首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of simultaneous treatment with heat-killed and live bacteria on the responses of two pea cultivars, Early Onward and Hurst Green Shaft, to inoculation with two races, 1 and 2, of Pseudomonas syringae pv. pisi was investigated. Simultaneous application induced resistance in pea to the bacterial pathogen. The level of resistance response elicited in the host increased with increasing number of heat-killed cells in the inoculum. Heat-killed cells of neither race elicited the hypersensitive reaction. No symptoms were induced in plants of either cultivar from treatment of control plants with sterile distilled water or from treatment with heat-killed bacterial cells only. Simultaneous treatment with heat-killed and inoculation with live bacteria did not have any apparent effect on the trend of bacterial multiplication in vivo.  相似文献   

2.
Genetic variation in the major histocompatibility complex (MHC) class IIB was tested in Japanese flounder (Paralichthys olivaceus) for survival after challenge with bacterial infection. The material consisted of 6000 Japanese flounder from 60 families challenged with Vibrio anguillarum, which causes significantly different mortality in flounder families. Five individuals from each of six high-resistance (HR) and six low-resistance (LR) families were screened for their MHC class IIB genotypes using sequence analysis. High polymorphism of MHC IIB gene and at least three loci were discovered in Japanese flounder and the rate of d(N) occurred at a significantly higher frequency than that of d(S) in PBR. Among 60 individuals, 76 alleles were discovered and 15 alleles were used to study associations between alleles and resistance to disease. We found highly significant associations between resistance towards infectious disease caused by V. anguillarum and MHC class IIB polymorphism in Japanese flounder. Some alleles appeared in both HR and LR families, while some alleles were only discovered in HR or LR families. One allele, Paol-DAB*4301, was significantly more prevalent in HR families than in LR families (P=0.023). Paol-DAB*0601, Paol-DAB*0801, Paol-DAB*2001, Paol-DAB*3803 were discovered in two HR families with high frequency. One allele, Paol-DAB*1601, was discovered in three LR families. The steady heredity of MHC class IIB alleles was observed, and the family having Paol-DAB*4301 alleles was confirmed with higher resistance to V. anguillarum. This study confirmed the association between alleles of MHC class IIB gene and disease resistance, and also detected some alleles which might be correlated with high bacterial infection resistance. The disease resistance-related MHC markers could be used for molecular marker-assisted selective breeding in the flounder.  相似文献   

3.
We have tested the importance of genetic variation in the major histocompatibility complex (MHC) class IIB in Atlantic salmon (Salmo salar) for survival after challenge with a highly virulent bacterial pathogen. Forty juvenile full siblings from each of 120 families were infected with the bacterium Aeromonas salmonicida, which causes high mortality in salmon due to furunculosis. Fishes from high-resistance (HR, < 35% mortality) and low-resistance (L,R, > 80% mortality) families were screened for their MHC class IIB genotypes using the denaturing gradient gel electrophoresis (DGGE) technique. The exon 2 sequences, encoding the major part of the peptide-binding region, were established for each DGGE fragment. One allele, e, containing a missense single base substitution was significantly more prevalent in HR families than in LR families. An odds-ratio test showed that broods carrying this allele had a 12-fold higher chance of being HR than broods without the e allele. A second allele, i, showed significantly higher frequencies in uninfected and surviving individuals than in infected dead individuals. A third allele, j, tended to more prevalent both in LR families and in individuals that had died of the infection. There was no correlation between MHC heterozygosity and resistance to A. salmonicida. Our results support the hypothesis that MHC polymorphism is maintained through pathogen-driven selection acting by means of frequency-dependent selection rather than heterozygous advantage.  相似文献   

4.
Haemocyte count, phenoloxidase activity, agglutinin levels, total protein content, bacterial clearance efficiency, resistance to the pathogen Aeromonas hydrophila and nitrite stress were measured in the giant freshwater inter-moult sub-adult prawn Macrobrachium rosenbergii (15-20 g) which had been fed diets containing bovine lactoferrin (Lf) at 50, 100, 200mg kg(-1) feed for 7 or 14 days. M. rosenbergii fed a diet containing 100mg Lf kg(-1) diet for 7 days showed significant (P<0.05) increase in total protein levels, agglutination titres against bacteria A. hydrophila and rabbit RBC, phenoloxidase activity, bacterial clearance (as observed through reduced number of circulating bacteria) as well as survival against A. hydrophila challenge. Increased bacterial clearance was also noticed in prawns fed Lf at 50 or 200mg kg(-1) for 14 days compared to control. Feeding of Lf at 50mg kg(-1) diet for 7 or 14 days was able to enhance only PO activity and reduce percent mortality against A. hydrophila challenge compared to its control. Total haemocyte count was higher in the lowest dose of Lf feeding, i.e. 50mg kg(-1) for 7 days. However, there was no significant alteration in the differential haemocyte population with respect to graded levels of Lf feeding for 7 or 14 days. A notable reduction in mortality percent after 120 h of nitrite stress was observed in prawn fed Lf at 100mg kg(-1) diet for 14 days. On the contrary, feeding of the highest dose of Lf, i.e. 200mg kg(-1) diet for 14 days failed to stimulate most of the innate immune parameters or reduce the percent mortality against A. hydrophila challenge or nitrite stress. It is therefore concluded that administration of Lf in the diet at 100mg kg(-1) for 7 days could enhance the immune ability of M. rosenbergii and increase its resistance to A. hydrophila infection or nitrite stress.  相似文献   

5.
Hess CM  Wang Z  Edwards SV 《Genetica》2007,129(2):217-225
We present molecular data documenting how introduction to the eastern United States and an epizootic involving a bacterial pathogen has affected the genetic diversity of house finches, a cardueline songbird. Population bottlenecks during introduction can cause loss of genetic variation and may negatively affect a population's ability to adapt to novel stressors such as disease. Although a genome-wide survey using Amplified Fragment Length Polymorphism (AFLP) markers suggests little loss of genetic diversity in introduced populations, an epizootic of bacterial Mycoplasma has nonetheless caused dramatic declines in the eastern US population. Sequence analysis of a candidate gene for pathogen resistance in the Major Histocompatibity Complex (MHC) in pre- and post-epizootic population samples reveals allele frequency shifts since introduction of the pathogen, but similar shifts are also observed in control populations not exposed to the bacteria, and in a neutral non-coding locus. Expression studies using a novel subtractive hybridization approach indicate decreased expression of the class II MHC locus upon exposure to Mycoplasma, a pattern also seen in MHC class I loci in mice infected with cytomegalovirus and consistent with manipulation of the finch immune system by Mycoplasma. These results will be further expanded using experimental studies as well as examination of evolution of the pathogen genome itself.  相似文献   

6.
Genes within the major histocompatibility complex (MHC) are important for both innate and adaptive immune responses in mammals; however, much less is known regarding their contribution in teleost fishes. We examined the involvement of four major histocompatibility (MH) genomic regions in rainbow trout in resistance to the causative agent of bacterial coldwater disease (BCWD), Flavobacterium psychrophilum. Fish from the 2005 NCCCWA brood-year (71 full-sib families) were challenged with F. psychrophilum strain CSF 259-93. The overall mortality rate was 70%, with large variation in mortality between families. Disease resistance was quantified as post-challenge days to death. Phenotypic variation and additive genetic variation were estimated using mixed models of survival analysis. To examine association, eight microsatellite markers were isolated from MH gene-containing BAC clones and mapped onto the rainbow trout genetic linkage map. The parents and grandparents of the 2005 brood-year families were genotyped with these eight markers and another two markers tightly linked to the MH-IB region to assess the extent of linkage disequilibrium (LD) of MH genomic regions MH-IA, MH-IB, TAP1, and MH-II with survival post-challenge. MH-IB and MH-II markers were linked to BCWD survivability when data were analyzed by family. Tests for disease association at the population level substantiated the involvement of MH-IB, but not MH-II, with disease resistance. The impact of selective breeding for disease resistance on MH sequence variation is discussed in the context of aquaculture production.  相似文献   

7.
In vertebrates, variability at genes of the Major Histocompatibility Complex (MHC) represents an important adaptation for pathogen resistance, whereby high allelic diversity confers resistance to a greater number of pathogens. Pathogens can maintain diversifying selection pressure on their host's immune system that can vary in intensity based on pathogen richness, pathogen virulence, and length of the cohabitation period, which tend to increase with temperature. In this study, we tested the hypothesis that genetic diversity of MHC increases with temperature along a latitudinal gradient in response to pathogen selective pressure in the wild. A total of 1549 Atlantic salmon from 34 rivers were sampled between 46 degrees N and 58 degrees N in Eastern Canada. The results supported our working hypothesis. In contrast to the overall pattern observed at microsatellites, MHC class II allelic diversity increased with temperature, thus creating a latitudinal gradient. The observed temperature gradient was more pronounced for MHC amino acids of the peptide-binding region (PBR), a region that specifically binds to pathogens, than for the non-PBR. For the subset of rivers analyzed for bacterial diversity, MHC amino acid diversity of the PBR also increased significantly with bacterial diversity in each river. A comparison of the relative influence of temperature and bacterial diversity revealed that the latter could have a predominant role on MHC PBR variability. However, temperature was also identified as an important selective agent maintaining MHC diversity in the wild. Based on the bacteria results and given the putative role of temperature in shaping large-scale patterns of pathogen diversity and virulence, bacterial diversity is a plausible selection mechanism explaining the observed association between temperature and MHC variability. Therefore, we propose that genetic diversity at MHC class II represents local adaptation to cope with pathogen diversity in rivers associated with different thermal regimes. This study illuminates the link between selection pressure from the environment, host immune adaptation, and the large-scale genetic population structure for a nonmodel vertebrate in the wild.  相似文献   

8.
A heightened immune response, in which immune responses are primed by repeated exposure to a pathogen, is an important characteristic of vertebrate adaptive immunity. In the present study, we examined whether invertebrate animals also exhibit a primed immune response. The LD50 of Gram-negative enterohemorrhagic Escherichia coli O157:H7 Sakai in silkworms was increased 100-fold by pre-injection of heat-killed Sakai cells. Silkworms pre-injected with heat-killed cells of a Gram-positive bacterium, Staphylococcus aureus, did not have resistance to Sakai. Silkworms preinjected with enterohemorrhagic E. coli peptidoglycans, cell surface components of bacteria, were resistant to Sakai infection. Silkworms preinjected with S. aureus peptidoglycans, however, were not resistant to Sakai. Silkworms preinjected with heat-killed Sakai cells showed persistent resistance to Sakai infection even after pupation. Repeated injection of heat-killed Sakai cells into the silkworms induced earlier and greater production of antimicrobial peptides than a single injection of heat-killed Sakai cells. These findings suggest that silkworm recognition of Gram-negative peptidoglycans leads to a primed immune reaction and increased resistance to a second round of bacterial infection.  相似文献   

9.
Mating with attractive or dominant males is often predicted to offer indirect genetic benefits to females, but it is still largely unclear how important such non-random mating can be with regard to embryo viability. We sampled a natural population of adult migratory brown trout (Salmo trutta), bred them in vitro in a half-sib breeding design to separate genetic from maternal environmental effects, raised 2098 embryos singly until hatching, and exposed them experimentally to different levels of pathogen stress at a late embryonic stage. We found that the embryos' tolerance to the induced pathogen stress was linked to the major histocompatibility complex (MHC) of their parents, i.e. certain MHC genotypes appeared to provide better protection against infection than others. We also found significant additive genetic variance for stress tolerance. Melanin-based dark skin patterns revealed males with 'good genes', i.e. embryos fathered by dark coloured males had a high tolerance to infection. Mating with large and dominant males would, however, not improve embryo viability when compared to random mating. We used simulations to provide estimates of how mate choice based on MHC or melanin-based skin patterns would influence embryos' tolerance to the experimentally induced pathogen stress.  相似文献   

10.
Genes of the major histocompatibility complex (MHC) form a vital part of the vertebrate immune system and play a major role in pathogen resistance. The extremely high levels of polymorphism observed at the MHC are hypothesised to be driven by pathogen‐mediated selection. Although the exact nature of selection remains unclear, three main hypotheses have been put forward; heterozygote advantage, negative frequency‐dependence and fluctuating selection. Here, we report the effects of MHC genotype on survival in a cohort of semi‐natural red junglefowl (Gallus gallus) that suffered severe mortality as a result of an outbreak of the disease coccidiosis. The cohort was followed from hatching until 250 days of age, approximately the age of sexual maturity in this species, during which time over 80% of the birds died. We show that on average birds with MHC heterozygote genotypes survived infection longer than homozygotes and that this effect was independent of genome‐wide heterozygosity, estimated across microsatellite loci. This MHC effect appeared to be caused by a single susceptible haplotype (CD_c) the effect of which was masked in all heterozygote genotypes by other dominant haplotypes. The CD_c homozygous genotype had lower survival than all other genotypes, but CD_c heterozygous genotypes had survival probabilities equal to the most resistant homozygote genotype. Importantly, no heterozygotes conferred greater resistance than the most resistant homozygote genotype, indicating that the observed survival advantage of MHC heterozygotes was the product of dominant, rather than overdominant processes. This pattern and effect of MHC diversity in our population could reflect the processes ongoing in similarly small, fragmented natural populations.  相似文献   

11.
Pathogens are considered a serious threat to which wild populations must adapt, most particularly under conditions of rapid environmental change. One way host adaptation has been studied is through genetic population structure at the major histocompatibility complex (MHC), a complex of adaptive genes involved in pathogen resistance in vertebrates. However, while associations between specific pathogens and MHC alleles or diversity have been documented from laboratory studies, the interaction between hosts and pathogens in the wild is more complex. As such, identifying selective agents and understanding underlying co-evolutionary mechanisms remains a major challenge. In this issue of Molecular Ecology , Evans & Neff (2009) characterized spatial and temporal variation in the bacterial parasite community infecting Chinook salmon ( Oncorhynchus tshawytscha ) fry from five populations in British Columbia, Canada. They used a 16S rDNA sequencing-based approach to examine the prevalence of bacterial infection in kidney and looked for associations with MHC class I and II genetic variability. The authors found a high diversity of bacteria infecting fry, albeit at low prevalence. It was reasoned that spatial variability in infection rate and bacterial community phylogenetic similarity found across populations may represent differential pathogen-mediated selection pressures. The study revealed some evidence of heterozygote advantage at MHC class II, but not class I, and preliminary associations between specific MHC alleles and bacterial infections were uncovered. This research adds an interesting perspective to the debate on host–pathogen co-evolutionary mechanisms and emphasizes the importance of considering the complexity of pathogen communities in studies of host local adaptation.  相似文献   

12.
To study immunological and immunogenetical parameters related to resistance against viral haemorrhagic septicaemia (VHS), attempts to make gynogenetic strains of rainbow trout selected for high and low resistance to VHS were initiated in 1988. The first gynogenetic generation of inbreeding resulted in the more resistant offspring E8 and the low resistance offspring K3; the K3 offspring having the same high mortality as the susceptible reference strain of outbred trout in infection trials. A second gynogenetic generation derived from the E8 strain resulted in some low resistance offspring, and two gynogenetic families in which all, or nearly all, fish survived challenge with VHS virus. In this study, an attempt to associate the distribution of different MHC class II genotypes with low and high resistance gynogenetic offspring was performed. Two different MHC haplotypes could be distinguished, and in both low and high resistance families all three genotypes were found, which could be explained by the fact that the mother fish carried the heterozygous genotype. Although no significant differences in MHC II genotypes were found between the high and low resistance offspring, a significantly different distribution of haplotypes in the low resistance offspring was observed, that could not be explained by a one- or two-locus model.  相似文献   

13.
Wu  Yuru  Chen  Jiehao  Wei  Wenyan  Miao  Yujia  Liang  Chao  Wu  Jianing  Huang  Xiaoli  Yin  Lizi  Geng  Yi  Chen  Defang  Ouyang  Ping 《International microbiology》2022,25(3):605-613
International Microbiology - Aeromonas hydrophila is a common pathogen in fish that has caused severe economic losses in aquaculture worldwide. With the emergence of bacterial resistance, it is...  相似文献   

14.
15.
Self/non-self recognition mechanisms underlie the development, immunology and social behaviour of virtually all living organisms, from bacteria to humans. Indeed, recognition processes lie at the core of how social cooperation evolved. Much evidence suggests that the major histocompatibility complex (MHC) both facilitates nepotistic interactions and promotes inbreeding avoidance. Social discrimination based on MHC differences has been demonstrated in many vertebrates but whether the labels used in discrimination are directly associated with the MHC, rather than with other genes with which it covaries, has remained problematic. Furthermore, effects of familiarity on natural preferences have not been controlled in most previous studies. Here we show that African clawed frog (Xenopus laevis) tadpoles discriminate among familiar full siblings based on MHC haplotype differences. Subjects (N=261) from four parental crosses preferred siblings with which they shared MHC haplotypes to those with no MHC haplotypes in common. Using only full siblings in experimental tests, we controlled for genetic variation elsewhere in the genome that might influence schooling preferences. As test subjects were equally familiar with stimulus groups, we conclude that tadpole discrimination involves a self-referent genetic recognition mechanism whereby individuals compare their own MHC type with those of conspecifics.  相似文献   

16.
The Japanese flounder is one of the most widely farmed economic flatfish species throughout eastern Asia including China, Korea, and Japan. Edwardsiella tarda is a major species of pathogenic bacteria that causes ascites disease and, consequently, a huge economy loss for Japanese flounder farming. After generation selection, traditional breeding methods can hardly improve the E. tarda resistance effectively. Genomic selection is an effective way to predict the breeding potential of parents and has rarely been used in aquatic breeding. In this study, we chose 931 individuals from 90 families, challenged by E. tarda from 2013 to 2015 as a reference population and 71 parents of these families as selection candidates. 1,934,475 markers were detected via genome sequencing and applied in this study. Two different methods, BayesCπ and GBLUP, were used for genomic prediction. In the reference population, two methods led to the same accuracy (0.946) and Pearson’s correlation results between phenotype and genomic estimated breeding value (GEBV) of BayesCπ and GBLUP were 0.912 and 0.761, respectively. In selection candidates, GEBVs from two methods were highly similar (0.980). A comparison of GEBV with the survival rate of families that were structured by selection candidates showed correlations of 0.662 and 0.665, respectively. This study established a genomic selection method for the Japanese flounder and for the first time applied this to E. tarda resistance breeding.  相似文献   

17.
Cupressus lusitanica seedlings from open-pollinated seeds of 18 families were inoculated with day-old first instar Cinara cupressi. Aphid survival was used to determine the genetic basis and inheritance of resistance to the insect. There was marked variation in aphid survival both between and within families. An individual-tree narrow-sense heritability of 0.76 ± 0.30 shows strong additive genetic control which could allow effective selection and breeding for resistance. Resistant parents produced resistant progeny while susceptible parents produced susceptible progeny. There were notable exceptions as some susceptible parents produced highly resistant progeny, indicating that they had acquired pollen from resistant neighbours. Recovery of aphid damaged trees is evident implying that care should be taken in selecting for resistance. The strong additive variance and potentially high heritability indicate that one cycle of selection may yield a resistant population, while intraspecific crossing may give better results. Implications of the results in a C. lusitanica breeding programme are discussed.  相似文献   

18.
The effect of MHC polymorphism on individual fitness variation in the wild remains equivocal; however, much evidence suggests that heterozygote advantage is a major determinant. To understand the contribution of MHC polymorphism to individual disease resistance or susceptibility in natural populations, we investigated two MHC class II B loci, DQB and DRB, in the New Zealand sea lion (NZSL, Phocarctos hookeri). The NZSL is a threatened species which is unusually susceptible to death by bacterial infection at an early age; it has suffered three bacterial induced epizootics resulting in high mortality levels of young pups since 1997. The MHC DQB and DRB haplotypes of dead NZSL pups with known cause of death (bacteria, enteritis or trauma) were sequenced and reconstructed, compared to pups that survived beyond 2 months of age, and distinct MHC DRB allele frequency and genotype differences were identified. Two findings were striking: (i) one DRB allele was present only in dead pups, and (ii) one heterozygous DRB genotype, common in live pups, was absent from dead pups. These results are consistent with some functional relationship with these variants and suggest heterozygote advantage is operating at DRB. We found no association between heterozygosity and fitness at 17 microsatellite loci, indicating that general heterozygosity is not responsible for the effect on fitness detected here. This result may be a consequence of recurrent selection by multiple pathogen assault over recent years and highlights the importance of heterozygote advantage at MHC as a potential mechanism for fitness differences in wild populations.  相似文献   

19.
Major histocompatibility complex (MHC) genes determine immune repertoires and social preferences of vertebrates. Immunological regulation of microbial assemblages associated with individuals influences their sociality, and should also affect their life-history traits. We exposed Xenopus laevis tadpoles to water conditioned by adult conspecifics. Then, we analysed tadpole growth, development and survivorship as a function of MHC class I and class II peptide-binding region amino acid sequence similarities between tadpoles and frogs that conditioned the water to which they were exposed. Tadpoles approached metamorphosis earlier and suffered greater mortality when exposed to immunogenetically dissimilar frogs. The results suggest that developmental regulatory cues, microbial assemblages or both are specific to MHC genotypes. Tadpoles may associate with conspecifics with which they share microbiota to which their genotypes are well adapted.  相似文献   

20.
Aeromonas hydrophila is a major bacterial pathogen associated with hemorrhagic septicemia in aquatic and terrestrial animals including humans. There is an urgent need to develop molecular and immunological assays for rapid, specific and sensitive diagnosis. A new set of primers has been designed for detection of thermostable hemolysin (TH) gene (645 bp) from A. hydrophila, and sensitivity limit for detection of TH gene was 5 pg. The TH gene was cloned, sequenced and analyzed. The G+C content was 68.06%; and phylogeny was constructed using TH protein sequences which had significant homology with those for thermostable and other hemolysins present in several bacterial pathogens. In addition, we have predicted the four and eight T-cell epitopes for MHC class I and II alleles, respectively. These results provide new insight for TH protein containing antigenic epitopes that can be used in immunoassays and also designing of thermostable vaccines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号