首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

We recently described a genomic pathway approach to study complex diseases. We demonstrated that models constructed using single nucleotide polymorphisms (SNPs) within axon guidance pathway genes were highly predictive of Parkinson disease (PD) susceptibility, survival free of PD, and age at onset of PD within two independent whole-genome association datasets. We also demonstrated that several axon guidance pathway genes represented by SNPs within our final models were differentially expressed in PD.

Methodology/Principal Findings

Here we employed our genomic pathway approach to analyze data from a whole-genome association dataset of amyotrophic lateral sclerosis (ALS); and demonstrated that models constructed using SNPs within axon guidance pathway genes were highly predictive of ALS susceptibility (odds ratio = 1739.73, p = 2.92×10−60), survival free of ALS (hazards ratio = 149.80, p = 1.25×10−74), and age at onset of ALS (R2 = 0.86, p = 5.96×10−66). We also extended our analyses of a whole-genome association dataset of PD, which shared 320,202 genomic SNPs in common with the whole-genome association dataset of ALS. We compared for ALS and PD the genes represented by SNPs in the final models for susceptibility, survival free of disease, and age at onset of disease and noted that 52.2%, 37.8%, and 34.9% of the genes were shared respectively.

Conclusions/Significance

Our findings for the axon guidance pathway and ALS have prior biological plausibility, overlap partially with PD, and may provide important insight into the causes of these and related neurodegenerative disorders.  相似文献   

2.
We performed a two-tiered, whole-genome association study of Parkinson disease (PD). For tier 1, we individually genotyped 198,345 uniformly spaced and informative single-nucleotide polymorphisms (SNPs) in 443 sibling pairs discordant for PD. For tier 2a, we individually genotyped 1,793 PD-associated SNPs (P<.01 in tier 1) and 300 genomic control SNPs in 332 matched case-unrelated control pairs. We identified 11 SNPs that were associated with PD (P<.01) in both tier 1 and tier 2 samples and had the same direction of effect. For these SNPs, we combined data from the case-unaffected sibling pair (tier 1) and case-unrelated control pair (tier 2) samples and employed a liberalization of the sibling transmission/disequilibrium test to calculate odds ratios, 95% confidence intervals, and P values. A SNP within the semaphorin 5A gene (SEMA5A) had the lowest combined P value (P=7.62 x 10(-6)). The protein encoded by this gene plays an important role in neurogenesis and in neuronal apoptosis, which is consistent with existing hypotheses regarding PD pathogenesis. A second SNP tagged the PARK11 late-onset PD susceptibility locus (P=1.70 x 10(-5)). In tier 2b, we also selected for genotyping additional SNPs that were borderline significant (P<.05) in tier 1 but that tested a priori biological and genetic hypotheses regarding susceptibility to PD (n=941 SNPs). In analysis of the combined tier 1 and tier 2b data, the two SNPs with the lowest P values (P=9.07 x 10(-6); P=2.96 x 10(-5)) tagged the PARK10 late-onset PD susceptibility locus. Independent replication across populations will clarify the role of the genomic loci tagged by these SNPs in conferring PD susceptibility.  相似文献   

3.
While major inroads have been made in identifying the genetic causes of rare Mendelian disorders, little progress has been made in the discovery of common gene variations that predispose to complex diseases. The single gene variants that have been shown to associate reproducibly with complex diseases typically have small effect sizes or attributable risks. However, the joint actions of common gene variants within pathways may play a major role in predisposing to complex diseases (the paradigm of complex genetics). The goal of this study was to determine whether polymorphism in a candidate pathway (axon guidance) predisposed to a complex disease (Parkinson disease [PD]). We mined a whole-genome association dataset and identified single nucleotide polymorphisms (SNPs) that were within axon-guidance pathway genes. We then constructed models of axon-guidance pathway SNPs that predicted three outcomes: PD susceptibility (odds ratio = 90.8, p = 4.64 × 10−38), survival free of PD (hazards ratio = 19.0, p = 5.43 × 10−48), and PD age at onset (R2 = 0.68, p = 1.68 × 10−51). By contrast, models constructed from thousands of random selections of genomic SNPs predicted the three PD outcomes poorly. Mining of a second whole-genome association dataset and mining of an expression profiling dataset also supported a role for many axon-guidance pathway genes in PD. These findings could have important implications regarding the pathogenesis of PD. This genomic pathway approach may also offer insights into other complex diseases such as Alzheimer disease, diabetes mellitus, nicotine and alcohol dependence, and several cancers.  相似文献   

4.
We performed a multitiered, case-control association study of psoriasis in three independent sample sets of white North American individuals (1,446 cases and 1,432 controls) with 25,215 genecentric single-nucleotide polymorphisms (SNPs) and found a highly significant association with an IL12B 3'-untranslated-region SNP (rs3212227), confirming the results of a small Japanese study. This SNP was significant in all three sample sets (odds ratio [OR](common) 0.64, combined P [Pcomb]=7.85x10(-10)). A Monte Carlo simulation to address multiple testing suggests that this association is not a type I error. The coding regions of IL12B were resequenced in 96 individuals with psoriasis, and 30 additional IL12B-region SNPs were genotyped. Haplotypes were estimated, and genotype-conditioned analyses identified a second risk allele (rs6887695) located approximately 60 kb upstream of the IL12B coding region that exhibited association with psoriasis after adjustment for rs3212227. Together, these two SNPs mark a common IL12B risk haplotype (OR(common) 1.40, Pcomb=8.11x10(-9)) and a less frequent protective haplotype (OR(common) 0.58, Pcomb=5.65x10(-12)), which were statistically significant in all three studies. Since IL12B encodes the common IL-12p40 subunit of IL-12 and IL-23, we individually genotyped 17 SNPs in the genes encoding the other chains of these cytokines (IL12A and IL23A) and their receptors (IL12RB1, IL12RB2, and IL23R). Haplotype analyses identified two IL23R missense SNPs that together mark a common psoriasis-associated haplotype in all three studies (OR(common) 1.44, Pcomb=3.13x10(-6)). Individuals homozygous for both the IL12B and the IL23R predisposing haplotypes have an increased risk of disease (OR(common) 1.66, Pcomb=1.33x10(-8)). These data, and the previous observation that administration of an antibody specific for the IL-12p40 subunit to patients with psoriasis is highly efficacious, suggest that these genes play a fundamental role in psoriasis pathogenesis.  相似文献   

5.
Genetic variants of leucine-rich repeat kinase 2 (LRRK2) were reported to alter the risk for Parkinson’s disease (PD). However, the genetic spectrum of LRRK2 variants has not been clearly disclosed yet in Taiwanese population. Herein, we sequenced LRRK2 coding region in 70 Taiwanese early onset PD patients (age at onset ≤ 50), and found six amino acid-changing single nucleotide polymorphisms (SNPs, N551K, R1398H, R1628P, S1647T, G2385R and M2397T), one reported (R1441H) and 2 novel missense (R767H and S885N) mutations. We examined the frequency of identified LRRK2 variants by genotyping 573 Taiwanese patients with PD and 503 age-matched control subjects. The results showed that PD patients demonstrated a higher frequency of G2385R A allele (4.6%) than control subjects (2.1%; odds ratio = 2.27, 95% confidence interval: 1.38–3.88, P = 0.0017). Fewer PD patients (27.7%) carried the 1647T-2397T haplotype as compared with the control subjects (33.0%; odds ratio = 0.80, 95% confidence interval: 0.65–0.97, P = 0.0215). However, the frequency of 1647T-2385R-2397T haplotype (4.3%) in PD patients was still higher than in control subjects (1.9%, odds ratio: 2.15, 95% confidence interval: 1.27–3.78, P = 0.0058). While no additional subject was found to carry R767H and R1441H, one more patient was observed to carry the S885N variant. Our results indicate a robust risk association regarding G2385R and a new possible protective haplotype (1647T-2397T). Gene-environmental interaction and a larger cohort study are warranted to validate our findings. Additionally, two new missense mutations (R767H and S885N) regarding LRRK2 in PD patients were identified. Functional studies are needed to elucidate the effects of these LRRK2 variants on protein function.  相似文献   

6.

Background

Glutathione S-transferase omega-1 and 2 genes (GSTO1, GSTO2), residing within an Alzheimer and Parkinson disease (AD and PD) linkage region, have diverse functions including mitigation of oxidative stress and may underlie the pathophysiology of both diseases. GSTO polymorphisms were previously reported to associate with risk and age-at-onset of these diseases, although inconsistent follow-up study designs make interpretation of results difficult. We assessed two previously reported SNPs, GSTO1 rs4925 and GSTO2 rs156697, in AD (3,493 ADs vs. 4,617 controls) and PD (678 PDs vs. 712 controls) for association with disease risk (case-controls), age-at-diagnosis (cases) and brain gene expression levels (autopsied subjects).

Results

We found that rs156697 minor allele associates with significantly increased risk (odds ratio = 1.14, p = 0.038) in the older ADs with age-at-diagnosis > 80 years. The minor allele of GSTO1 rs4925 associates with decreased risk in familial PD (odds ratio = 0.78, p = 0.034). There was no other association with disease risk or age-at-diagnosis. The minor alleles of both GSTO SNPs associate with lower brain levels of GSTO2 (p = 4.7 × 10-11-1.9 × 10-27), but not GSTO1. Pathway analysis of significant genes in our brain expression GWAS, identified significant enrichment for glutathione metabolism genes (p = 0.003).

Conclusion

These results suggest that GSTO locus variants may lower brain GSTO2 levels and consequently confer AD risk in older age. Other glutathione metabolism genes should be assessed for their effects on AD and other chronic, neurologic diseases.  相似文献   

7.
Cytotoxic T-lymphocyte antigen 4 (CTLA-4) is an inhibitory T-cell receptor expressed by activated and regulatory T cells. We hypothesized that single-nucleotide polymorphisms (SNPs) in the gene encoding CTLA-4 may affect the vigor of the T-cell response to hepatitis B virus (HBV) infection, thus influencing viral persistence. To test this hypothesis, we genotyped six CTLA4 SNPs, from which all frequent haplotypes can be determined, using a large, matched panel of subjects with known HBV outcomes. Haplotypes with these SNPs were constructed for each subject using PHASE software. The haplotype distribution differed between those with viral persistence and those with clearance. Two haplotypes were associated with clearance of HBV infection, which was most likely due to associations with the SNPs -1722C (odds ratio [OR] = 0.60, P = 0.06) and +49G (OR = 0.73, P = 0.02). The wild-type haplotype, which contains an SNP leading to a decreased T-cell response (+6230A), was associated with viral persistence (OR = 1.32, P = 0.04). These data suggest that CTLA4 influences recovery from HBV infection, which is consistent with the emerging role of T regulatory cells in the pathogenesis of disease.  相似文献   

8.
The pathogenic process responsible for the loss of dopaminergic neurons within the substantia nigra of patients with Parkinson disease (PD) is poorly understood. Current research supports the involvement of fibroblast growth factor (FGF20) in the survival of dopaminergic cells. FGF20 is a neurotrophic factor that is preferentially expressed within the substantia nigra of rat brain. The human homologue has been mapped to 8p21.3-8p22, which is within an area of PD linkage revealed through our published genomic screen. To test whether FGF20 influences risk of PD, we genotyped five single-nucleotide polymorphisms (SNPs) lying within the FGF20 gene, in a large family study. We analyzed our sample (644 families) through use of the pedigree disequilibrium test (PDT), the genotype PDT, the multilocus-genotype PDT, and the family-based association test to assess association between risk of PD and alleles, genotypes, multilocus genotypes, and haplotypes. We discovered a highly significant association of PD with one intronic SNP, rs1989754 (P=.0006), and two SNPs, rs1721100 (P=.02) and ss20399075 (P=.0008), located in the 3' regulatory region in our overall sample. Furthermore, we detected a haplotype (A-G-C-C-T) that is positively associated with risk of PD (P=.0003), whereas a second haplotype (A-G-G-G-C) was found to be negatively associated with risk of PD (P=.0009). Our results strongly support FGF20 as a risk factor for PD.  相似文献   

9.
Significant evidence of linkage to type 2 diabetes (T2D) has been shown in a relatively broad region on chromosome 20q, where the hepatocyte nuclear factor-4alpha (HNF4A) has been noted as a positional candidate. To systematically evaluate genetic susceptibility to T2D in the relevant region, we examined the disease association by using 1145 SNPs in two-step screening in the Japanese population. The marker screening enabled us to identify significant disease association in the lipopolysaccharide binding protein (LBP) but not in the HNF4A locus. In a 17.7-Mb interval screened, the strongest association was identified for a SNP, rs2232592, located in the intron of LBP, with an estimated odds ratio of 1.73 (95% CI 1.30-2.31) (P=0.0002) in the whole study panel involving 675 case and 474 control subjects. Our data suggest that the LBP gene may confer genetic susceptibility to T2D and this warrants further replication study.  相似文献   

10.
Mitochondrial (mt) impairment, particularly within complex I of the electron transport system, has been implicated in the pathogenesis of Parkinson disease (PD). More than half of mitochondrially encoded polypeptides form part of the reduced nicotinamide adenine dinucleotide dehydrogenase (NADH) complex I enzyme. To test the hypothesis that mtDNA variation contributes to PD expression, we genotyped 10 single-nucleotide polymorphisms (SNPs) that define the European mtDNA haplogroups in 609 white patients with PD and 340 unaffected white control subjects. Overall, individuals classified as haplogroup J (odds ratio [OR] 0.55; 95% confidence interval [CI] 0.34-0.91; P=.02) or K (OR 0.52; 95% CI 0.30-0.90; P=.02) demonstrated a significant decrease in risk of PD versus individuals carrying the most common haplogroup, H. Furthermore, a specific SNP that defines these two haplogroups, 10398G, is strongly associated with this protective effect (OR 0.53; 95% CI 0.39-0.73; P=.0001). SNP 10398G causes a nonconservative amino acid change from threonine to alanine within the NADH dehydrogenase 3 (ND3) of complex I. After stratification by sex, this decrease in risk appeared stronger in women than in men (OR 0.43; 95% CI 0.27-0.71; P=.0009). In addition, SNP 9055A of ATP6 demonstrated a protective effect for women (OR 0.45; 95% CI 0.22-0.93; P=.03). Our results suggest that ND3 is an important factor in PD susceptibility among white individuals and could help explain the role of complex I in PD expression.  相似文献   

11.
Although intensive efforts have been undertaken to elucidate the genetic background of immunoglobulin A nephropathy (IgAN), genetic factors associated with the pathogenesis of this disease are still not well understood. We designed a case-control association study that was based on linkage disequilibrium among single-nucleotide polymorphisms (SNPs) in the selectin gene cluster on chromosome 1q24-25, and we found two SNPs in the E-selectin gene (SELE8 and SELE13) and six SNPs in the L-selectin gene (SELL1, SELL4, SELL5, SELL6, SELL10, and SELL11) that were significantly associated with IgAN in Japanese patients. All eight SNPs were in almost complete linkage disequilibrium. SELE8 and SELL10 caused amino acid substitutions from His to Tyr and from Pro to Ser (chi2=9.02, P=.0026, odds ratio = 2.73 [95% confidence interval [CI] 1.38--5.38] for His-to-Tyr substitutions; chi2=17.4, P=.000031, odds ratio = 3.61 [95% CI 1.91--6.83] for Pro-to-Ser substitutions), and SELL1 could affect promoter activity of the L-selectin gene (chi2=19.5, P=.000010, odds ratio = 3.77 [95% CI 2.02--7.05]). The TGT haplotype at these three loci was associated significantly with IgAN (chi2=18.67, P=.000016, odds ratio = 1.88 [95% CI 1.41--2.51]). Our results suggest that these eight SNPs in selectin genes may be useful for screening populations susceptible to the IgAN phenotype that involves interstitial infiltration.  相似文献   

12.
Inhibition of the endocannabinoid receptor CB1 improves insulin sensitivity, lowers glycemia, and slows atherosclerosis. We analyzed whether common variants in the gene encoding CB1, CNR1, are associated with insulin resistance, risk of type 2 diabetes (T2D) or coronary heart disease (CHD). We studied 2,411 participants of the Framingham Offspring Study (mean age 60 years, 52% women) for quantitative traits and CHD, and the Framingham SHARe database for T2D risk. We genotyped 19 single-nucleotide polymorphisms (SNPs) that tagged 85% (at r(2) = 0.8) of common (>5%) CNR1 SNPs. Fasting blood glucose and insulin at the 7th (1999-2001) exam were collected. We used age-, sex-, BMI-adjusted models to test additive associations of genotype with homeostasis model assessment of insulin resistance (HOMA(IR)) (linear mixed-effect models), T2D, or CHD. To account for multiple tests of SNPs, we generated empirical P values. The C allele at SNP rs806365 (frequency, 57.4%), ~4.1 kb 3' from CNR1, was associated with increased HOMA(IR) (n = 2,261, β = 0.05 per C, empirical P = 0.01), risk of T2D (674 cases, odds ratio = 1.19 per C, nominal P = 0.01) and CHD (237 cases, hazard ratio = 1.23 per C, nominal P = 0.04). The association of rs806365 with HOMA(IR) was replicated in a meta-analysis of two independent cohorts (National Health and Nutrition Examination Survey III genetic cohort (NHANES-III) plus Partners Case-Control Diabetes Study; 2,540 white individuals, β = 0.037, nominal P = 0.007), but not in the large Meta-Analyses of Glucose and Insulin-related traits Consortium (MAGIC) Consortium (n = 29,248, nominal P = 0.74). The association of rs806365 was not replicated either with T2D in Diabetes Genetics Replication and Meta-analysis (DIAGRAM) (n = 10,128, nominal P = 0.31), or with CHD in PROCARDIS (n = 13,614, nominal P = 0.37). Although supported by initial results, we found no reproducible statistical association of common variation at CNR1 with insulin resistance, T2D, or CHD.  相似文献   

13.
14.
Li S  Jin T  Zhang J  Lou H  Yang B  Li Y  Chen C  Zhang Y 《Cancer epidemiology》2012,36(3):283-287
Introduction: Glioma is one of the most aggressive human tumors; however, little is known about its genetic risk factors. The role of heredity is likely to be explained by combinations of common low-risk variants. Previous studies have indicated that more than 100 single nucleotide polymorphisms (SNPs) are associated with the risk of glioma. Methods: To further investigate how and to what extent these SNPs contribute to glioma susceptibility in a Chinese population, we analyzed 43 SNPs of 226 glioma patients and 254 normal people in order to evaluate the associations between SNPs and the risk of glioma. Results: Overall, we found three protective alleles for glioma in patients: the allele "G" of rs1801275 in the IL4R gene by allele model (odds ratio [OR], 0.71; 95% confidence interval [CI], 0.50-0.99; P=0.04) and dominant model (OR, 0.67; 95% CI, 0.46-0.99; P=0.04) analysis respectively, the allele "T" of rs17748 in the TREH gene by recessive model (OR, 0.48; 95% CI, 0.23-1.01; P=0.05) analysis, and the allele "G" of rs6470745 in CCDC26 gene by recessive model (OR, 0.48; 95% CI, 0.26-0.89; P=0.02) analysis. Conclusion: This study provides evidence for three glioma susceptibility genes - TREH, IL4R and CCDC26 - in a Chinese population; this may shed light on molecular markers of glioma susceptibility and could therefore be used as a diagnostic and prognostic marker for glioma patients in clinical study.  相似文献   

15.
Hao K  Niu T  Xu X  Fang Z  Xu X 《Human genetics》2005,116(5):378-383
Airway hyperresponsiveness (AHR) is one of the major clinical symptoms and intermediate phenotypes of asthma. A recent genome-wide search for asthma quantitative trait loci has revealed a significant linkage signal between a p-terminal region of chromosome 2 and AHR. Thus, the gene encoding the potassium voltage-gated channel delayed-rectifier protein S3 (KCNS3) in this region is considered a positional candidate for asthma. We have evaluated a total of 12 single-nucleotide polymorphisms (SNPs) of the KCNS3 gene in a validation panel of 48 lymphoblastoid cell line DNA samples of Chinese origin. Three SNPs were found to be polymorphic and were tested. Two independent sets (an initial screening set and a replication set) of cases and controls from the original linkage study sample were collected. In the initial screening set, two SNPs (rs1031771 and rs1031772) showed suggestive association and were further confirmed by the replication set. In combined single-SNP analysis, the rs1031771 G allele (odds ratio=1.42, P=0.006) and rs1031772 T allele (odds ratio=1.40, P=0.018) were associated with a significantly higher risk of AHR. Haplotype analysis also detected significant association (P=0.006). Our findings suggest that SNPs located at the 3 downstream region of KCNS3 have a significant role in the etiology of AHR.  相似文献   

16.
Many common diseases are accompanied by disturbances in biochemical traits. Identifying the genetic determinants could provide novel insights into disease mechanisms and reveal avenues for developing new therapies. Here, we report a genome-wide association analysis for commonly measured serum and urine biochemical traits. As part of the WTCCC, 500,000 SNPs genome wide were genotyped in 1955 hypertensive individuals characterized for 25 serum and urine biochemical traits. For each trait, we assessed association with individual SNPs, adjusting for age, sex, and BMI. Lipid measurements were further examined in a meta-analysis of genome-wide data from a type 2 diabetes scan. The most promising associations were examined in two epidemiological cohorts. We discovered association between serum urate and SLC2A9, a glucose transporter (p = 2 x 10(-15)) and confirmed this in two independent cohorts, GRAPHIC study (p = 9 x 10(-15)) and TwinsUK (p = 8 x 10(-19)). The odds ratio for hyperuricaemia (defined as urate >0.4 mMol/l) is 1.89 (95% CI = 1.36-2.61) per copy of common allele. We also replicated many genes previously associated with serum lipids and found previously recognized association between LDL levels and SNPs close to genes encoding PSRC1 and CELSR2 (p = 1 x 10(-7)). The common allele was associated with a 6% increase in nonfasting serum LDL. This region showed increased association in the meta-analysis (p = 4 x 10(-14)). This finding provides a potential biological mechanism for the recent association of this same allele of the same SNP with increased risk of coronary disease.  相似文献   

17.
Genome-wide disease association studies contrast genetic variation between disease cohorts and healthy populations to discover single nucleotide polymorphisms (SNPs) and other genetic markers revealing underlying genetic architectures of human diseases. Despite scores of efforts over the past decade, many reproducible genetic variants that explain substantial proportions of the heritable risk of common human diseases remain undiscovered. We have conducted a multispecies genomic analysis of 5,831 putative human risk variants for more than 230 disease phenotypes reported in 2,021 studies. We find that the current approaches show a propensity for discovering disease-associated SNPs (dSNPs) at conserved genomic positions because the effect size (odds ratio) and allelic P value of genetic association of an SNP relates strongly to the evolutionary conservation of their genomic position. We propose a new measure for ranking SNPs that integrates evolutionary conservation scores and the P value (E-rank). Using published data from a large case-control study, we demonstrate that E-rank method prioritizes SNPs with a greater likelihood of bona fide and reproducible genetic disease associations, many of which may explain greater proportions of genetic variance. Therefore, long-term evolutionary histories of genomic positions offer key practical utility in reassessing data from existing disease association studies, and in the design and analysis of future studies aimed at revealing the genetic basis of common human diseases.  相似文献   

18.
Rheumatoid arthritis (RA) is a chronic, systemic autoimmune disease affecting both joints and extra-articular tissues. Although some genetic risk factors for RA are well-established, most notably HLA-DRB1 and PTPN22, these markers do not fully account for the observed heritability. To identify additional susceptibility loci, we carried out a multi-tiered, case-control association study, genotyping 25,966 putative functional SNPs in 475 white North American RA patients and 475 matched controls. Significant markers were genotyped in two additional, independent, white case-control sample sets (661 cases/1322 controls from North America and 596 cases/705 controls from The Netherlands) identifying a SNP, rs1953126, on chromosome 9q33.2 that was significantly associated with RA (OR(common) = 1.28, trend P(comb) = 1.45E-06). Through a comprehensive fine-scale-mapping SNP-selection procedure, 137 additional SNPs in a 668 kb region from MEGF9 to STOM on 9q33.2 were chosen for follow-up genotyping in a staged-approach. Significant single marker results (P(comb)<0.01) spanned a large 525 kb region from FBXW2 to GSN. However, a variety of analyses identified SNPs in a 70 kb region extending from the third intron of PHF19 across TRAF1 into the TRAF1-C5 intergenic region, but excluding the C5 coding region, as the most interesting (trend P(comb): 1.45E-06 --> 5.41E-09). The observed association patterns for these SNPs had heightened statistical significance and a higher degree of consistency across sample sets. In addition, the allele frequencies for these SNPs displayed reduced variability between control groups when compared to other SNPs. Lastly, in combination with the other two known genetic risk factors, HLA-DRB1 and PTPN22, the variants reported here generate more than a 45-fold RA-risk differential.  相似文献   

19.
Several lines of evidence support for a role of angiotensin converting enzyme (ACE) in Alzheimer disease (AD). Most genetic studies have focused on an Alu insertion/deletion (I/D) polymorphism in the ACE gene (DCP1) and have yielded conflicting results. We evaluated the association between 15 single-nucleotide polymorphisms (SNPs) in DCP1, including the I/D variant, and AD in a sample of 92 patients with AD and 166 nondemented controls from an inbred Israeli Arab community. Although there was no evidence for association between AD and I/D, we observed significant association with SNPs rs4343 (P = .00001) and rs4351 (P = .01). Haplotype analysis revealed remarkably significant evidence of association with the SNP combination rs4343 and rs4351 (global P = 7.5 x 10(-7)). Individuals possessing the haplotype "GA" (frequency 0.21 in cases and 0.01 in controls) derived from these SNPs had a 45-fold increased risk of developing AD (95% CI 6.0-343.2) compared with those possessing any of the other three haplotypes. Longer range haplotypes including I/D were even more significant (lowest global P = 1.1 x 10(-12)), but the only consistently associated alleles were in rs4343 and rs4351. These results suggest that a variant in close proximity to rs4343 and rs4351 modulates susceptibility to AD in this community.  相似文献   

20.
Some case-control genome-wide association studies (CCGWASs) select promising single nucleotide polymorphisms (SNPs) by ranking corresponding p-values, rather than by applying the same p-value threshold to each SNP. For such a study, we define the detection probability (DP) for a specific disease-associated SNP as the probability that the SNP will be "T-selected," namely have one of the top T largest chi-square values (or smallest p-values) for trend tests of association. The corresponding proportion positive (PP) is the fraction of selected SNPs that are true disease-associated SNPs. We study DP and PP analytically and via simulations, both for fixed and for random effects models of genetic risk, that allow for heterogeneity in genetic risk. DP increases with genetic effect size and case-control sample size and decreases with the number of nondisease-associated SNPs, mainly through the ratio of T to N, the total number of SNPs. We show that DP increases very slowly with T, and the increment in DP per unit increase in T declines rapidly with T. DP is also diminished if the number of true disease SNPs exceeds T. For a genetic odds ratio per minor disease allele of 1.2 or less, even a CCGWAS with 1000 cases and 1000 controls requires T to be impractically large to achieve an acceptable DP, leading to PP values so low as to make the study futile and misleading. We further calculate the sample size of the initial CCGWAS that is required to minimize the total cost of a research program that also includes follow-up studies to examine the T-selected SNPs. A large initial CCGWAS is desirable if genetic effects are small or if the cost of a follow-up study is large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号