首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vaccine vectors derived from Venezuelan equine encephalitis virus (VEE) that expressed simian immunodeficiency virus (SIV) immunogens were tested in rhesus macaques as part of the effort to design a safe and effective vaccine for human immunodeficiency virus. Immunization with VEE replicon particles induced both humoral and cellular immune responses. Four of four vaccinated animals were protected against disease for at least 16 months following intravenous challenge with a pathogenic SIV swarm, while two of four controls required euthanasia at 10 and 11 weeks. Vaccination reduced the mean peak viral load 100-fold. The plasma viral load was reduced to below the limit of detection (1,500 genome copies/ml) in one vaccinated animal between 6 and 16 weeks postchallenge and in another from week 6 through the last sampling time (40 weeks postchallenge). The extent of reduction in challenge virus replication was directly correlated with the strength of the immune response induced by the vectors, which suggests that vaccination was effective.  相似文献   

2.
3.
4.
We recently demonstrated that Venezuelan equine encephalitis virus-based replicon particle (VRPs) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP-expressing interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and antitumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)), and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12, and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP-IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing antitumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than that of VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted.  相似文献   

5.
Respiratory syncytial virus (RSV) is an important viral pathogen that causes severe lower respiratory tract infection in infants, the elderly, and immunocompromised individuals. There are no licensed RSV vaccines to date. To prevent RSV infection, immune responses in both the upper and lower respiratory tracts are required. Previously, immunization with Venezuelan equine encephalitis virus replicon particles (VRPs) demonstrated effectiveness in inducing mucosal protection against various pathogens. In this study, we developed VRPs encoding RSV fusion (F) or attachment (G) glycoproteins and evaluated the immunogenicity and efficacy of these vaccine candidates in mice and cotton rats. VRPs, when administered intranasally, induced surface glycoprotein-specific virus neutralizing antibodies in serum and immunoglobulin A (IgA) antibodies in secretions at the respiratory mucosa. In addition, fusion protein-encoding VRPs induced gamma interferon (IFN-γ)-secreting T cells in the lungs and spleen, as measured by reaction with an H-2Kd-restricted CD8+ T-cell epitope. In animals vaccinated with F protein VRPs, challenge virus replication was reduced below the level of detection in both the upper and lower respiratory tracts following intranasal RSV challenge, while in those vaccinated with G protein VRPs, challenge virus was detected in the upper but not the lower respiratory tract. Close examination of histopathology of the lungs of vaccinated animals following RSV challenge revealed no enhanced inflammation. Immunization with VRPs induced balanced Th1/Th2 immune responses, as measured by the cytokine profile in the lungs and antibody isotype of the humoral immune response. These results represent an important first step toward the use of VRPs encoding RSV proteins as a prophylactic vaccine for RSV.  相似文献   

6.
7.
Venezuelan equine encephalitis (VEE) and eastern equine encephalitis (EEE) viruses are important, naturally emerging zoonotic viruses. They are significant human and equine pathogens which still pose a serious public health threat. Both VEE and EEE cause chronic infection in mosquitoes and persistent or chronic infection in mosquito-derived cell lines. In contrast, vertebrate hosts infected with either virus develop an acute infection with high-titer viremia and encephalitis, followed by host death or virus clearance by the immune system. Accordingly, EEE and VEE infection in vertebrate cell lines is highly cytopathic. To further understand the pathogenesis of alphaviruses on molecular and cellular levels, we designed EEE- and VEE-based replicons and investigated their replication and their ability to generate cytopathic effect (CPE) and to interfere with other viral infections. VEE and EEE replicons appeared to be less cytopathic than Sindbis virus-based constructs that we designed in our previous research and readily established persistent replication in BHK-21 cells. VEE replicons required additional mutations in the 5' untranslated region and nsP2 or nsP3 genes to further reduce cytopathicity and to become capable of persisting in cells with no defects in alpha/beta interferon production or signaling. The results indicated that alphaviruses strongly differ in virus-host cell interactions, and the ability to cause CPE in tissue culture does not necessarily correlate with pathogenesis and strongly depends on the sequence of viral nonstructural proteins.  相似文献   

8.
RNA replicon particles derived from a vaccine strain of Venezuelan equine encephalitis virus (VEE) were used as a vector for expression of the major envelope proteins (G(L) and M) of equine arteritis virus (EAV), both individually and in heterodimer form (G(L)/M). Open reading frame 5 (ORF5) encodes the G(L) protein, which expresses the known neutralizing determinants of EAV (U. B. R. Balasuriya, J. F. Patton, P. V. Rossitto, P. J. Timoney, W. H. McCollum, and N. J. MacLachlan, Virology 232:114-128, 1997). ORF5 and ORF6 (which encodes the M protein) of EAV were cloned into two different VEE replicon vectors that contained either one or two 26S subgenomic mRNA promoters. These replicon RNAs were packaged into VEE replicon particles by VEE capsid protein and glycoproteins supplied in trans in cells that were coelectroporated with replicon and helper RNAs. The immunogenicity of individual replicon particle preparations (pVR21-G(L), pVR21-M, and pVR100-G(L)/M) in BALB/c mice was determined. All mice developed antibodies against the recombinant proteins with which they were immunized, but only the mice inoculated with replicon particles expressing the G(L)/M heterodimer developed antibodies that neutralize EAV. The data further confirmed that authentic posttranslational modification and conformational maturation of the recombinant G(L) protein occur only in the presence of the M protein and that this interaction is necessary for induction of neutralizing antibodies.  相似文献   

9.
MicroRNAs (miRNA) are small RNA (∼22nts) molecules that are expressed endogenously in cells and play an important role in regulating gene expression. Recent studies have shown that cellular miRNA plays a very important role in the pathogenesis of viral infection. Venezuelan equine encephalitis virus (VEEV) is an RNA virus and is a member of the genus Alphavirus in the family Togaviridae. VEEV is infectious in aerosol form and is a potential biothreat agent. In this study, we report for the first time that VEEV infection in mice brain causes modulation of miRNA expression. Pathway analyses showed that majority of these miRNAs are involved in the neuronal development and function. Target gene prediction of the modulated miRNAs correlates with our recently reported mRNA expression in VEEV infected mice brain.  相似文献   

10.
Infection of pigeons by airborne Venezuelan equine encephalitis virus   总被引:2,自引:0,他引:2  
  相似文献   

11.
12.
A human pregnancy exposed to TC-83 live attenuated Venezuelan equine encephalitis (VEE) virus vaccine resulted in hydrops fetalis and fetal demise. Maternal seroconversion and the finding of a diffuse mononuclear cell infiltrate on postmortem examination are suggestive of a causative role for TC-83 vaccine.  相似文献   

13.
Hydrophobic alkylating compounds like 1,5-iodonaphthylazide (INA) partitions into biological membranes and accumulates selectively into the hydrophobic domain of the lipid bilayer. Upon irradiation with far UV light, INA binds selectively to transmembrane proteins in the viral envelope and renders them inactive. Such inactivation does not alter the ectodomains of the membrane proteins thus preserving the structural and conformational integrity of immunogens on the surface of the virus. In this study, we have used INA to inactivate Venezuelan equine encephalitis virus (VEEV). Treatment of VEEV with INA followed by irradiation with UV light resulted in complete inactivation of the virus. Immuno-fluorescence for VEEV and virus titration showed no virus replication in-vitro. Complete loss of infectivity was also achieved in mice infected with INA treated plus irradiated preparations of VEEV. No change in the structural integrity of VEEV particles were observed after treatment with INA plus irradiation as assessed by electron microscopy. This data suggest that such inactivation strategies can be used for developing vaccine candidates for VEEV and other enveloped viruses.  相似文献   

14.
The initial steps of Venezuelan equine encephalitis virus (VEE) spread from inoculation in the skin to the draining lymph node have been characterized. By using green fluorescent protein and immunocytochemistry, dendritic cells in the draining lymph node were determined to be the primary target of VEE infection in the first 48 h following inoculation. VEE viral replicon particles, which can undergo only one round of infection, identified Langerhans cells to be the initial set of cells infected by VEE directly following inoculation. These cells are resident dendritic cells in the skin, which migrate to the draining lymph node following activation. A point mutation in the E2 glycoprotein gene of VEE that renders the virus avirulent and compromises its ability to spread beyond the draining lymph blocked the appearance of virally infected dendritic cells in the lymph node in vivo. A second-site suppressor mutation that restores viral spread to lymphoid tissues and partially restore virulence likewise restored the ability of VEE to infect dendritic cells in vivo.  相似文献   

15.
16.
17.
Specific lymphocyte transformation to viral antigen was detected in individuals vaccinated with live, attenuated Venezuelan equine encephalitis (VEE) virus vaccine, strain TC-83. Suspensions of purified, inactivated virus were used an antigen in 250-μ1 lymphocyte cultures, and under optimal conditions the assay demonstrated 10-fold greater incorporation of 14C-thymidine by lymphocytes from immune than from nonimmune people. The rise in lymphocyte transformation response occurred 1 week after vaccination. The magnitude and range of the lymphocyte transformation response to the VEE viral antigen were similar to the responses seen using antigens derived from five other microbial sources: Francisella tularensis, Coccidioides immitis, Mycobacterium tuberculosis, Streptococcus, and parainfluenza virus. Autologous plasma containing antibody exerts an inhibitory effect on cultures from immune individuals. The onset, magnitude of response, and specificity of this in vitro assay are correlated with the clinical and pathological events of VEE virus infection.  相似文献   

18.
Venezuelan equine encephalitis viruses (VEEV) belonging to subtype IC have caused three (1962-1964, 1992-1993 and 1995) major equine epizootics and epidemics. Previous sequence analyses of a portion of the envelope glycoprotein gene demonstrated a high degree of conservation among isolates from the 1962-1964 and the 1995 outbreaks, as well as a 1983 interepizootic mosquito isolate from Panaquire, Venezuela. However, unlike subtype IAB VEEV that were used to prepare inactivated vaccines that probably initiated several outbreaks, subtype IC viruses have not been used for vaccine production and their conservation cannot be explained in this way. To characterize further subtype IC VEEV conservation and to evaluate potential sources of the 1995 outbreak, we sequenced the complete genomes of three isolates from the 1962-1964 outbreak, the 1983 Panaquire interepizootic isolate, and two isolates from 1995. The sequence of the Panaquire isolate, and that of virus isolated from a mouse brain antigen prepared from subtype IC strain P676 and used in the same laboratory, suggested that the Panaquire isolate represents a laboratory contaminant. Some authentic epizootic IC strains isolated 32 years apart showed a greater degree of sequence identity than did isolates from the same (1962-1964 or 1995) outbreak. If these viruses were circulating and replicating between 1964 and 1995, their rate of sequence evolution was at least 10-fold lower than that estimated during outbreaks or that of closely related enzootic VEEV strains that circulate continuously. Current understanding of alphavirus evolution is inconsistent with this conservation. This subtype IC VEEV conservation, combined with phylogenetic relationships, suggests the possibility that the 1995 outbreak was initiated by a laboratory strain.  相似文献   

19.
Primary cell cultures, a continuous cell line, and a diploid cell line were grown on an artificial capillary system. The cells were subsequently infected with Venezuelan equine encephalitis virus, and viral replication was studied. Extracellular fluids harvested from this system contained high titers of virus and were relatively free of cell debris.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号