilic monomers, using radiation copolymerization technique. Yeast cells were immobilized through adhesion and multiplication of yeast cells themselves. The ethanol production of immobilized growing yeast cells with these hydrogel carriers was related to the monomer composition of the copolymers and the optimum monomer composition was hydroxyethyl methacrylate (HEMA). In this case by using batch fermentation, the superior ethanol production was 32.9 g L(-1) which was about 4 times higher than that of cells in free system. The relation between the activity of immobilized yeast cells and the water content of the copolymer carriers was also discussed. Immobilized growing yeast cells in PVA: HEMA (7%: 10%, w/w) hydrogel copolymer carrier, were used in a packed-bed column reactor for the continuous production of ethanol from lactose at different levels of concentrations (50, 100 and 150) g L(-1). For all lactose feed concentrations, an increase in dilution rates from 0.1 h(-1) to 0.3 h(-1) lowered ethanol concentration in fermented broth, but the volumetric ethanol productivity and volumetric lactose uptake rate were improved. The fermentation efficiency was lowered with the increase in dilution rate and also at higher lactose concentration in feed medium and a maximum of 70.2% was obtained at the lowest lactose concentration 50 g L(-1).  相似文献   

16.
Probiotication of tomato juice by lactic acid bacteria   总被引:1,自引:0,他引:1  
This study was undertaken to determine the suitability of tomato juice as a raw material for production of probiotic juice by four lactic acid bacteria (Latobacillus acidophilus LA39, Lactobacillus plantarum C3, Lactobacillus casei A4, and Lactobacillus delbrueckii D7). Tomato juice was inoculated with a 24-h-old culture and incubated at 30 degrees C. Changes in pH, acidity, sugar content, and viable cell counts during fermentation under controlled conditions were measured. The lactic acid cultures reduced the pH to 4.1 or below and increased the acidity to 0.65% or higher, and the viable cell counts (CFU) reached nearly 1.0 to 9.0 x 10(9)/ml after 72 h fermentation. The viable cell counts of the four lactic acid bacteria in the fermented tomato juice ranged from 10(6) to 10(8) CFU/ml after 4 weeks of cold storage at 4 degrees C. Probiotic tomato juice could serve as a health beverage for vegetarians or consumers who are allergic to dairy products.  相似文献   

17.
In a biomass assay based on adenosine 5(')-triphosphate (ATP) bioluminescence, extracellular ATP is removed; then intracellular ATP is extracted from the microorganism by an ATP extractant and subsequently reacted with luciferase. To provide a highly sensitive assay, the concentration of benzalkonium chloride (BAC) in the ATP extractant was optimized by using a mutant luciferase resistant to BAC. The use of 0.2% BAC, which was acceptable for the luciferase, simultaneously achieved the maximum extraction of intracellular ATP from microorganisms and the inactivation of the ATP-eliminating enzymes for removal of extracellular ATP. The detection limit (blank+3 SD) for ATP was 1.8x10(-14)M (1.8x10(-18)mol/assay) in the presence of the ATP extractant with coefficients of variation of 0.7 to 6.3%. The reagent system coupled with the ATP-eliminating enzymes allowed for the detection of 93 colony-forming units (CFU)/ml of Escherichia coli ATCC 25922, 170CFU/ml of Pseudomonas aeruginosa ATCC 27853, 170CFU/ml of Proteus mirabilis ATCC 29906, 68CFU/ml of Staphylococcus aureus ATCC 25923, and 7.7CFU/ml of Bacillus subtilis ATCC 6051. The yeast cell of Saccharomyces cerevisiae IFO 10217 could be detected at 1CFU/ml. With 54 kinds of microorganisms, the average ATP extraction efficiency compared to the trichloroacetic acid extraction method was 81.0% in 24 strains among gram-negative bacteria, 99.4% in 13 strains among gram-positive bacteria, and 97.0% in 17 strains among yeast. The ATP contents of the gram-negative bacteria, gram-positive bacteria, and yeasts ranged from 0.40 to 2.70x10(-18)mol/CFU (mean=1.5x10(-18)mol/CFU), from 0.41 to 16.7x10(-18)mol/CFU (mean=5.5x10(-18)mol/CFU), and from 0.714 to 54.6x10(-16)mol/CFU (mean=8.00x10(-16)mol/CFU), respectively.  相似文献   

18.
By screening for bacteriocin-producing lactic acid bacteria of 1,428 strains isolated from authentic Bulgarian dairy products, Lb. bulgaricus BB18 strain obtained from kefir grain was selected. Out of 11 yogurt starters containing Lb. bulgaricus BB18 and S. thermophilus strains resistant to bacteriocin secreted by Lb. bulgaricus BB18 a yogurt culture (S. thermophilus 11A+Lb. bulgaricus BB18) with high growth and bacteriocinogenic activity in milk was selected. Continuous (pH-stat 5.7) prefermentation processes were carried out in milk at 37 degrees C in a 2l MBR bioreactor (MBR AG, Zurich, Switzerland) with an IMCS controller for agitation speed, temperature, dissolved oxygen, CO2 and pH. Prefermented milk with pH 5.7 coagulated in a thermostat at 37 degrees C until pH 4.8-4.9. S. thermophilus 11A and Lb. bulgaricus BB18 grew independently in a continuous mode at similar and sufficiently high-dilution rates (D=1.83 h(-1)-S. thermophilus 11A; D=1.80 h(-1)-Lb. bulgaricus BB18). The yogurt cultures developed in a stream at a high-dilution rate (D=2.03-2.28 h(-1)). The progress of both processes (growth and bacteriocin production) depended on the initial ratio between the two microorganisms. The continuous prefermentation process promoted conditions for efficient fermentation and bacteriocinogenesis of the starter culture during the batch process: strong reduction of the times for bacteriocin production and coagulation of milk (to 4.5-5.0 h); high cell productivity (lactobacilli-4x10(12) CFU ml(-1), streptococci-6x10(12) CFU ml(-1)); high productivity of bacteriocins (4,500 BU ml(-1))-1.7 times higher than the bacteriocinogenic activity of the batch starter culture.  相似文献   

19.
Yeast counts were made at 24 marine and estuarine sites in the vicinity of Rio de Janeiro, Brazil. Mean salinities of estuarine sites ranged from 14.2 to 27.4‰, and mean temperatures ranged from 25 to 28°C. Total coliform counts varied from 80% above 100,000 colony-forming units (CFU)/100 ml at heavily polluted sites to 100% below 100 CFU/100 ml at unpolluted sites. Total yeast counts above 100 CFU/100 ml were typical of heavily and moderately polluted water but atypical of lightly polluted and unpolluted water. Mean total yeast counts were 2,880 CFU/100 ml for heavily polluted sites, 202 CFU/100 ml for moderately polluted sites, and 3 CFU/100 ml for lightly polluted and unpolluted sites. Total yeast counts had a positive response to increased pollution levels, and Candida krusei and phenotypically similar yeasts as a group were prevalent in polluted estuarine water but rare in unpolluted seawater. The 549 strains of yeasts and yeast-like organisms isolated were grouped into 67 species, of which the 21 most prevalent made up 86% of the total yeast population. The prevalent genera in the polluted estuary were Candida, Rhodotorula, Torulopsis, Hanseniaspora, Debaryomyces, and Trichosporon.  相似文献   

20.
AIMS: To investigate the effects of ozone on inactivation of Listeria innocua on solid media. METHODS AND RESULTS: Suspensions of L. innocua ranging from 4.5 x 10(4 )- 6.4 x 10(4) CFU ml(-1) were inoculated onto potato dextrose agar (PDA, pH 5.6 and 6.8) and nutrient agar (NA, pH 6.0 and 6.8), then exposed to gaseous ozone. Variable factors included postinoculation standing time at 20 degrees C before exposure to ozone, ozone concentration, treatment duration and treatment temperature (5 or 20 degrees C). The interaction among ozone concentration, treatment duration, media and temperature in effecting changes in colony-forming units (CFU) was significant. The 100 nl l(-1) ozone treatment for 2 h reduced the microbial populations by 2-3 log CFU ml(-1). Cell viability decreased more rapidly on PDA than on NA. The average time to obtain a 2 log CFU ml(-1) reduction was 1.3 h at 20 degrees C and 2.5 h at 5 degrees C (P < 0.001). CONCLUSIONS: Gaseous ozone effectively inactivates L. innocua at concentrations of 50 and 100 nl l(-1) during short exposure times at both 5 and 20 degrees C. The Gompretz model can be utilized for determining the response of L. innocua to ozone over time. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provides useful information on ozone inactivating Listeria spp., which may be imposed on ensuring quality and safety of horticultural produce and food products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号