首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of + 1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the “out-of-frame pairing” model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA – possibly a result of their low growth rates and deep-water lifestyle – has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.  相似文献   

2.
Triant DA  Dewoody JA 《Genetica》2006,128(1-3):95-108
Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation. The mitochondrial genome sequence from this article has been deposited with the GenBank database under accession number DQ015676.  相似文献   

3.
We have determined the complete mitochondrial DNA (mtDNA) sequences of three chytridiomycete fungi, Monoblepharella15, Harpochytrium94 and Harpochytrium105. Our phylogenetic analysis based on concatenated mitochondrial protein sequences confirms the placement of Mono blepharella15 together with Harpochytrium spp. and Hyaloraphidium curvatum within the taxonomic order Monoblepharidales, with overwhelming support. These four mtDNA sequences encode the standard fungal mitochondrial gene complement and, like certain other chytridiomycete fungi, encode a reduced complement of 7–9 tRNAs, some of which require 5′-tRNA editing to be functional. Highly conserved sequence elements were identified upstream of almost all protein-coding genes in the mtDNAs of Monoblepharella15 and both Harpochytrium species. Finally, a guanosine residue is conserved upstream of the predicted ATG or GTG start codons of almost every protein-coding gene in these genomes. The appearance of this G residue correlates with the presence of a non-canonical cytosine residue at position 37 in the anticodon loop of the mitochondrial initiator tRNAs. Based on the unorthodox features in these four genomes, we propose that a 4 bp interaction between the CAUC anticodon of these tRNAs and GAUG/GGUG codons is involved in translation initiation in monoblepharidalean mitochondria. Intriguingly, a similar interaction may also be involved in mitochondrial translation initiation in the sea anemone Metridium senile.  相似文献   

4.
Liu HP  Hershler R  Clift K 《Molecular ecology》2003,12(10):2771-2782
We analysed cytochrome c oxidase subunit I and NADH dehydrogenase subunit I sequence variation among 29 populations of a widely ranging southwestern springsnail (Pyrgulopsis micrococcus) and 18 regional congeners. Cladistic analyses of these sequences depict P. micrococcus as a polyphyletic composite of five well-supported clades. Sequence divergences among these clades and subclades imply the possible occurrence of as many as seven or eight cryptic species in addition to P. micrococcus. Our finding that P. micrococcus contains multiple, genetically distinct and geographically restricted lineages suggests that diversification within this highly speciose aquatic genus has been structured in large part by the operation of terrestrial barriers to gene flow. However, these sequence data also indicate that recent dispersal among hydrographically separated areas has occurred within one of these lineages, which we attribute to passive transport on migratory waterbirds.  相似文献   

5.
The analysis of mitochondrial DNA (mtDNA) sequences has been a potent tool in our understanding of human evolution. However, almost all studies of human evolution based on mtDNA sequencing have focused on the control region, which constitutes less than 7% of the mitochondrial genome. The rapid development of technology for automated DNA sequencing has made it possible to study the complete mtDNA genomes in large numbers of individuals, opening the field of mitochondrial population genomics. Here we describe a suitable methodology for determining the complete human mitochondrial sequence and the global mtDNA diversity in humans. Also, we discuss the implications of the results with respect to the different hypotheses for the evolution of modern humans.  相似文献   

6.
Pantou MP  Kouvelis VN  Typas MA 《Gene》2008,419(1-2):7-15
The complete mitochondrial DNA (mtDNA) sequence was determined for the phytopathogenic fungus Fusarium oxysporum. It is 34,477 bp long, maps circularly, and encodes for 14 protein-coding, 25 tRNA and 2 rRNA genes. The nucleotide and amino acid data sets from its 14 concatenated protein-coding mitochondrial (mt) genes were used along with gene order comparisons for an extensive phylogenetic study of the Subphylum Pezizomycotina. Our results are in agreement with current taxonomic treatments and additionally provide better statistical support for all relationships within Pezizomycotina when compared to analyses based on single or few gene data sets. The gene order of F. oxysporum was consistent with that established in the order Hypocreales (Class: Sordariomycetes) and enhanced previous suppositions on the ancestral state of Sordariomycetes. In comparison with mt genomes of the other orders it added further insights to the evolution of Pezizomycotina.  相似文献   

7.
Zhang T  Fang Y  Wang X  Deng X  Zhang X  Hu S  Yu J 《PloS one》2012,7(1):e30531
The complete nucleotide sequences of the chloroplast (cp) and mitochondrial (mt) genomes of resurrection plant Boea hygrometrica (Bh, Gesneriaceae) have been determined with the lengths of 153,493 bp and 510,519 bp, respectively. The smaller chloroplast genome contains more genes (147) with a 72% coding sequence, and the larger mitochondrial genome have less genes (65) with a coding faction of 12%. Similar to other seed plants, the Bh cp genome has a typical quadripartite organization with a conserved gene in each region. The Bh mt genome has three recombinant sequence repeats of 222 bp, 843 bp, and 1474 bp in length, which divide the genome into a single master circle (MC) and four isomeric molecules. Compared to other angiosperms, one remarkable feature of the Bh mt genome is the frequent transfer of genetic material from the cp genome during recent Bh evolution. We also analyzed organellar genome evolution in general regarding genome features as well as compositional dynamics of sequence and gene structure/organization, providing clues for the understanding of the evolution of organellar genomes in plants. The cp-derived sequences including tRNAs found in angiosperm mt genomes support the conclusion that frequent gene transfer events may have begun early in the land plant lineage.  相似文献   

8.
目的 获得中国地鼠线粒体基因组序列,为线粒体疾病模型提供分子数据.方法 参照近缘物种的线粒体基因组序列,设计27对特异引物,采用TD-PCR及测序技术获得了中国地鼠的线粒体全基因组序列,分析了其基因组特点和各基因的定位.还结合GenBank中已发表的其他5种啮齿类动物的线粒体基因组序列,探讨啮齿类动物不同科间的系统进化关系.结果 中国地鼠线粒体基因组全长为16 283 bp,碱基组成为33.53%A、30.50%T、12.98%G、22.80%C,包括13个蛋白质编码基因、2个rRNA基因、22个tRNA基因和1个非编码基因控制区.中国地鼠和金黄地鼠亲缘关系最近.结论 中国地鼠线粒体基因组各基因长度、位置与典型的啮齿类动物相似,其编码蛋白质区域和rRNA基因与其他啮齿类动物具有很高的同源性,显示线粒体基因组在进化上十分保守.5种动物的分子系统进化树与传统分类地位一致.  相似文献   

9.
Recent advances in sequencing technology have led to a rapid accumulation of mitochondrial DNA (mtDNA) sequences, which now represent the wide spectrum of animal diversity. However, one animal phylum--Ctenophora--has, to date, remained completely unsampled. Ctenophores, a small group of marine animals, are of interest due to their unusual biology, controversial phylogenetic position, and devastating impact as invasive species. Using data from the Mnemiopsis leidyi genome sequencing project, we Polymerase Chain Reaction (PCR) amplified and analyzed its complete mitochondrial (mt-) genome. At just over 10 kb, the mt-genome of M. leidyi is the smallest animal mtDNA ever reported and is among the most derived. It has lost at least 25 genes, including atp6 and all tRNA genes. We show that atp6 has been relocated to the nuclear genome and has acquired introns and a mitochondrial targeting presequence, while tRNA genes have been genuinely lost, along with nuclear-encoded mt-aminoacyl tRNA synthetases. The mt-genome of M. leidyi also displays extremely high rates of sequence evolution, which likely led to the degeneration of both protein and rRNA genes. In particular, encoded rRNA molecules possess little similarity with their homologs in other organisms and have highly reduced secondary structures. At the same time, nuclear encoded mt-ribosomal proteins have undergone expansions, likely to compensate for the reductions in mt-rRNA. The unusual features identified in M. leidyi mtDNA make this organism an interesting system for the study of various aspects of mitochondrial biology, particularly protein and tRNA import and mt-ribosome structures, and add to its value as an emerging model species. Furthermore, the fast-evolving M. leidyi mtDNA should be a convenient molecular marker for species- and population-level studies.  相似文献   

10.
The luminescent marine ostracod Vargula hilgendorfii comprises distinct populations around the Japanese islands. Its mitochondrial DNA is unusual, with duplicated control regions (CRs; CR#1 and CR#2). We determined the sequences of ostracod CRs in 7 different populations. The sequences of CR#1 and CR#2 within any population were extremely similar, above 99.7%; moreover, their derived evolutionary tree indicates that the pairs of CRs have evolved in concert within each mitochondrial genome. These results suggest that an exact replication mechanism controls the concerted evolution of CRs.  相似文献   

11.
Current data on green algal mitochondrial genomes suggest an unexpected dichotomy within the group with respect to genome structure, organization, and sequence affiliations. The present study suggests that there is a correlation between this dichotomy on one hand and the differences in the abundance, base composition, and distribution of short repetitive sequences we observed among green algal mitochondrial genomes on the other. It is conceivable that the accumulation of GC- rich short repeated sequences in the Chlamydomonas-like but not Prototheca-like mitochondrial genomes might have triggered evolutionary events responsible for the distinct series of evolutionary changes undergone by the two green algal mitochondrial lineages. The similarity in base composition, nucleotide sequence, abundance, and mode of organization we observed between the short repetitive sequences present in Chlamydomonas-like mitochondrial genomes on one hand and fungal and vertebrate homologs on the other might extend to some of the roles that the short repetitive sequences have been shown to have in the latter. Potential involvements we propose for the short repetitive sequences in the evolution of Chlamydomonas-like mitochondrial genomes include fragmentation and scrambling of the ribosomal-RNA-coding regions, extensive gene rearrangements, coding-region deletions, surrogate origins of replication, and chromosomal linearization.   相似文献   

12.
13.
The use of mitochondrial DNA (mtDNA) continues to dominate studies of human genetic variation and evolution. Recent work has re-affirmed the strict maternal inheritance of mtDNA, yielded new insights into the extent and nature of intra-individual variation, supported a recent African origin of human mtDNA, and amply demonstrated the utility of mtDNA in tracing population history and in analyses of ancient remains.  相似文献   

14.
15.
The current morphological classification of the Demospongiae G4 clade was tested using large subunit ribosomal RNA (LSU rRNA) sequences from 119 taxa. Fifty-three mitochondrial cytochrome oxidase 1 (CO1) barcoding sequences were also analysed to test whether the 28S phylogeny could be recovered using an independent gene. This is the largest and most comprehensive study of the Demospongiae G4 clade. The 28S and CO1 genetrees result in congruent clades but conflict with the current morphological classification. The results confirm the polyphyly of Halichondrida, Hadromerida, Dictyonellidae, Axinellidae and Poecilosclerida and show that several of the characters used in morphological classifications are homoplasious. Robust clades are clearly shown and a new hypothesis for relationships of taxa allocated to G4 is proposed.  相似文献   

16.
Prosimians (tarsiers and strepsirrhini) represent the basal lineages in primates and have a close bearing on the origin of primates. Although major lineages among anthropoidea (humans, apes and monkeys) are well represented by complete mitochondrial DNA (mtDNA) sequence data, only one complete mtDNA sequence from a representative of each of the infraorders in prosimians has been described until quite recently, and therefore we newly determined complete mtDNA sequences from 5 lemurs, 4 lorises, one tarsier and one platyrrhini. These sequences were provided to phylogenetic analyses in combination with the sequences from the 15 primates species reported to the database. The position of tarsiers among primates could not be resolved by the maximum likelihood (ML) and neighbor-joining (NJ) analyses with several data sets. As to the position of tarsiers, any of the three alternative topologies (monophyly of haplorhini, monophyly of prosimians, and tarsiers being basal in primates) was not rejected at the significance level of 5%, neither at the nucleotide nor at the amino acid level. In addition, the significant variations of C and T compositions were observed across primates species. Furthermore, we used AGY data sets for phylogenetic analyses in order to remove the effect of different C/T composition bias across species. The analyses of AGY data sets provided a medium support for the monophyly of haplorhini, which might have been screened by the variation in base composition of mtDNA across species. To estimates the speciation dates within primates, we analyzed the amino acid sequences of mt-proteins with a Bayesian method of Thorne and Kishino. Divergence dates were estimated as follows for the crown groups: about 35.4 million years ago (mya) for lorisiformes, 55.3 mya for lemuriformes, 64.5 mya for strepsirrhini, 70.1 mya for haplorhini and 76.0 mya for primates. Furthermore, we reexamined the biogeographic scenarios which have been proposed for the origin of strepsirrhini (lemuriformes and lorisiformes) and for the dispersal of the lemuriformes and lorisiformes.  相似文献   

17.
The Cuban Macaw Ara tricolor was a species of macaw native to Cuba and Isla de la Juventud in the Caribbean that became extinct in the 1860s. Morphologically, it was similar to, but distinctively smaller than, the large red macaws – Scarlet Macaw Ara macao and Red‐and‐green Macaw Ara chloropterus. A close affinity with the Scarlet Macaw has been suggested based on plumage similarities. In this study we use complete mitochondrial genome sequences to examine the phylogenetic position of the Cuban Macaw. Our results do not indicate a sister‐species relationship with the Scarlet Macaw but place the Cuban Macaw as sister to the two red species and the two large green macaws, the Military Macaw Ara militaris and the Great Green Macaw Ara ambiguus. Divergence estimates suggests that the Cuban Macaw separated from this group approximately 4 million years ago.  相似文献   

18.
The cone snails belong to the superfamily Conoidea, comprising approximately 10,000 venomous marine gastropods. We determined the complete mitochondrial DNA sequence of Conus textile. The gene order is identical in Conus textile, Lophiotoma cerithiformis (another Conoidean gastropod), and the neogastropod Ilyanassa obsoleta, (not in the superfamily Conoidea). However, the intergenic interval between the coxI and coxII genes was much longer in C. textile (165bp) than in any other previously analyzed gastropod. We used the intergenic region to evaluate evolutionary patterns. In most neogastropods and three conidean families the intergenic interval is small (<30 nucleotides). Within Conus, the variation is from 130 to 170bp, and each different clade within Conus has a narrower size distribution. In Conasprella, a subgenus traditionally assigned to Conus, the intergenic regions vary between 200 and 500bp, suggesting that the species in Conasprella are not congeneric with Conus. The intergenic region was used for phylogenetic analysis of a group of fish-hunting Conus, despite the short length resolution was better than using standard markers. Thus, the coxI-coxII intergenic region can be used both to define evolutionary relationships between species in a clade, and to understand broad evolutionary patterns across the large superfamily Conoidea.  相似文献   

19.
The complete mitochondrial (mt) genome of the mole Talpa europaea was sequenced and included in phylogenetic analyses together with another lipotyphlan (insectivore) species, the hedgehog Erinaceus europaeus, and 22 other eutherian species plus three outgroup taxa (two marsupials and a monotreme). The phylogenetic analyses reconstructed a sister group relationship between the mole and fruit bat Artibeus jamaicensis (order Chiroptera). The Talpa/Artibeus clade constitutes a sister clade of the cetferungulates, a clade including Cetacea, Artiodactyla, Perissodactyla, and Carnivora. A monophyletic relationship between the hedgehog and the mole was significantly rejected by maximum parsimony and maximum likelihood. Consistent with current systematic schemes, analyses of complete cytochrome b genes including the shrew Sorex araneus (family Soricidae) revealed a close relationship between Talpidae and Soricidae. The analyses of complete mtDNAs, along with the findings of other insectivore studies, challenge the maintenance of the order Lipotyphla as a taxonomic unit and support the elevation of the Soricomorpha (with the families Talpidae and Soricidae and possibly also the Solenodontidae and Tenrecidae) to the level of an order, as previously proposed in some morphological studies.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号