首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.

Background

Two recent reports have identified the Endothelial Protein C Receptor (EPCR) as a key molecule implicated in severe malaria pathology. First, it was shown that EPCR in the human microvasculature mediates sequestration of Plasmodium falciparum-infected erythrocytes. Second, microvascular thrombosis, one of the major processes causing cerebral malaria, was linked to a reduction in EPCR expression in cerebral endothelial layers. It was speculated that genetic variation affecting EPCR functionality could influence susceptibility to severe malaria phenotypes, rendering PROCR, the gene encoding EPCR, a promising candidate for an association study.

Methods

Here, we performed an association study including high-resolution variant discovery of rare and frequent genetic variants in the PROCR gene. The study group, which previously has proven to be a valuable tool for studying the genetics of malaria, comprised 1,905 severe malaria cases aged 1–156 months and 1,866 apparently healthy children aged 2–161 months from the Ashanti Region in Ghana, West Africa, where malaria is highly endemic. Association of genetic variation with severe malaria phenotypes was examined on the basis of single variants, reconstructed haplotypes, and rare variant analyses.

Results

A total of 41 genetic variants were detected in regulatory and coding regions of PROCR, 17 of which were previously unknown genetic variants. In association tests, none of the single variants, haplotypes or rare variants showed evidence for an association with severe malaria, cerebral malaria, or severe malaria anemia.

Conclusion

Here we present the first analysis of genetic variation in the PROCR gene in the context of severe malaria in African subjects and show that genetic variation in the PROCR gene in our study population does not influence susceptibility to major severe malaria phenotypes.  相似文献   

2.

Background

Inhibition of parasite growth is a major objective of blood-stage malaria vaccines. The in vitro assay of parasite growth inhibitory activity (GIA) is widely used as a surrogate marker for malaria vaccine efficacy in the down-selection of candidate blood-stage vaccines. Here we report the first study to examine the relationship between in vivo Plasmodium falciparum growth rates and in vitro GIA in humans experimentally infected with blood-stage malaria.

Methods

In this phase I/IIa open-label clinical trial five healthy malaria-naive volunteers were immunised with AMA1/C1-Alhydrogel+CPG 7909, and together with three unvaccinated controls were challenged by intravenous inoculation of P. falciparum infected erythrocytes.

Results

A significant correlation was observed between parasite multiplication rate in 48 hours (PMR) and both vaccine-induced growth-inhibitory activity (Pearson r = −0.93 [95% CI: −1.0, −0.27] P = 0.02) and AMA1 antibody titres in the vaccine group (Pearson r = −0.93 [95% CI: −0.99, −0.25] P = 0.02). However immunisation failed to reduce overall mean PMR in the vaccine group in comparison to the controls (vaccinee 16 fold [95% CI: 12, 22], control 17 fold [CI: 0, 65] P = 0.70). Therefore no impact on pre-patent period was observed (vaccine group median 8.5 days [range 7.5–9], control group median 9 days [range 7–9]).

Conclusions

Despite the first observation in human experimental malaria infection of a significant association between vaccine-induced in vitro growth inhibitory activity and in vivo parasite multiplication rate, this did not translate into any observable clinically relevant vaccine effect in this small group of volunteers.

Trial Registration

ClinicalTrials.gov [NCT00984763]  相似文献   

3.

Background

Discovering causal genetic variants from large genetic association studies poses many difficult challenges. Assessing which genetic markers are involved in determining trait status is a computationally demanding task, especially in the presence of gene-gene interactions.

Results

A non-parametric Bayesian approach in the form of a Bayesian neural network is proposed for use in analyzing genetic association studies. Demonstrations on synthetic and real data reveal they are able to efficiently and accurately determine which variants are involved in determining case-control status. By using graphics processing units (GPUs) the time needed to build these models is decreased by several orders of magnitude. In comparison with commonly used approaches for detecting interactions, Bayesian neural networks perform very well across a broad spectrum of possible genetic relationships.

Conclusions

The proposed framework is shown to be a powerful method for detecting causal SNPs while being computationally efficient enough to handle large datasets.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-014-0368-0) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

In humans it is unknown if the composition of the gut microbiota alters the risk of Plasmodium falciparum infection or the risk of developing febrile malaria once P. falciparum infection is established. Here we collected stool samples from a cohort composed of 195 Malian children and adults just prior to an intense P. falciparum transmission season. We assayed these samples using massively parallel sequencing of the 16S ribosomal RNA gene to identify the composition of the gut bacterial communities in these individuals. During the ensuing 6-month P. falciparum transmission season we examined the relationship between the stool microbiota composition of individuals in this cohort and their prospective risk of both P. falciparum infection and febrile malaria.

Results

Consistent with prior studies, stool microbial diversity in the present cohort increased with age, although the overall microbiota profile was distinct from cohorts in other regions of Africa, Asia and North America. Age-adjusted Cox regression analysis revealed a significant association between microbiota composition and the prospective risk of P. falciparum infection; however, no relationship was observed between microbiota composition and the risk of developing febrile malaria once P. falciparum infection was established.

Conclusions

These findings underscore the diversity of gut microbiota across geographic regions, and suggest that strategic modulation of gut microbiota composition could decrease the risk of P. falciparum infection in malaria-endemic areas, potentially as an adjunct to partially effective malaria vaccines.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1819-3) contains supplementary material, which is available to authorized users.  相似文献   

5.

Objective

High mortality burden from Acute Bacterial Meningitis (ABM) in resource-poor settings has been frequently blamed on delays in treatment seeking. We explored treatment-seeking pathways from household to primary health care and referral for ABM in Malawi.

Design

A cross-sectional qualitative study using narrative in-depth interviews, semi-structured interviews and focus group discussions.

Participants

Adults and children with proven and probable acute bacterial meningitis and/or their carers; adults from urban and peri-urban communities; and primary health care workers (HCW).

Setting

Queen Elizabeth Central Hospital (QECH), urban and peri-urban private and government primary health centres and communities in Blantyre District, Malawi.

Results

Whilst communities associated meningitis with a stiff neck, in practice responses focused on ability to recognise severe illness. Misdiagnosis of meningitis as malaria was common. Subsequent action by families depended on the extent to which normal social life was disrupted by the illness and depended on the age and social position of the sufferer. Seizures and convulsions were considered severe symptoms but were often thought to be malaria. Presumptive malaria treatment at home often delayed formal treatment seeking. Further delays in treatment seeking were caused by economic barriers and perceptions of inefficient or inadequate primary health services.

Conclusions

Given the difficulties in diagnosis of meningitis where malaria is common, any intervention for ABM at primary level must focus on recognising severe illness, and encouraging action at the household, community and primary health levels. Overcoming barriers to recognition and social constraints at community level require broad community-based strategies and may provide a route to addressing poor clinical outcomes.  相似文献   

6.

Background

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common human enzyme defect and affects more than 400 million people worldwide. This deficiency is believed to protect against malaria because its global distribution is similar. However, this genetic disorder may be associated with potential hemolytic anemia after treatment with anti-malarials, primaquine or other 8-aminoquinolines. Although primaquine is used for malaria prevention, no study has previously investigated the prevalence of G6PD variants and G6PD deficiency in the Republic of Korea (ROK).

Methods

Two commercialized test kits (Trinity G-6-PDH and CareStart G6PD test) were used for G6PD deficiency screening. The seven common G6PD variants were investigated by DiaPlexC kit in blood samples obtained living in vivax malaria endemic regions in the ROK.

Results

Of 1,044 blood samples tested using the CareStart G6PD test, none were positive for G6PD deficiency. However, a slightly elevated level of G6PD activity was observed in 14 of 1,031 samples tested with the Trinity G-6-PDH test. Forty-nine of the 298 samples with non-specific amplification by DiaPlexC kit were confirmed by sequencing to be negative for the G6PD variants.

Conclusions

No G6PD deficiency was observed using phenotypic- or genetic-based tests in individuals residing in vivax malaria endemic regions in the ROK. Because massive chemoprophylaxis using primaquine has been performed in the ROK military to kill hypnozoites responsible for relapse and latent stage vivax malaria, further regular monitoring is essential for the safe administration of primaquine.  相似文献   

7.
8.

Objective

To identify the major ecological drivers for malaria vector density using the structural equation model (SEM) in the Three Gorges Reservoir.

Method

An 11-year longitudinal surveillance of malaria vector as well as its related ecological factors was carried out in the Three Gorges Reservoir. The Delphi method was used to identify associated ecological factors. The structural equation model was repeatedly corrected and improved by the corrected index, combined with the actual situation. The final model was defined by relative simplicity, best fitting as well as the practicality.

Result

The final model indicated that the direct effects of temperature, livestock, humidity, and breeding on the vector were 0.015, −0.228, 0.450, 0.516 respectively, their total effects on the vector were 0.359, −0.112, 0.850, and 0.043 through different pathways.

Conclusion

SEM was effective and convenient in elucidating the mechanism by which malaria vector dynamics operated in this study. It identified that the breeding had the highest direct effect on vector and played a key role for mediating effect of temperature and humidity.  相似文献   

9.

Background

Infections during pregnancy may have serious consequences for both mother and baby. Assessment of risk factors for infections informs planning of interventions and analysis of the impact of infections on health outcomes.

Objectives

To describe risk factors for helminths, malaria and HIV in pregnant Ugandan women before intervention in a trial of de-worming in pregnancy.

Methods

The trial recruited 2,507 pregnant women between April 2003 and November 2005. Participants were interviewed and blood and stool samples obtained; location of residence at enrolment was mapped. Demographic, socioeconomic, behavioral and other risk factors were modelled using logistic regression.

Results

There was a high prevalence of helminth, malaria and HIV infection, as previously reported. All helminths and malaria parasitemia were more common in younger women, and education was protective against every infection. Place of birth and/or tribe affected all helminths in a pattern consistent with the geographical distribution of helminth infections in Uganda. Four different geohelminths (hookworm, Trichuris, Ascaris and Trichostrongylus) showed a downwards trend in prevalence during the enrolment period. There was a negative association between hookworm and HIV, and between hookworm and low CD4 count among HIV-positive women. Locally, high prevalence of schistosomiasis and HIV occurred in lakeshore communities.

Conclusions

Interventions for helminths, malaria and HIV need to target young women both in and out of school. Antenatal interventions for malaria and HIV infection must continue to be promoted. Women originating from a high risk area for a helminth infection remain at high risk after migration to a lower-risk area, and vice versa, but overall, geohelminths seem to be becoming less common in this population. High risk populations, such as fishing communities, require directed effort against schistosomiasis and HIV infection.  相似文献   

10.

Introduction

The importance of Plasmodium vivax in malaria elimination is increasingly being recognized, yet little is known about its population size and population genetic structure in the South Pacific, an area that is the focus of intensified malaria control.

Methods

We have genotyped 13 microsatellite markers in 295 P. vivax isolates from four geographically distinct sites in Papua New Guinea (PNG) and one site from Solomon Islands, representing different transmission intensities.

Results

Diversity was very high with expected heterozygosity values ranging from 0.62 to 0.98 for the different markers. Effective population size was high (12′872 to 19′533 per site). In PNG population structuring was limited with moderate levels of genetic differentiation. F ST values (adjusted for high diversity of markers) were 0.14–0.15. Slightly higher levels were observed between PNG populations and Solomon Islands (F ST = 0.16).

Conclusions

Low levels of population structure despite geographical barriers to transmission are in sharp contrast to results from regions of low P. vivax endemicity. Prior to intensification of malaria control programs in the study area, parasite diversity and effective population size remained high.  相似文献   

11.

Background

Antibodies are important in the control of blood stage Plasmodium falciparum infection. It is unclear which antibody responses are responsible for, or even associated with protection, partly due to confounding by heterogeneous exposure. Assessment of response to partially effective antimalarial therapy, which requires the host to assist in clearing parasites, offers an opportunity to measure protection independent of exposure.

Methods

A cohort of children aged 1–10 years in Kampala, Uganda were treated with amodiaquine+sulfadoxine-pyrimethamine for uncomplicated malaria. Serum samples from the time of malaria diagnosis and 14 days later were analyzed for total IgG to 8 P. falciparum antigens using a quantitative indirect ELISA. Associations between antibody levels and risk of treatment failure were estimated using Cox proportional hazard regression.

Results

Higher levels of antibodies to apical membrane antigen 1 (AMA-1), but to none of the other 7 antigens were significantly associated with protection against treatment failure (HR 0.57 per 10-fold increase in antibody level, CI 0.41–0.79, p = 0.001). Protection increased consistently across the entire range of antibody levels.

Conclusions

Measurement of antibody levels to AMA-1 at the time of malaria may offer a quantitative biomarker of blood stage immunity to P. falciparum, a tool which is currently lacking.  相似文献   

12.

Background

Vivax malaria was successfully eliminated in the Republic of Korea (South Korea) in the late 1970s, but it was found to have re-emerged from 1993. In order to control malaria and evaluate the effectiveness of malaria controls, it is important to develop a spatiotemporal understanding of the genetic structure of the parasite population. Here, we estimated the population structure and temporal dynamics of the transmission of Plasmodium vivax in South Korea by analyzing microsatellite DNA markers of the parasite.

Methodology/Principal Findings

We analyzed 14 microsatellite DNA loci of the P. vivax genome from 163 South Korean isolates collected from 1994 to 2008. Allelic data were used to analyze linkage disequilibrium (LD), genetic differentiation and population structure, in order to make a detailed estimate of temporal change in the parasite population. The LD analysis showed a gradual decrease in LD levels, while the levels of genetic differentiation between successive years and analysis of the population structure based on the Bayesian approach suggested that a drastic genetic change occurred in the South Korean population during 2002 and 2003.

Conclusions/Significance

Although relapse and asymptomatic parasite carriage might influence the population structure to some extent, our results suggested the continual introduction of P. vivax into South Korea through other parasite population sources. One possible source, particularly during 2002 and 2003, is North Korea. Molecular epidemiology using microsatellite DNA of the P. vivax population is effective for assessing the population structure and temporal dynamics of parasite transmission; information that can assist in the elimination of vivax malaria in endemic areas.  相似文献   

13.

Background

Characteristic symptoms of malaria include recurrent fever attacks and neurodegeneration, signs that are also found in patients with a hyperactive Nalp3 inflammasome. Plasmodium species produce a crystal called hemozoin that is generated by detoxification of heme after hemoglobin degradation in infected red blood cells. Thus, we hypothesized that hemozoin could activate the Nalp3 inflammasome, due to its particulate nature reminiscent of other inflammasome-activating agents.

Methodology/Principal Findings

We found that hemozoin acts as a proinflammatory danger signal that activates the Nalp3 inflammasome, causing the release of IL-1β. Similar to other Nalp3-activating particles, hemozoin activity is blocked by inhibiting phagocytosis, K+ efflux and NADPH oxidase. In vivo, intraperitoneal injection of hemozoin results in acute peritonitis, which is impaired in Nalp3-, caspase-1- and IL-1R-deficient mice. Likewise, the pathogenesis of cerebral malaria is dampened in Nalp3-deficient mice infected with Plasmodium berghei sporozoites, while parasitemia remains unchanged.

Significance/Conclusions

The potent pro-inflammatory effect of hemozoin through inflammasome activation may possibly be implicated in plasmodium-associated pathologies such as cerebral malaria.  相似文献   

14.

Background

Intermittent preventive treatment (IPT) of malaria involves administration of curative doses of antimalarials at specified time points to vulnerable populations in endemic areas, regardless whether a subject is known to be infected. The effect of this new intervention on the development and maintenance of protective immunity needs further understanding. We have investigated how seasonal IPT affects the genetic diversity of Plasmodium falciparum infections and the risk of subsequent clinical malaria.

Material and Methods

The study included 2227 Ghanaian children (3–59 months) who were given sulphadoxine-pyrimethamine (SP) bimonthly, artesunate plus amodiaquine (AS+AQ) monthly or bimonthly, or placebo monthly for six months spanning the malaria transmission season. Blood samples collected at three post-interventional surveys were analysed by genotyping of the polymorphic merozoite surface protein 2 gene. Malaria morbidity and anaemia was monitored during 12 months follow-up.

Results

Monthly IPT with AS+AQ resulted in a marked reduction in number of concurrent clones and only children parasite negative just after the intervention period developed clinical malaria during follow-up. In the placebo group, children without parasites as well as those infected with ≥2 clones had a reduced risk of subsequent malaria. The bimonthly SP or AS+AQ groups had similar number of clones as placebo after intervention; however, diversity and parasite negativity did not predict the risk of malaria. An interaction effect showed that multiclonal infections were only associated with protection in children without intermittent treatment.

Conclusion

Molecular typing revealed effects of the intervention not detected by ordinary microscopy. Effective seasonal IPT temporarily reduced the prevalence and genetic diversity of P. falciparum infections. The reduced risk of malaria in children with multiclonal infections only seen in untreated children suggests that persistence of antigenically diverse P. falciparum infections is important for the maintenance of protective malaria immunity in high transmission settings.  相似文献   

15.

Background

Helminth infections may modulate immune responses to unrelated pathogens and allergens; these effects may commence prenatally. We addressed the hypothesis that anthelminthic treatment in pregnancy and early childhood would improve responses to immunisation and modulate disease incidence in early childhood with both beneficial and detrimental effects.

Methods and Findings

A randomised, double-blind, placebo-controlled trial was conducted in Entebbe, Uganda [ISRCTN32849447]. In three independent randomisations, 2507 pregnant women were allocated to receive single-dose albendazole or placebo, and praziquantel or placebo; 2016 of their offspring were randomised to receive quarterly single-dose albendazole or placebo from age 15 months to 5 years. Primary outcomes were post-immunisation recall responses to BCG and tetanus antigens, and incidence of malaria, diarrhoea, and pneumonia; incidence of eczema was an important secondary outcome. Analysis was by intention-to-treat. Of 2345 live births, 1622 (69%) children remained in follow-up at age 5 years. 68% of mothers at enrolment, and 11% of five-year-olds, had helminth infections. Maternal hookworm and Schistosoma mansoni were effectively treated by albendazole and praziquantel, respectively; and childhood hookworm and Ascaris by quarterly albendazole. Incidence rates of malaria, diarrhoea, pneumonia, and eczema were 34, 65, 10 and 5 per 100 py, respectively. Albendazole during pregnancy caused an increased rate of eczema in the children (HR 1.58 (95% CI 1.15–2.17), p = 0.005). Quarterly albendazole during childhood was associated with reduced incidence of clinical malaria (HR 0.85 (95% CI 0.73–0.98), p = 0.03). There were no consistent effects of the interventions on any other outcome.

Conclusions

Routine use of albendazole in pregnancy may not always be beneficial, even in tropical developing countries. By contrast, regular albendazole treatment in preschool children may have an additional benefit for malaria control where helminths and malaria are co-endemic. Given the low helminth prevalence in our children, the effect of albendazole on malaria is likely to be direct.

Trial registration

Current Controlled Trials ISRCTN32849447  相似文献   

16.

Background

With the availability of new preventive and curative interventions, global malaria control has been strengthened significantly in recent years. Drugs effective in reducing malaria gametocytaemia might contribute to local elimination and possible long-term eradication. We here report on the effects of methylene blue (MB)-based malaria combination therapy on gametocytaemia during a randomised-controlled trial in Burkina Faso.

Methods

An open-label randomised controlled phase II study in 180 children aged 6–10 years with uncomplicated falciparum malaria was conducted in Nouna, north-western Burkina Faso. Children were randomised to MB–artesunate (AS), MB–amodiaquine (AQ), and AS-AQ (local standard of care). Overall follow-up was for 28 days, follow-up for gametocytaemia was for 14 days.

Findings

The treatment groups were similar in baseline characteristics and there was only one loss to follow-up. Compared to AS-AQ, both MB-containing regimens were associated with significantly reduced gametocyte carrier rates during follow-up days 3, 7, and 14. This effect was seen both in patients with and without P. falciparum gametocytaemia at baseline.

Interpretation

MB reveals pronounced gametocytocidal activity which appears to act against both existing and developing P. falciparum gametocytes. MB-based combination therapy thus has the potential to reduce transmission of P. falciparum malaria in endemic regions, which has important implications for future elimination and eradication strategies.

Trial Registration

ClinicalTrials.gov NCT00354380  相似文献   

17.

Background

Traps baited with synthetic human odors have been proposed as suitable technologies for controlling malaria and other mosquito-borne diseases. We investigated the potential benefits of such traps for preventing malaria transmission in Africa and the essential characteristics that they should possess so as to be effective.

Methods and Principal Findings

An existing mathematical model was reformulated to distinguish availability of hosts for attack by mosquitoes from availability of blood per se. This adaptation allowed the effects of pseudo-hosts such as odor-baited mosquito traps, which do not yield blood but which can nonetheless be attacked by the mosquitoes, to be simulated considering communities consisting of users and non-users of insecticide-treated nets (ITNs), currently the primary malaria prevention method. We determined that malaria transmission declines as trap coverage (proportion of total availability of all hosts and pseudo hosts that traps constitute) increases. If the traps are more attractive than humans and are located in areas where mosquitoes are most abundant, 20–130 traps per 1000 people would be sufficient to match the impact of 50% community-wide ITN coverage. If such traps are used to complement ITNs, malaria transmission can be reduced by 99% or more in most scenarios representative of Africa. However, to match cost-effectiveness of ITNs, the traps delivery, operation and maintenance would have to cost a maximum of US$4.25 to 27.61 per unit per year.

Conclusions and Significance

Odor-baited mosquito traps might potentially be effective and affordable tools for malaria control in Africa, particularly if they are used to complement, rather than replace, existing methods. We recommend that developers should focus on super-attractive baits and cheaper traps to enhance cost-effectiveness, and that the most appropriate way to deploy such technologies is through vertical delivery mechanisms.  相似文献   

18.

Background

Nyctanthes arbor-tristis (Harshringar, Night Jasmine) has been traditionally used in Ayurveda, Unani and other systems of medicine in India. The juice of its leaves has been used by various tribal populations of India in treatment of fevers resembling malaria.

Aim of the study

This work reports the antiplasmodial activity guided fractionation of Harshringar leaves extract.

Methodology

Crude ethanolic Harshringar leaves extract and its RPHPLC purified fractions were studied for antiplasmodial potency against 3D7 (CQ sensitive) and Dd2 (CQ resistant) strains of P.falciparum and subsequently subjected to bioassay guided fractionation using reverse phase chromatography to pursue the isolation of active fractions.

Principal Findings

Harshringar crude leaves extract and some of its RPHPLC purified fractions exhibited promising antiplasmodial potency against 3D7 and Dd2 strains of P.falciparum.

Conclusions

The present study has provided scientific validity to the traditional use of leaves extract of Harshringar against malaria leading to the conclusion that this plant holds promise with respect to antimalarial phytotherapy. This is the first scientific report of antiplasmodial activity of RPHPLC fractions of Harshringar leaves extract against P.falciparum strains.  相似文献   

19.

Background

Despite policies that recommend parasitological testing before treatment for malaria, presumptive treatment remains widespread in Nigeria. The majority of Nigerians obtain antimalarial drugs from two types of for-profit drug vendors—formal and informal medicine shops—but little is known about the quality of malaria care services provided at these shops.

Aims

This study seeks to (1) describe the profile of patients who seek treatment at different types of drug outlets, (2) document the types of drugs purchased for treating malaria, (3) assess which patients are purchasing recommended drugs, and (4) estimate the extent of malaria over-treatment.

Methods

In urban, peri-urban, and rural areas in Oyo State, customers exiting proprietary and patent medicine vendor (PPMV) shops or pharmacies having purchased anti-malarial drugs were surveyed and tested with malaria rapid diagnostic test. A follow-up phone survey was conducted four days after to assess self-reported drug administration. Bivariate and multivariate regression analysis was conducted to determine the correlates of patronizing a PPMV versus pharmacy, and the likelihood of purchasing an artemisinin-combination therapy (ACT) drug.

Results

Of the 457participants who sought malaria treatment in 49 enrolled outlets, nearly 92% had diagnosed their condition by themselves, a family member, or a friend. Nearly 60% pharmacy customers purchased an ACT compared to only 29% of PPMV customers, and pharmacy customers paid significantly more on average. Multivariate regression results show that patrons of PPMVs were younger, less wealthy, waited fewer days before seeking care, and were less likely to be diagnosed at a hospital, clinic, or laboratory. Only 3.9% of participants tested positive with a malaria rapid diagnostic test.

Conclusions

Poorer individuals seeking care at PPMVs are more likely to receive inappropriate malaria treatment when compared to those who go to pharmacies. Increasing accessibility to reliable diagnosis should be explored to reduce malaria over-treatment.  相似文献   

20.

Background

Malawi commenced the introduction of the 13-valent pneumococcal conjugate vaccine (PCV13) into the routine infant immunisation schedule in November 2011. Here we have tested the utility of high throughput whole genome sequencing to provide a high-resolution view of pre-vaccine pneumococcal epidemiology and population evolutionary trends to predict potential future change in population structure post introduction.

Methods

One hundred and twenty seven (127) archived pneumococcal isolates from randomly selected adults and children presenting to the Queen Elizabeth Central Hospital, Blantyre, Malawi underwent whole genome sequencing.

Results

The pneumococcal population was dominated by serotype 1 (20.5% of invasive isolates) prior to vaccine introduction. PCV13 is likely to protect against 62.9% of all circulating invasive pneumococci (78.3% in under-5-year-olds). Several Pneumococcal Molecular Epidemiology Network (PMEN) clones are now in circulation in Malawi which were previously undetected but the pandemic multidrug resistant PMEN1 lineage was not identified. Genome analysis identified a number of novel sequence types and serotype switching.

Conclusions

High throughput genome sequencing is now feasible and has the capacity to simultaneously elucidate serotype, sequence type and as well as detailed genetic information. It enables population level characterization, providing a detailed picture of population structure and genome evolution relevant to disease control. Post-vaccine introduction surveillance supported by genome sequencing is essential to providing a comprehensive picture of the impact of PCV13 on pneumococcal population structure and informing future public health interventions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号