首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
A carboxypeptidase B-like enzyme was detected in the soluble fraction of purified insulin secretory granules, and implicated in insulin biosynthesis. To investigate the role of this activity further, we purified the enzyme from rat insulinoma tissue by gel-filtration chromatography and affinity elution from p-aminobenzoyl-arginine. A yield of 42%, with a purification factor of 674 over the homogenate, was achieved. Analysis of the purified carboxypeptidase by SDS/polyacrylamide-gel electrophoresis under either reducing or non-reducing conditions showed it to be a monomeric protein of apparent Mr 55,000. The preparation was also homogeneous by high-performance gel-filtration chromatography. The enzyme bound to concanavalin A, showing it to be a glycoprotein. Amino acid analysis or chemical deglycosylation and SDS/polyacrylamide-gel electrophoresis indicated a protein Mr of 50,000, suggesting a carbohydrate content of approx. 9% by weight. The purified enzyme was able to remove basic amino acids from the C-terminus of proinsulin tryptic peptides to generate insulin, but did not further degrade the mature hormone. It was inhibited by EDTA, 1,10-phenanthroline and guanidinoethylmercaptosuccinic acid, and stimulated 5-fold by CoCl2. The pH optimum of the conversion of diarginyl-insulin into insulin was in the range 5-6, with little activity above pH 6.5. Activity was also expressed towards a dansylated tripeptide substrate (dansyl-phenylalanyl-leucyl-arginine; Km = 17.5 microM), and had a pH optimum of 5.5. These properties are indistinguishable from those of the activity located in secretory granules, and are compatible with the intragranular environment. The insulin-secretory-granule carboxypeptidase shared several properties of carboxypeptidase H from bovine adrenal medulla and pituitary. We propose that the carboxypeptidase that we purified is the pancreatic isoenzyme of carboxypeptidase H (crino carboxypeptidase B; EC 3.4.17.10), and is involved in the biosynthesis of insulin in the pancreatic beta-cell.  相似文献   

2.
1. A soluble D-alanine carboxypeptidase from Escherichia coli strain B was purified on a p-aminobenzylpenicillin-Sepharose column. This one-step chromatography followed by an (NH4)2SO4 precipitation yielded an enzyme purified 1200-fold and some of its properties are reported. 2. The pure D-alanine carboxypeptidase was devoid of D-alanine carboxypeptidase II activity and migrated as a single protein band on analytical disc gel electrophoresis. 3. Triton X-100 in the purification procedure is an absolute requirement for obtaining a stable enzyme. 4. The enzymic activity of D-alanine carboxypeptidase was greatly affected in solution of high salt concentrations and varied somewhat with the nature of the cation tested.  相似文献   

3.
A carboxypeptidase B-like enzyme is involved in processing of proenkephalin in adrenal medulla. Nicotine stimulated the co-release of this enzyme with (Met)enkephalin pentapeptide from bovine chromaffin cells in primary culture. The ratio of enzyme activity/immunoreactivity was determined for the released carboxypeptidase to provide an index of the level of enzyme activity per unit number of enzyme molecules. The ratio for the Co++-stimulated carboxypeptidase secreted into the cell culture medium upon nicotinic stimulation was 10.1 +/- 1.02 (pmol Met-enkephalin formed per ng carboxypeptidase immunoreactivity), while the Co++-stimulated carboxypeptidase in the soluble and membrane components of purified chromaffin granules had lower ratios of 5.46 +/- 0.70 and 1.07 +/- 0.13, respectively. Hexamethonium, a nicotinic receptor antagonist, blocked the nicotine-induced release of the carboxypeptidase processing enzyme and (Met)enkephalin. These data suggest that a pool of carboxypeptidase enzyme molecules at a high state of activation are present in functionally mature granules whose contents are released by nicotinic receptor stimulation.  相似文献   

4.
A developmentally regulated carboxypeptidase was purified from hyphae of the dimorphic fungus Mucor racemosus. The enzyme, designated carboxypeptidase 3 (CP3), has been purified greater than 900-fold to homogeneity and characterized. The carboxypeptidase migrated as a single electrophoretic band in isoelectric focusing polyacrylamide gel electrophoresis (PAGE), with an isoelectric point of pH 4.4. The apparent molecular mass of the native enzyme was estimated by gel filtration to be 52 kDa. Sodium dodecyl sulfate (SDS)-PAGE under nonreducing conditions revealed the presence of a single polypeptide of 51 kDa. SDS-PAGE of CP3 reacted with 2-mercaptoethanol revealed the presence of two polypeptides of 31 and 18 kDa, indicating a dimer structure (alpha 1 beta 1) of the enzyme with disulfide-linked subunits. By using [1,3-3H]diisopropylfluorophosphate as an active-site labeling reagent, it was determined that the catalytic site resides on the small subunit of the carboxypeptidase. With N-carboben zoxy-L-phenylalanyl-L-leucine (N-CBZ-Phe-Leu) as the substrate, the Km, kcat, and Vmax values were 1.7 x 10(-4) M, 490 s-1, and 588 mumol of Leu released per min per mg of protein, respectively. CP3 was determined to be a serine protease, since its catalytic activity was blocked by the serine protease inhibitors diisopropylfluorophosphate, phenylmethylsulfonyl fluoride, and 3,4-dichloroi Socoumarin (DCI). The enzyme was strongly inhibited by the mercurial compound p-chloromercuribenzoate. The carboxypeptidase readily hydrolyzed peptides with aliphatic or aromatic side chains, whereas most of the peptides which contained glycine in the penultimate position did not serve as substrates for the enzyme. Although CP3 activity was undetectable in Mucor yeast cells, antisera revealed the presence of the enzyme in the yeast form of the fungus. The partial amino acid sequence of the carboxypeptidase was determined.  相似文献   

5.
The conversion of selected prodynorphin fragments to form the octapeptide Dynorphin A 1–8 was studied in rat brain or spinal cord fractions, and the results compared to the action of purified carboxypeptidases and angiotension converting enzyme. The particulates were shown to convert Dynorphin A or 1–13 to the octapeptide as measured by radioimmunoassay, and by reverse phase high performance liquid chromatography. Detergent extracts of these particulates contained and enzyme converting 1–13 to 1–12 with release of C-terminal lysine, and active over a wide pH range of 4.8–7.6. Purification of these extracts by affinity chromatography (p-amino-benzoyl-arginine-Sepharose-6B) using Bz-Ala-Arg as the substrate led to isolation of a carboxypeptidase converting 1–13 to 1–12 active over the same pH range. Since Dynorphin 1–13 was converted to 1–8 by the consecutive use of purified carboxypeptidase B and angiotensin converting enzyme, the possibility exists that this mechanism might account for some octapeptide production in situ.

The properties and substrate specificity of the carboxypeptidase B were compared to a carboxypeptidase A active optimally at pH 5.5 and assayed with Z-Glu-Tyr. The carboxypeptidase B acted only on prodynorphins with C-terminal basic residues as contrasted to a nonspecific action by the carboxypeptidase A. The carboxypeptidase B was characterized by a strong activation by -SH agents and Zn2+, and thus could be differentiated from other opioid converting enzymes. The enzyme was inhibited by guanidinoethyl succinic acid (GEMSA), and p-chloromercuriphenyl-sulphonic acid (PCMS) but not by benzylsuccinic acid, a potent inhibitor of carboxypeptidase A.  相似文献   


6.
A new type of carboxypeptidase was found in a strain of Pseudomonas sp. M-27 isolated from soil. The cell-free extract, solubilized by colistin sulfate, was purified to homogeneity. This enzyme had a single peak with a molecular weight of 60,000 on a calibrated Superdex column and consisted of four subunits of identical molecular weights (M(r): 15,000). The enzyme hydrolyzed predominantly acidic peptides and N-acyl amino acids with Glu or Asp in the C-termini. This enzyme was not strongly affected by thiol enzyme inhibitors (PCMB, iodoacetic acid) or serine protease inhibitors (DFP, PMSF), but was inhibited by metal chelators. The enzyme resembles carboxypeptidase G1 or G2 in its glutamate-releasing activity. However, it acts not only on the L-form but also on the D-form of acidic amino acids and shows affinity for the long-chain fatty acyl group but not the benzoyl group. Thus, as this enzyme differs from carboxypeptidase G1 or G2, it was named carboxypeptidase G3.  相似文献   

7.
A carboxypeptidase capable of cleaving basic amino acids from synthetic peptide substrates is present in fresh human serum, and not in human heparinized plasma. Its activity is generated during the process of coagulation. Because of its unstability at room temperature and at 37 degrees C, we named it unstable carboxypeptidase (carboxypeptidase U). Carboxypeptidase U was partially purified from fresh human serum by chromatography on DEAE-cellulose and Mono-Q sepharose and was found to be a 435 kDa protein. We compared this enzyme with carboxypeptidase N, purified from human serum by a two-step affinity chromatography on arginine-Sepharose 4B, followed by ion-exchange chromatography on Mono-Q sepharose. Carboxypeptidase U cleaves hippuryl-L-arginine and hippuryl-L-lysine, but at a different relative rate than carboxypeptidase N, and has no esterase activity on hippuryl-L-argininic acid. Its activity was inhibited by o-phenanthroline, DL-2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, CoCl2, 2-mercaptoethanol, dithiothreitol and 4-chloromercuribenzoic acid. These characteristics differentiate carboxypeptidase U from carboxypeptidase N and other known carboxypeptidases.  相似文献   

8.
Penicillium janthinellum IFO-8070 produced an acid carboxypeptidase of molecular weight 51,000 in a liquid medium at 25 C. Maximum enzyme concentration was obtained within 3 to 6 days in a medium containing 2% wheat bran, 1% defatted soybean, and 1% KH(2)PO(4); the initial pH was 2 to 4. When submerged aerobic conditions were used, a 51,000-molecular-weight acid carboxypeptidase was produced and no detectable amounts of 160,000-molecular-weight acid carboxypeptidase were produced. Acid carboxypeptidase with a molecular weight of 51,000 was purified 330-fold from koji culture to yield a crystalline protein which was demonstrated by disc electrophoresis to be homogeneous. The purification method included ammonium sulfate fractionation, Amberlite CG-50 chromatography, acetone fractionation, Amberlite CG-50 rechromatography, and concentration in a collodion bag. The specific activity of the enzyme was about three times more than that of the acid carboxypeptidase from Aspergillus saitoi.  相似文献   

9.
Human hepatoma (Hep G2) cells have been shown to secrete nanogram quantities of carboxypeptidase N (Grimwood, B. G., Plummer, T. H., Jr., and Tarentino, A. (1988) J. Biol. Chem. 263, 14397-14401). A second carboxypeptidase with an acidic pH optimum (pH 5.5) is also secreted at levels 2-3-fold greater than carboxypeptidase N. This enzyme was partially purified from the conditioned medium and compared with pure bovine pituitary carboxypeptidase H. The two enzymes behaved in a similar fashion in DE52 ion-exchange chromatography and on gel filtration, with the Hep G2 enzyme being slightly larger than the bovine pituitary enzyme (52-54 versus 50-52 kDa). Both enzymes hydrolyzed COOH-terminal basic amino acids from typical synthetic substrates as well as from natural leuenkephalin peptides and were identical based on pH activity profiles, inhibition by EDTA or guanidinoethyl mercaptosuccinic acid, and stimulation by Co2+ ions. Inhibition of enzyme secretion from Hep G2 cells by tunicamycin indicated that the Hep G2 enzyme was glycosylated. This finding was confirmed by a parallel deglycosylation of the Hep G2 and bovine pituitary carboxypeptidase H enzymes with peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F. Immunoblots using mouse antiserum to bovine pituitary carboxypeptidase H revealed that the Hep G2 enzyme was immunocross-reactive with the bovine enzyme but was slightly larger in size (54 versus 52 kDa). Continuous [35S]methionine labeling and purification to near homogeneity using an affinity matrix corroborated the observations that the secreted Hep G2 carboxypeptidase H was slightly larger than bovine pituitary carboxypeptidase H. The Hep G2-secreted enzyme in pulse-chase experiments was initially detected intracellularly after a 15-min pulse as a single protein of about 54 kDa and was present in the 30-min chase medium with no evidence for pre- or postsecretion proteolytic processing. The human adrenergic cell line IMR-32 continuously labeled with [35S]methionine also secreted carboxypeptidase H of the same size as the Hep G2 enzyme.  相似文献   

10.
Carboxypeptidase B-like enzymes cleaving Met-enkephalin-Arg from synaptosomes of the rat striatum purified using a DEAE-cellulose column and Met-Arg-CH-Sepharose 4B affinity column proved to be different from enkephalin-convertase, lysosomal carboxypeptidase B-like enzyme, pancreas carboxypeptidase B and carboxypeptidase Y, in effects of inhibitors and activators, pH optimum (7.5-8.5) and molecular size (50,000). This enzyme, named "Processin CP-E" was activated by cAMP dependent protein kinase, and the Vmax was increased from 4.3 to 13.3 microM/min/mg protein, while the Km (28.2 microM) was unchanged.  相似文献   

11.
A carboxypeptidase was purified to homogeneity from upper, unwounded leaves of tomato plants in which carboxypeptidase activity had been induced to increase over three-fold by severely wounding the lower leaves. The carboxypeptidase was purified by ammonium sulfate precipitation, affinity chromatography, and finally by gel permeation chromatography. Electrophoresis at pH 4.3 and isoelectric focusing showed only a single band. The isoelectric point was 5.2 and the MW 105 000. Tomato carboxypeptidase possessed both peptidase and esterase activities and it sequentially hydrolysed amino acids from the carboxyl-terminal end of insulin chain B. It was optimally active at pH 6–7 on peptidase substrates, and at pH 8 on esterase substrates. The enzyme was inhibited by diisopropylfluorophosphate and incorporated 1 mol of DFP-[3H]. per mol of enzyme. Both peptidase and esterase activities were strongly inhibited by HgCl2 but not by p-hydroxymercuribenzoate or iodoacetamide. Carboxypeptidase inhibitor from potatoes did not inhibit the enzyme.  相似文献   

12.
Lysosomal carboxypeptidase B (peptidyl-L-amino-acid hydrolase, EC 3.4.18.1) from bovine spleen purified to apparent homogeneity was found to have a molecular weight of 52 000 in the absence and of 25 000 in the presence of urea, determined by gel filtration, indicating the existence of two subunits of identical size. The amount of approx. 15% carbohydrate estimated after cleavage by endoglycosidase H was shown to be insignificant for enzymatic activity. The isoelectric focusing separated lysosomal carboxypeptidase B into several protein bands - each enzymatically active - with a range of isoelectric points between 4.6 and 5.2. The titration of the sulphydryl group in the active site of the enzyme with the proteinase inhibitor E-64 yielded one thiol group per molecule. A maximum of activation was achieved by the addition of selenocystamine together with dithioerythritol and EDTA in the incubation solution. Under these conditions the carboxypeptidase hydrolyzed benzoylglycylarginine (80 kat/mol enzyme), benzoylarginine amide (38 kat/mol enzyme) and carbobenzoxyglutaryltyrosine (110 kat/mol enzyme). Slight enzymatic activities towards benzoylarginine 2-naphthylamide and benzoylarginine p-nitroanilide could be measured. With the oxidized insulin B chain, lysosomal carboxypeptidase B exhibited only carboxypeptidase activity.  相似文献   

13.
A carboxypeptidase which cleaves the C-terminal arginine or lysine from peptides was purified by a two-step procedure; gel filtration on Sephacryl S-300 and affinity chromatography on arginine-Sepharose. The activity increased 280% after the first step, indicating the removal of an inhibitor from the crude starting material. The activity in the crude seminal plasma eluted from the Sephacryl S-300 column with an apparent Mr 98,000 and after purification with an Mr 67,000, indicating that it binds to another protein in the crude seminal plasma. When analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate, a single band at Mr 53,000 was seen which was converted to two smaller bands (Mr 32,000 and/or 26,000) after reduction. The seminal plasma carboxypeptidase has a neutral pH optimum, is inhibited by o-phenanthroline and by the inhibitor of carboxypeptidase B-type enzymes, 2-mercaptomethyl-3-guanidinoethylthiopropanoic acid, and can be activated by cobalt. The purified enzyme has a high specific activity (67.8 mumol/min/mg) with the ester substrate benzoyl (Bz)-Gly-argininic acid and readily cleaves Bz-Ala-Lys, Bz-Gly-Arg, and Bz-Gly-Lys. It also hydrolyzes biologically active peptides such as bradykinin (Km = 6 microM, kcat = 43 min-1), Arg6-Met5-enkephalin (Km = 103 microM, kcat = 438 min-1), and Lys6-Met5-enkephalin (Km = 848 microM, kcat = 449 min-1). The seminal plasma carboxypeptidase did not cross-react with antiserum to human plasma carboxypeptidase N; other properties distinguish it from the blood plasma enzyme as well as from pancreatic carboxypeptidase B and granular, acid carboxypeptidase H (enkephalin convertase). The carboxypeptidase could be involved in the control of fertility by activating or inactivating peptide hormones in the seminal plasma. In addition it could contribute to the degradation of basic proteins during semen liquefaction.  相似文献   

14.
Seventeen strains of the genus Paecilomyces were examined for their ability to produce serine carboxypeptidase. Paecilomyces carneus IFO 7012 exhibited the highest potency for serine carboxypeptidase production. A maximum yield of serine carboxypeptidase was obtained by koji culture of the strain at 22°C for 7 days. The serine carboxypeptidase was purified to homogeneity from an extract of the koji culture. The molecular weight of the enzyme was estimated to be 47,000 by HPLC. The isoelectric point of the enzyme was determined to be 4.0, and the optimum pH was 4.0 toward benzyloxycarbonyl-L-glutamyl-L-tyrosine (Z-Glu-Tyr) and benzyloxycarbonyl-L-phenylalanyl-L-alanine (Z-Phe-Ala), respectively. The enzyme was strongly inhibited by phenylmethylsulfonyl fluoride and p-chloromercurybenzoate. Relative hydrolysis rates of N-acylpeptides and kinetic studies indicated that the enzyme preferred substrates having bulky amino acids in the penultimate position from their carboxy-termini. Received: 19 December 1995 / Accepted: 2 January 1996  相似文献   

15.
A carboxypeptidase B-like enzyme was purified 116-fold with a recovery of activity of 29% from a crude extract of camel pancreas by a four-step procedure consisting of two anion exchange chromatographies in succession, gel filtration and hydrophobic interaction chromatography. The enzyme was homogeneous on SDS and non-denaturing gel electrophoresis and on gel isoelectric focusing. Its molecular mass was found to be 31.5 kDa and its isoelectric point was estimated as 6.1. It was active towards a number of substrates that are cleaved by carboxypeptidases B from other species and was also susceptible to inhibition by inhibitors of such enzymes. The camel enzyme showed a pH optimum of 8.0 and it was seen to be a relatively potent kinase in vitro. The enzyme purified in this study was very similar to carboxypeptidases B isolated from other species in size, charge, substrate specificity and susceptibility to inhibition and thus it can be identified as camel carboxypeptidase B.  相似文献   

16.
Carboxypeptidases H and M differ in their distribution and other properties, but both are activated by Co2+ and inhibited by guanidinoethylmercaptosuccinic acid. The higher degree of activation or inhibition of carboxypeptidase H by these agents at acid pH has been employed to identify this enzyme in tissues. We found that the activation or inhibition of both purified and plasma-membrane-bound human carboxy-peptidase M depends on the pH of the medium. CoCl2 activated over 6-fold at pH 5.5, but less than 2-fold at pH 7.5. Guanidinoethylmercaptosuccinic acid inhibited the membrane-bound carboxypeptidase M more effectively than the purified enzyme, and the IC50 was about 25-30 times lower at pH 5.5. As purified human plasma carboxypeptidase N and pancreatic carboxypeptidase B were also activated more at pH 5.5, we conclude that the increased activation by CoCl2 is due to the enhanced dissociation of Zn2+ below the pKa of the ligands that co-ordinate the cofactor in the protein. Thus increased activation or inhibition at acid pH would not differentiate basic carboxypeptidases.  相似文献   

17.
Dipeptidyl carboxypeptidase (angiotensin I converting enzyme) was purified from human seminal plasma. The apparent relative molecular mass determined by gel filtration on Sephadex G-200 was 330 000. The pI in isoelectric focusing was 4.6--5.0 and the optimum pH 7.7--8.0. The enzyme is activated by chloride. These properties are similar to those reported for the lung enzyme. The specificity is that of a carboxypeptidase releasing dipeptides. A study of different substrates showed the activity to be highest with Z-Leu-Gly-Gly, followed by Z-Phe-His-Leu greater than bradykinin greater than Bz-Gly-Gly-Gly greater than Boc-Phe-Ala-Pro greater than Bz-Gly-His-Leu greater than angiotensin I.  相似文献   

18.
The adenosine diphosphate glucose pyrophosphorylase from a Salmonella typhimurium LT-2 mutant, JP102, derepressed in the glycogen biosynthetic enzymes was purified to homogeneity. The enzyme was found to be identical with the parent wild-type enzyme with respect to regulatory properties, immunological reactivity, and kinetic constants for the allosteric effectors and for the substrate, adenosine triphosphate. The JP102 enzyme was composed of four identical subunits, each with a molecular weight of about 48,000. This was supported by the findings that (i) gel electrophoresis under denaturing conditions showed only one component; (ii) digestion with carboxypeptidase B released stoichiometric amounts of arginine, and (iii) amino-terminal sequencing showed a single sequence for the first 27 residues. The properties of the purified S. typhimurium enzyme were compared with the properties of the previously purified Escherichia coli B enzyme.  相似文献   

19.
Carboxypeptidase T, an extracellular carboxypeptidase from Thermoactinomyces sp. was isolated and purified by affinity chromatography on bacitracin adsorbents. The enzyme homogeneity was established by SDS electrophoresis (Mr = 38 000) and isoelectrofocusing in PAAG (pI 5.3). Carboxypeptidase T reveals a mixed specificity in comparison with pancreatic carboxypeptidases A and B and cleaves with nearly the same efficiency the peptide bonds formed by the C-terminal residues of basic and neutral hydrophobic amino acids. The enzyme is insensitive to serine and thiol proteinase inhibitors but is completely inhibited by EDTA and o-phenanthroline. The maximal enzyme activity is observed at pH 7-8. With an increase of temperature from 20 to 70 degrees C the enzyme activity is enhanced approximately 10-fold. In the presence of 1 mM Ca2+ the enzyme thermostability is also increased. In terms of some properties, e.g. substrate specificity carboxypeptidase T is similar to metallocarboxypeptidase secreted by Streptomyces griseus. The N-terminal sequence of carboxypeptidase T: Asp-Phe-Pro-Ser-Tyr-Asp-Ser-Gly- Tyr-His-Asn-Tyr-Asn-Glu-Met-Val-Asn-Lys-Ile-Asn-Thr-Val-Ala-Ser-Asn-Tyr- Pro-Asn - Ile-Val-Lys-Thr-Phe-Ser-Ile-Gly-Lys-Val-Tyr-Glu-Gly-Xaa-Gly-Leu- coincides by 21% with that of pancreatic carboxypeptidases A and B. Thus, it may be concluded that these enzymes originate from a common precursor.  相似文献   

20.
The carboxypeptidase activity occurring in hog intestinal mucosa is apparently due to two distinct enzymes which may be responsible for the release of basic COOH-terminal amino acids from short peptides. The plasma membrane-bound carboxypeptidase activity which occurs at neutral optimum pH levels was found to be enhanced by CoCl(2) and inhibited by guanidinoethylmercaptosuccinic acid, o-phenanthroline, ethylenediamine tetraacetic acid and cadmium acetate; whereas the soluble carboxypeptidase activity which occurs at an optimum pH level of 5.0 was not activated by CoCl(2) and only slightly inhibited by o-phenanthroline, ethylenediamine tetraacetic acid, NiCl(2) and CdCl(2). The latter activity was presumably due to lysosomal cathepsin B, which is known to be present in the soluble fraction of hog intestinal mucosa. Although the membrane-bound enzyme was evenly distributed along the small intestine, it was not anchored in the phospholipidic bilayer via a glycosyl-phosphatidylinositol moiety, as carboxypeptidase M from human placenta is. The enzyme was not solubilized by phosphatidylinositol-specific phospholipase C, but was solubilized to practically the same extent by several detergents. The purified trypsin-solubilized form is a glycoprotein with a molecular mass of 200 kDa, as determined by performing SDS-PAGE and gel filtration, which differs considerably from the molecular mass of human placental carboxypeptidase M (62 kDa). It was found to cleave lysyl bonds more rapidly than arginyl bonds, which is not so in the case of carboxypeptidase M, and immunoblotting analysis provided further evidence that hog intestinal and human placental membrane-bound carboxypeptidases do not bear much resemblance to each other. Since the latter enzyme has been called carboxypeptidase M, it is suggested that the former might be carboxypeptidase D, the recently described new member of the carboxypeptide B-type family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号