首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A new group of anaerobic thermophilic bacteria was isolated from enrichment cultures obtained from deep sea sediments of Peru Margin collected during Leg 201 of the Ocean Drilling Program. A total of ten isolates were obtained from cores of 1–2 m below seafloor (mbsf) incubated at 60°C: three isolates came from the sediment 426 m below sea level with a surface temperature of 9°C (Site 1227), one from 252 m below sea level with a temperature of 12°C (Site 1228), and six isolates under sulfate-reducing condition from the lower slope of the Peru Trench (Site 1230). Strain JW/IW-1228P from the Site 1228 and strain JW/YJL-1230-7/2 from the Site 1230 were chosen as representatives of the two identified clades. Based on the 16S rDNA sequence analysis, these isolates represent a novel group with Thermovenabulum and Caldanaerobacter as their closest relatives. The temperature range for growth was 52–76°C with an optimum at around 68°C for JW/IW-1228P and 43–76°C with an optimum at around 64°C for JW/YJL-1230-7/2. The pH25C range for growth was from 6.3 to 9.3 with an optimum at 7.5 for JW/IW-1228P and from 5 to 9.5 with an optimum at 7.9–8.4 for JW/YJL-1230-7/2. The salinity range for growth was from 0% to 6% (w/v) for JW/IW-1228P and from 0% to 4.5% (w/v) for JW/YJL-1230-7/2. The G+C content of the DNA was 50 mol% for both JW/IW-1228P and JW/YJL-1230-7/2. DNA–DNA hybridization yielded 52% similarity between the two strains. According to 16S rRNA gene sequence analysis, the isolates are located within the family, Thermoanaerobacteriaceae. Based on their morphological and physiological properties and phylogenetic analysis, it is proposed that strain JW/IW-1228PT is placed into a novel taxa, Thermosediminibacter oceani, gen. nov., sp. nov. (DSM 16646T=ATCC BAA-1034T), and JW/YJL-1230-7/2T into Thermosediminibacter litoriperuensis sp. nov. (DSM 16647T =ATCC BAA-1035T).An erratum to this article can be found at  相似文献   

2.
Novel alkaliphilic, mesophilic bacteria were isolated from subseafloor alkaline serpentine mud from the Ocean Drilling Program (ODP) Hole 1200D at a serpentine mud volcano, South Chamorro Seamount in the Mariana Forearc. The cells of type strain ODP1200D-1.5T were motile rods with a single polar flagellum. Growth was observed between 10 and 45–50°C (optimum temperature: 30–35°C, 45-min doubling time), between pH 6.5 and 10.8–11.4 (optimum: pH 8.5–9.0), and between NaCl concentrations of 0 and 21% (w/v) (optimum NaCl concentration: 2.5–3.5%). The isolate was a facultatively anaerobic heterotroph utilizing various complex substrates, hydrocarbons, carbohydrates, organic acids, and amino acids. Nitrate or fumarate could serve as an electron acceptor to support growth under anaerobic conditions. The G+C content of the genomic DNA was 57.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate belonged to the genus Marinobacter and was the most closely related to M. aquaeolei strain VT8T and M. hydrocarbonoclasticus strain SP.17T, while DNA–DNA hybridization demonstrated that the new isolate could be genetically differentiated from the previously described species of Marinobacter. Based on the physiological and molecular properties of the new isolate, we propose the name Marinobacter alkaliphilus sp. nov., type strain: ODP1200D-1.5T (JCM12291T and ATCC BAA-889T).  相似文献   

3.
Summary The effect of temperature on the response properties of primary auditory fibres in caiman was studied. The head temperature was varied over the range of 10–35 ° C while the body was kept at a standard temperature of 27 °C (Ts). The temperature effects observed on auditory afferents were fully reversible. Below 11 °C the neural firing ceased.The mean spontaneous firing rate increased nearly linearly with temperature. The slopes in different fibres ranged from 0.2–3.5 imp s–1 °C–1. A bimodal distribution of mean spontaneous firing rate was found (<20 imp s–1 and >20 imp s–1 at Ts) at all temperatures.The frequency-intensity response area of the primary fibres shifted uniformly with temperature. The characteristic frequency (CF) increased nearly linearly with temperature. The slopes in different fibres ranged from 3–90 Hz °C–1. Expressed in octaves the CF-change varied in each fibre from about O.14oct °C–1 at 15 °C to about 0.06 oct °C–1 at 30 °C, irrespective of the fibre's CF at Ts. Thresholds were lowest near Ts. Below Ts the thresholds decreased on average by 2dB°C–1, above Ts the thresholds rose rapidly with temperature. The sharpness of tuning (Q10db) showed no major change in the temperature range tested.Comparison of these findings with those from other lower vertebrates and from mammals shows that only mammalian auditory afferents do not shift their CF with temperature, suggesting that a fundamental difference in mammalian and submammalian tuning mechanisms exists. This does not necessarily imply that there is a single unifying tuning mechanism for all mammals and another one for non-mammals.Abbreviations BF best frequency: frequency of maximal response at an intensity 10 dB above the CF-threshold - CF characteristic frequency - FTC frequency threshold curve, tuning curve - T s standard temperature of 27 °C  相似文献   

4.
Metabolic rate and evaporative water loss (EWL) were measured for a small, arid-zone marsupial, the stripe-faced dunnart (Sminthopsis macroura), when normothermic and torpid. Metabolic rate increased linearly with decreasing ambient temperature (Ta) for normothermic dunnarts, and calculated metabolic water production (MWP) ranged from 0.85±0.05 (Ta=30°C) to 3.13±0.22 mg H2O g–1 h–1 (Ta=11°C). Torpor at Ta=11 and 16°C reduced MWP to 24–36% of normothermic values. EWL increased with decreasing Ta, and ranged from 1.81±0.37 (Ta=30°C) to 5.26±0.86 mg H2O g–1 h–1 (Ta=11°C). Torpor significantly reduced absolute EWL to 23.5–42.3% of normothermic values, resulting in absolute water savings of 50–55 mg H2O h–1. The relative water economy (EWL/MWP) of the dunnarts was unfavourable, remaining >1 at all Ta investigated, and did not improve with torpor. Thus torpor in stripe-faced dunnarts results in absolute, but not relative, water savings.  相似文献   

5.
Popova  N. A.  Nikolaev  Yu. A.  Tourova  T. P.  Lysenko  A. M.  Osipov  G. A.  Verkhovtseva  N. V.  Panikov  N. S. 《Microbiology》2002,71(3):335-341
The KT 2 strain of thermophilic spore-forming bacteria was isolated from a biofilm on the surface of a corroded pipeline in an extremely deep well (4680 m, 40–72°C) in the Urals. The cells are rod-shaped, motile, gram-variable. They grow on a complex medium with tryptone and yeast extract and on a synthetic medium with glucose and mineral salts without additional growth factors. The cells use a wide range of organic substances as carbon and energy sources. They exhibit a respiratory metabolism but are also capable of anaerobic growth on a nitrate-containing medium. Growth occurs within the 40–75°C temperature range (with an optimum of 65°C) and at pH 5–9. The minimum generation time (15 min) was observed at pH 7.5. Ammonium salts, nitrates, and arginine are used as nitrogen sources. The G+C content of the DNA is 54.5 mol %. From the morphological, physiological, and biochemical properties and the nucleotide sequence of the 16S rRNA gene, it was concluded that the isolate KT 2 represents a new species of the genus Geobacillus, Geobacillus uralicus.  相似文献   

6.
A novel Gram-negative, slightly halophilic, catalase- and oxidase-positive, obligately aerobic bacterium, strain YIM-C248T, was isolated from a sediment sample collected from a salt-lake in the Qaidam Basin in Qinghai, north-west China. Cells were non-sporulating short rods, occurring singly or as doublets, motile with peritrichous flagella. Growth occurred with 1–15% (w/v) NaCl [optimum 2–4% (w/v) NaCl], at pH 6.0–10.0 (optimum pH 7.5) and at 4–35°C (optimum 25–30°C). The major cellular fatty acids were C18:1 ω7c, C12:0 3-OH, cyclo C19:0 ω8c, C16:0 and C16:1. The predominant respiratory quinone was Q-9 and the genomic DNA G + C content was 58.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain YIM-C248T should be assigned to the genus Halomonas. The sequence similarities between the isolate and the type strains of members of the genus Halomonas were in the range of 92.5–97.5%. The combination of phylogenetic analysis, DNA–DNA hybridization data, phenotypic characteristics and chemotaxonomic differences supported the view that strain YIM-C248T represents a new species of the genus Halomonas, for which the name Halomonas sediminis sp. nov. is proposed, with YIM-C248T (=CCTCC AA 207031 = KCTC 22167) as the type strain. The GenBank/EMBL/DBBJ accession number for the 16S rRNA gene sequence of strain YIM-C248T is EU135707.  相似文献   

7.
A bacterial strain utilizing methanol as the sole source of carbon and energy was isolated from the maize phyllosphere. Cells are nonpigmented gram-negative motile rods that do not form spores or prosthecae and reproduce by binary fission. The strain does not require vitamins or supplementary growth factors. It is obligately aerobic and urease-, oxidase-, and catalase-positive. The optimum growth temperature is 35–40°C; the optimum pH is 7.0–7.5. The doubling time is 2 h. The bacterium implements the ribulose monophosphate pathway and possesses NAD+-dependent 6-phosphogluconate dehydrogenase and enzymes of the glutamate cycle. α-Ketoglutarate dehydrogenase and enzymes of the glyoxylate cycle (isocitrate lyase and malate synthase) are absent. Fatty acids are dominated by palmitic (C16:0) and palmitoleic (C16:1) acids. The major phospholipids are phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylcholine. Cardiolipin is present in minor amounts. The dominant ubiquinone is Q8 The bacterial genome contains genes controlling the synthesis and secretion of cytokinins. The G+C content of DNA is 57.2 mol %, as determined from the DNA thermal denaturation temperature Tm. The bacterium shows low DNA homology (<10%) with restricted facultative methylotrophic bacteria of the genusMethylophilus (M. methylotrophus NCIMB 10515T andM. leisingerii VKM B-20131) and with the obligate methylotrophic bacterium (Methylobacillus glycogenes ATCC 29475T). DNA homology with the type representative of the genusMethylovorus, M. glucosetrophus VKM B-1745T, is high (58%). The new isolate was classified as a new species,Methylovorus mays sp. nov.  相似文献   

8.
Three pigmented strains of halophilic archaea, RS94-RS96, were isolated from acidic foamy products of flotation enrichment of potassium minerals (Silvinit Co., Solikamsk, Russia). The cells were gram-negative, nonmotile, pleomorphic ovoids, 1.0−1.5 × 1.5−2.5 μm. The isolates were chemoorganotrophic, obligately aerobic, and catalase-positive. A range of carbohydrates and organic acids was used, as well as amino acids and peptides. The strains were halophiles and thermotolerant neutrophiles. They grew in the media with 15 to 30% NaCl (optimum at 20–22%) and 0.005–0.7 M Mg2+ (0.1–0.2 M), at pH 5.0–8.2 (optimum 7.0–7.2) and 25–55°C (optimum at 35–50°C). The major fatty acids were C16:0, C18:1, C18:0, and C16:1. The membranes contained carotenoid pigments of the bacterioruberin series and polar lipids, mostly as C20,C20 isoprenoid derivates: phosphatidylglyceromethylphosphate, phosphatidylglycerol, and three unidentified sulfated glycolipids of the S-DGD type. The DNA G+C content was 65.1–66.4 mol %. Phylogenetic analysis based on the 16S rRNA gene sequencing revealed that the thermotolerant neutrophilic isolate RS94 (DNA G+C content of 66.4 mol %) was most closely related to the nonpigmented moderate acidophile Halarchaeum acidiphilum MH1-52-1T (97.3%). Based on its phenotypic and genotypic characteristics, the organism was classified as a new species of the genus Halarchaeum with the proposed name Halarchaeum solikamskense sp. nov. The type strain is RS94T (= VKPM B-11282T).  相似文献   

9.
A bacterial strain 5YN5-8T was isolated from peat layer on Yongneup in Korea. Cells of strain 5YN5-8T were strictly aerobic, Gram-negative, coccobacilli, non-spore forming, and non-motile. The isolate exhibited optimal growth at 28°C, pH 7.0, and 0–1% NaCl. Results of 16S rRNA gene sequence analyses indicated a close relationship of this isolate to Acinetobacter calcoaceticus (97.8% similarity for strain DSM 30006T). It also exhibited 94.4–97.8% 16S rRNA gene sequence similarities to the validly published Acinetobacter species. The value for DNA-DNA hybridization between strain 5YN5-8T and other members of the genus Acinetobacter ranged from 16 to 28%. Predominant cellular fatty acids were C18:1 ω9c, summed feature 4 containing C15:0 iso 2-OH and/or C16:1 ω7c, and C16:0. The DNA G+C content was 43.9 mol%. Phylogenetic, phenotypic, and chemotaxonomic data accumulated in this study revealed that the isolate could be classified in a novel species of the genus Acinetobacter. The name Acinetobacter brisouii sp. nov. is proposed for the novel species, with 5YN5-8T (=KACC 11602T = DSM 18516T) as the type strain.  相似文献   

10.
A pale yellow-colored, moderately halophilic, Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, motile, aerobic bacterium, designated strain JSM 073008T, was isolated from a sea anemone (Anthopleura xanthogrammica) collected from Naozhou Island, Leizhou Bay, South China Sea. The organism was able to grow with 1–20% (w/v) total salts (optimum, 5–10%), at pH 6.0–10.0 (optimum, pH 7.5) and 10–40°C (optimum, 25–30°C). The major cellular fatty acids were C16:0, C16:1 ω7c/iso-C15:0 2-OH and C18:1 ω7c. The polar lipids consisted of phosphatidylethanolamine, phosphatidylglycerol and an unidentified phospholipid. The predominant respiratory quinone was Q-8 and the genomic DNA G + C content was 47.5 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 073008T should be assigned to the genus Alteromonas, being most closely related to Alteromonas hispanica F-32T (sequence similarity 96.9%), followed by Alteromonas genovensis LMG 24078T (96.6%) and Alteromonas litorea TF-22T (96.4%). The sequence similarities between the novel isolate and the type strains of other recognized Alteromonas species ranged from 95.9% (with Alteromonas stellipolaris ANT 69aT) to 94.5% (with Alteromonas simiduii BCRC 17572T). The combination of phylogenetic analysis, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 073008T represents a new species of the genus Alteromonas, for which the name Alteromonas halophila sp. nov. is proposed. The type strain is JSM 073008T (=CCTCC AA 207035T = KCTC 22164T). The authors Yi-Guang Chen and Huai-Dong Xiao have contributed equally to this work.  相似文献   

11.
Rates of O2 consumption and CO2 production, telemetered body temperature (Tb) and activity level were recorded from adult and subadult water shrews (Sorex palustris) over an air temperature (Ta) range of 3–32°C. Digesta passage rate trials were conducted before metabolic testing to estimate the minimum fasting time required for water shrews to achieve a postabsorptive state. Of the 228 metabolic trials conducted on 15 water shrews, 146 (64%) were discarded because the criteria for inactivity were not met. Abdominal Tb of S. palustris was independent of Ta and averaged 38.64±0.07°C. The thermoneutral zone extended from 21.2°C to at least 32°C. Our estimate of the basal metabolic rate for resting, postabsorptive water shrews (96.88±2.93 J g–1 h–1 or 4.84±0.14 ml O2 g–1 h–1) was three times the mass-predicted value, while their minimum thermal conductance in air (0.282±0.013 ml O2 g–1 h–1) concurred with allometric predictions. The mean digesta throughput time of water shrews fed mealworms (Tenebrio molitor) or ground meat was 50–55 min. The digestibility coefficients for metabolizable energy (ME) of water shrews fed stickleback minnows (Culaea inconstans) and dragonfly nymphs (Anax spp. and Libellula spp.) were 85.4±1.3% and 82.8±1.1%, respectively. The average metabolic rate (AMR) calculated from the gas exchange of six water shrews at 19–22°C (208.0±17.0 J g–1 h–1) was nearly identical to the estimate of energy intake (202.9±12.9 J g–1 h–1) measured for these same animals during digestibility trials (20°C). Based on 24-h activity trials and our derived ME coefficients, the minimum daily energy requirement of an adult (14.4 g) water shrew at Ta = 20°C is 54.0 kJ, or the energetic equivalent of 14.7 stickleback minnows.  相似文献   

12.
Zhilina  T. N.  Garnova  E. S.  Tourova  T. P.  Kostrikina  N. A.  Zavarzin  G. A. 《Microbiology》2001,70(1):64-72
A new alkaliphilic and moderately halophilic chemoorganotrophic anaerobic bacterium (strain Z-7986), which is spore-forming, rod-shaped, and has a gram-negative cell wall pattern, was isolated from the coastal lagoon mud of the highly mineralized Lake Magadi (Kenya). The organism is an obligatorily carbonate- and sodium chloride-dependent motile peritrichously flagellated rod that grows within a 3–17% NaCl concentration range (with an optimum at 7–12% NaCl) and within a pH range of 7.7–10.3 (with an optimum at pH values of 8–8.5). It is a moderate thermophile with a broad temperature optimum at 36–55°C; maximum growth temperature is 60°C. The bacterium catabolizes glucose, fructose, sucrose, maltose, starch, glycogen, N-acetyl-D-glucosamine, and, to a slight degree, peptone and yeast extract. Its anabolism requires yeast extract or casamino acids. Glucose fermentation yields formate, acetate, ethanol, H2, and CO2. The bacterium is sulfide-tolerant and capable of the nonspecific reduction of S0 to H2S. The G+C content of the DNA is 34.4 mol %. The analysis of the 16S rRNA sequence revealed that strain Z-7986 belongs to the order Haloanaerobiales and represents a new genus in the family Halobacteroidaceae. We suggest the name Halonatronum saccharophilum gen. nov. sp. nov. The type strain of this species is Z-7986T (= DSM13868, = Uniqem*211).  相似文献   

13.
Three strains of new obligately anaerobic alkaliphilic bacteria have been isolated as a saccharolytic component from the cellulolytic community of alkaline Lake Nizhnee Beloe (Transbaikal region, Russia), a lake with low salt concentration. DNA analysis of these strains showed an interspecies level of DNA similarity of 96–100%. Strain Z-79820 was selected for further investigations. Cells were Gram-positive, asporogenous, nonmotile short rods with pointed ends. The strain was a true alkaliphile: growth occurred from pH 7.2 to 10.2 with the optimum at pH 9.0. Strain Z-79820 was halotolerant and could grow in medium with up to 10% (w/v) NaCl, with the optimum between 0 and 4% NaCl. The new isolate obligately depended on Na+ ions in the form of carbonates or chlorides. Total Na+ content needed for optimal growth was 0.46 M Na+, with a wide range from 0.023–0.9 M Na+ at which growth also occurred. The isolate was a mesophile and grew at temperatures from 6 to 50°C (slow growth at 6 and 15°C) with an optimum at 35°C. The organotrophic organism fermented ribose, xylose, glucose, mannose, fructose, sucrose, mannitol, and peptone. The products of glucose fermentation were acetate, ethanol, formate, H2, and CO2. Yeast extract was required for some anabolic needs. The DNA G+C content of the type strain Z-79820 was 42.1 mol%. The new bacterium fell into the 16S rRNA gene cluster XV of the Gram-positive bacteria with low G+C content, where it formed an individual branch. Based on its growth characteristics and genotype traits, we propose the new genus and species named Alkalibacter saccharofermentans with the type strain Z-79820 (=DSM14828), Uniqem-218 (Institute Microbiology, RAS; ).  相似文献   

14.
We isolated a methanogenic strain, designated as strain TMA (=DSM 9195), from an enrichment culture inoculated with a Japanese paddy field soil. Strain TMA was Gram positive and strictly anaerobic. Cell shape was pseudosarcina-like, and cells were nonmotile. The strain was able to use methylamines, methanol, H2–CO2, and acetate as substrates for methanogenesis, but did not utilize formate. The optimum temperature and optimum pH were 30–37°C and 6.5–7.5 respectively. The G+C content of the DNA was 42.1 mol %. Strain TMA had DNA-DNA hybridization values of more than 80% with Methanosarcina mazeii S-6T (T = type strain). On the basis of phenotypic and genotypic characteristics, we identified strain TMA as M. mazeii. This is the first methylotrophic methanogen isolated from a paddy field soil and identified to the species level.  相似文献   

15.
A novel Gram-negative, catalase- and oxidase-positive, non-sporulating, rod-shaped, aerobic bacterium, designated strain JSM 078120T, was isolated from sea water collected from a tidal flat of Naozhou Island, South China Sea. Growth occurred with 1–15% (w/v) total salts (optimum, 2–4%), at pH 6.0–10.0 (optimum, pH 7.5) and at 4–35°C (optimum, 25–30°C). The major cellular fatty acids were C18:1 ω9c, C16:0, C12:0 3-OH and C16:1 ω7c. The predominant respiratory quinone was ubiquinone Q-9, and the genomic DNA G + C content was 60.6 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain JSM 078120T should be assigned to the genus Marinobacter, being related most closely to the type strains of Marinobacter segnicrescens (sequence similarity 98.2%), Marinobacter bryozoorum (97.9%) and Marinobacter gudaonensis (97.6%). The sequence similarities between the novel isolate and the type strains of other recognized Marinobacter species ranged from 96.7 (with Marinobacter salsuginis) to 93.3% (with Marinobacter litoralis). The levels of DNA–DNA relatedness between strain JSM 078120T and the type strains of M. segnicrescens, M. bryozoorum and M. gudaonensis were 25.3, 20.6 and 18.8%, respectively. The combination of phylogenetic analysis, DNA–DNA relatedness, phenotypic characteristics and chemotaxonomic data supported the view that strain JSM 078120T represents a novel species of the genus Marinobacter, for which the name Marinobacter zhanjiangensis sp. nov. is proposed. The type strain is JSM 078120T (= CCTCC AB 208029T = DSM 21077T = KCTC 22280T). The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain JSM 078120T is FJ425903.  相似文献   

16.
Summary The Diamond Dove, Geopelia cuneata, is the world's second smallest (ca. 35 g) species of the columbid order. The Diamond Dove is endemic in the arid and semiarid Mulga and Spinifex regions of Central and Western Australia. It regularly encounters ambient temperatures (T a ) in its habitat above +40° C, especially when foraging for seeds on bare ground cover, and may be found at up to 40 km from water. This entails extreme thermal stress, with evaporative cooling constrained by limited water supply. Energy metabolism (M), respiration, body temperature (T a ) and water budget were examined with regard to physiological adaptations to these extreme environmental conditions. The zone of thermal neutrality (TNZ) extended from +34° C to at least +45° C. Basal metabolic rate (BMR) was 34.10±4.19 J g–1h–1, corresponding to the values predicted for a typical columbid bird. Thermal conductance (C) was higher than predicted. Geopelia cuneata showed the typical breathing pattern of doves, a combination of normal breathing at a stable frequency (ca. 60 min–1) at low T a and panting followed by gular flutter (up to 960 min–1) at high T a . At T a > +36° C, T a increased to considerably higher levels without increasing metabolic rate, i.e. Q10=1. This enabled the doves not only to store heat but also to save the amout of water that would have been required for evaporative cooling if T a had remained constant. The birds were able to dissipate more than 100% of the metabolic heat by evaporation at T a +44° C. This was achieved by gular flutter (an extremely effective mechanism for evaporation), and also by a low metabolic rate due to the low Q10 value for metabolism during increased T b . At lower T a , Geopelia cuneata predominantly relied on non-evaporative mechanisms during heat stress, to save water. Total evaporative water loss over the whole T a range was 19–33% lower than expected. In this respect, their small body size proved to be an important advantage for successful survival in hot and arid environments.Abbreviations and units Body Mass W (g) - Ambient Temperature T a (°C) - Body Temperature T b (°C) - Thermoneutral Zone (TNZ) - Metabolism M (J g–1 h–1) - Thermal Conductance C - wet Thermal Conductance C wet (J g–1 h–1 °C–1) - Evaporative Water Loss EWL (mg H2O g–1 h–1) - Evaporative Heat Loss EHL (J g–1 h–1) - Breathing Frequency F (breaths min–1) - Tidal Volume V t (ml breath–1) - Standard Temperature Pressure Dry STPD - Body Temperature Pressure Saturated BTPS - Respiratory Quotient RQ - n.s. not significant (P>0.05) - n number of experiments  相似文献   

17.
A new thermophilic sulfate-reducing bacterium isolated from the high-temperature White Tiger oil field (Vietnam) is described. Cells of the bacterium are oval (0.4–0.6 by 0.6–1.8 m), nonmotile, non-spore-forming, and gram-negative. Growth occurs at 45 to 65°C (with an optimum at 60°C) at NaCl concentrations of 0 to 50 g/l. In the course of sulfate reduction, the organism can utilize lactate, pyruvate, malate, fumarate, ethanol, salts of fatty acids (formate, acetate, propionate, butyrate, caproate, palmitate), yeast extract, alanine, serine, cysteine, and H2+ CO2(autotrophically). In addition to sulfate, the bacterium can use sulfite, thiosulfate, and elemental sulfur as electron acceptors. In the absence of electron acceptors, the bacterium can ferment pyruvate and yeast extract (a yet unrecognized capacity of sulfate reducers) with the formation of acetate and H2. The G+C content of DNA is 60.8 mol %. The level of DNA–DNA hybridization of the isolate (strain 101T) and Desulfacinum infernum(strain BG1T) is as low as 34%. Analysis of the nucleotide sequence of 16S rDNA places strain 101Tin the phylogenetic cluster of the Desulfacinumspecies within the sulfate reducer subdivision of the delta subclass of Proteobacteria. All these results allowed the bacterium studied to be described as a new species, Desulfacinum subterraneumsp. nov., with strain 101 as the type strain.  相似文献   

18.
Summary Body temperature (T b), oxygen consumption , thermal conductance (C) and evaporative water loss (EWL) were measured at various air temperatures (T a) in two starlings which evolved in the tropics: a migratory species from a temperate climate,Sturnus vulgaris, and a resident, desert species,Onychognathus tristrami (Aves, Passeriformes, Sturnidae).AtT a's of 4–35°C both birds hadT b of 40.6°C. At 44°C,T b ofSturnus was 45.8°C and that ofOnychognathus 43.3°C.T a of 44°C was tolerated only byOnychognathus. The thermoneutral zone (TNZ) ofSturnus was in theT a range of 29.5°C–36.5°C, that ofOnychognathus 21.5–36.5°C. ofSturnus within its TNZ (BMR) was 2.37 ml O2 g–1 h–1, which is close to the expected BMR; that ofOnychognathus, 1.67 ml O2 g–1 h–1, is only 74% of the expected. AtT a'sNZ,C ofSturnus was twice as high as that ofOnychognathus and 1.68 times the expected value, whereasC ofOnychognathus was only 94% of the expected. At highT a'sOnychognathus had higherC thanSturnus. At either low or highT a's EWL ofSturnus was greater than ofOnychognathus.The responses shown bySturnus are typical of a tropical bird living in a moderate environment. This indicates that neither in USSR where it spends the summer, nor in Israel where it spends the winter, is this starling exposed to extreme temperatures.Onychognathus is better adapted not only to high but also to the low temperatures prevailing in mountainous regions of the desert.Symbols and abbreviations BMR basal metabolic rate - C thermal conductance - EWL evaporative water loss - HE evaporative heat loss - HP heat production - TNZ thermoneutral zone  相似文献   

19.
Fourteen strains of a thermophilic, rod-shaped, peritrichously flagellatedClostridium species were isolated from various mud and soil samples. Round to slightly oval spores were formed in terminal position. The isolates were obligate anaerobes and grew chemolithotrophically with H2 plus CO2 as well as chemoorganotrophically with fructose, glucose, glycerate, or methanol. Under both conditions, acetate was the only organic fermentation product formed in significant amounts. The pH optimum for growth was 5.7; the marginal temperatures for growth wereT min, 36°C;T opt, 56–60°C; andT max, 69/70°C. The DNA contained 53–55 mol% guanine plus cytosine. the isolated strains form a new clostridial species; the nameClostridium thermoautotrophicum is proposed.  相似文献   

20.
Pigeon flight in a wind tunnel   总被引:2,自引:0,他引:2  
Summary Core temperatureT c, breast temperatureT s–br and leg temperatureT s–1 were measured simultaneously in pigeons during rest and flight in a wind tunnel, using thermistors.MeanT c at rest is 39.8±0.7°C and is independent of ambient temperatureT a (10–30°C). In the first minutes of flight,T c increases to 1.5–3.0°C above resting level and remains at this higher level. This hyperthermia increases withT a (v=const.). It is±constant in the lowT a range (10.6–13.9°C) at flight speeds v ranging from 10–18 m s–1 and normal body mass, but increases with v and elevated body mass in the highT a range (23.7–28.8°C). T s–1 is adapted toT a at rest and increases in flight up to 3–4°C belowT c. This increase inT s–1 is linear toT a. T s–br is always lower thanT c, in extreme cases reaching restingT c in flight.Supported by the Deutsche Forschungsgemeinschaft  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号