首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H A Messner 《Blut》1986,53(4):269-277
The assay for CFU-GEMM has provided a measurement for pluripotent hemopoietic precursors in normal and abnormal hemopoiesis. While these cells are able to express the functional repertoire that includes not only myelopoiesis but also lymphopoiesis attempts to determine their self-renewal have shown little or no self-renewal capability. It is currently not known whether this observation reflects culture conditions favouring differentiation processes and suppressing self-renewal, or whether the observation made in culture truly reflects the potential of cells in vivo. Recent advances in molecular biology have lead to the identification of the genomic sequences of at least one of the hemopoietic growth factors thus confirming their importance as regulators.  相似文献   

2.
miRNA是一类高度保守的内源性非编码小RNA,主要作用于靶mRNA的3′-非翻译区,在转录后水平调控基因表达。miRNA可调控造血细胞的增殖、分化及免疫系统的内环境稳定,在固有免疫和适应性免疫中发挥重要的作用。树突状细胞(dendritic cell,DC)是目前发现的抗原递呈能力最强的细胞,是启动、调控并维持免疫应答的中心环节。证据显示,miRNA也参与了树突状细胞的发育、分化和功能的调控,本文将综述miRNA与树突状细胞的关系的最新研究进展。  相似文献   

3.
4.
Cell sorting has been used as a method for characterizing hemopoietic stem cells and progenitors. Fluorescent antibody-surface labels and changes in fluorescence polarization induced by in vitro stimulation with potential hemopoietic regulators were used. As detected by significant enrichment of CFU-S (pluripotent stem cells) in fluorescence-activated cell sorting, some CFU-S bear 'unique antigens' recognized by rabbit anti-human brain sera, human anti-human sperm sera, and 129 anti-F9 serum, but not A . TH anti-A . TL (Ia) ascites. Significant changes in fluorescence polarization induced by in vitro stimulation of mouse bone marrow with potential hemopoietic regulators were also observed; further, progenitors of human T-lymphocyte colonies were observed to exhibit a significantly decreased mean polarization value after short-term stimulation with PHA-LCM (phytohemagglutinin-stimulated leukocyte conditioned medium).  相似文献   

5.
The complement system presents a powerful defense against infection and is tightly regulated to prevent damage to self by functionally equivalent soluble and membrane regulators. We describe complement C2 receptor inhibitor trispanning (CRIT), a novel human complement regulatory receptor, expressed on hemopoietic cells and a wide range of tissues throughout the body. CRIT is present in human parasites through horizontal transmission. Serum complement component C2 binds to the N-terminal extracellular domain 1 of CRIT, which, in peptide form, blocks C3 convertase formation and complement-mediated inflammation. Unlike C1 inhibitor, which inhibits the cleavage of C4 and C2, CRIT only blocks C2 cleavage but, in so doing, shares with C1 inhibitor the same functional effect, of preventing classical pathway C3 convertase formation. Ab blockage of cellular CRIT reduces inhibition of cytolysis, indicating that CRIT is a novel complement regulator protecting autologous cells.  相似文献   

6.
The production and maturation of blood cells from the eight major blood cell lineages is a complex and continuous process, which is largely controlled by specific glycoprotein hemopoietic regulators. These regulators also control the functional activity of the blood cells through eliciting a diverse set of intracellular responses initiated by a regulator-specific membrane receptor. Twenty of these regulators have now been characterized, and their mass production has led to four already being licensed for clinical use in disease states involving subnormal blood cell formation.  相似文献   

7.
8.
p50csk is a tyrosine protein kinase (TPK) that represses the activity of Src family TPKs. We previously showed that Csk is a potent negative regulator of antigen receptor signaling in T lymphocytes and that its Src homology (SH) 3 and SH2 domains are required to inhibit these signals. To test the idea that the Csk SH3 and SH2 domains mediate interactions with other cellular proteins, we attempted to identify Csk-associated polypeptides using the yeast two-hybrid system. The results of our experiments demonstrated that Csk physically associates with PEP, a protein tyrosine phosphatase (PTP) expressed in hemopoietic cells. Further analyses revealed that this interaction was mediated by the Csk SH3 domain and by a proline-rich region (PPPLPERTP) in the non-catalytic C-terminal portion of PEP. The association between Csk and PEP was documented in transiently transfected Cos-1 cells and in a variety of cells of hemopoietic lineages, including T cells. Additional analyses demonstrated that the association between Csk and PEP is highly specific. Together, these data indicated that PEP may be an effector and/or a regulator of p50csk in T cells and other hemopoietic cells. Moreover, they allowed the identification of PEP as the first known ligand for the Csk SH3 domain.  相似文献   

9.
The hemopoietic (blood forming) system contains pluripotent stem cells able to give rise to a variety of differentiated progeny, including erythrocytes, granulocytes, megakaryocytes, monocytes, macrophages, and possible other cell types. Although a good deal is known about cell lineage relationships in the hemopoietic system, only limited information is available about the mechanisms regulating the proliferation and differentiation of the stem cells and their progeny. An approach to this latter problem has been provided by the develoment of new techniques for the cultivation of hemopoietic cells in short-term cultures. In such cultures, the proliferation and differentiation of hemopoietic cells can be studied under controlled conditions. Two areas of investigation show particular promise: elucidation of the role of the cell surface membrane in regulation; and the possible development, through a detailed investigation of the properties of leukoviruses, of new methods for the genetic analysis of hemopoietic cells.  相似文献   

10.
TGF-beta is considered a negative regulator of hemopoietic stem and progenitor cells. We have previously shown that one TGF-beta isoform, TGF-beta2, is, in fact, a positive regulator of murine hemopoietic stem cell function in vivo. In vitro, TGF-beta2, but not TGF-beta1 and TGF-beta3, had a biphasic dose response on the proliferation of purified lin-Sca1(++)kit(+) (LSK) cells, with a stimulatory effect at low concentrations, which was subject to mouse strain-dependent variation. In this study we report that the stimulatory effect of TGF-beta2 on the proliferation of LSK cells increases with age and after replicative stress in C57BL/6, but not in DBA/2, mice. The age-related changes in the TGF-beta2 effect correlated with life span in BXD recombinant strains. The stimulatory effect of TGF-beta2 on the proliferation of LSK cells requires one or more nonprotein, low m.w. factors present in fetal calf and mouse sera. The activity of this factor(s) in mouse serum increases with age. Taken together, our data suggest a role for TGF-beta2 and as yet unknown serum factors in the aging of the hemopoietic stem cell compartment and possibly in organismal aging.  相似文献   

11.
The regulation of glycogen synthase kinase-3 (GSK-3) by phosphorylation at inhibitory sites has been well documented. In many, but not all, cases, the phosphatidylinositol 3-kinase pathway, and particularly the downstream kinase protein kinase B (PKB)/akt, have been shown to be responsible for GSK-3 phosphorylation. Given that no studies have ever reported cytokine-mediated phosphorylation of GSK-3, we investigated the phosphorylation of this kinase in several hemopoietic cell types in response to either interleukin (IL)-3, IL-4 or granulocyte-macrophage colony stimulating factor (GM-CSF). Each of the cytokines was able to stimulate phosphorylation of the isoforms GSK-3alpha and GSK-3beta. However, only in the case of IL-4 stimulation was there any dependence on PKB for this phosphorylation. We were clearly able to show that PKB was capable of phosphorylating GSK-3 in these cells, but studies using inhibitors of the protein kinase C (PKC) family of kinases have shown that these enzymes are more likely to play a key role in GSK-3 phosphorylation. Cytokine-mediated generation of diacylglycerol was demonstrated, supporting the possible activation of PKC family members. Thus, cytokine-dependent GSK-3 phosphorylation in hemopoietic cells proceeds primarily through PKB independent pathways.  相似文献   

12.
The c-kit proto-oncogene encodes the receptor for a novel hemopoietic cytokine, termed stem cell factor (SCF) or mast cell growth factor (MGF) according to its stimulating spectrum. The human receptor for SCF/MGF is expressed in a subset of normal bone marrow progenitor cells, in leukemic myeloid cells, and in mast cells. In the present study, the effects of recombinant human growth regulators (IL-1 through -9, granulocyte-macrophage/granulocyte/macrophage-CSF, IFN, and TNF) on c-kit proto-oncogene product expression were analyzed by indirect immunofluorescence, by using the anti-SCF/MGFR mAb YB5.B8, and Northern blot analyses, by using a c-kit oligonucleotide probe. Of all cytokines tested, IL-4 was found to down-regulate expression of YB5.B8 Ag in the human mast cell line HMC-1 (maximum inhibition, 51.05 +/- 16.36% mean fluorescence intensity of control; p less than 0.02), as well as in primary leukemic myeloid cells. IL-4 was also found to down-regulate expression of YB5.B8 Ag in normal enriched bone marrow progenitor cells. The effects of IL-4 on expression of YB8.B8 Ag in myeloid/mast cell progenitors was dose and time dependent (maximum effects observed on days 2 and/or 4, by using 50 U/ml of rIL-4) and could be neutralized by using anti-IL-4 mAb. Moreover, IL-4 was found to down-regulate expression of c-kit mRNA in leukemic myeloid cells as well as in HMC-1 cells. Together, these observations identify IL-4 as a regulator of c-kit proto-oncogene product expression in the human system. The effects of IL-4 on human hemopoietic progenitor cells and mast cells may be mediated in part through regulation of SCF/MGFR expression.  相似文献   

13.
渗透压反应元件结合蛋白(OREBP)是Rel家族的最新成员,是迄今为止唯一已知的哺乳动物细胞渗透压反应调节因子。它最初是作为一种促进渗透压保护基因表达的蛋白在肾髓质细胞中被发现的。最近研究表明,它在胚胎发育、炎症反应、肌生成、HIV复制以及肿瘤细胞的增殖转移等过程中也发挥了十分重要的作用。然而有关高渗环境下OREBP调控机制的认识还很不完整。许多因素参与了OREBP的调控,这些因素都是高渗环境下激活OREBP所必需的,但又都不能独立完成对OREBP的调控。本文对上述因素在高渗环境下OREBP调控中的作用以及它们之间的相互关系进行了综述。  相似文献   

14.
A factor able to stimulate the proliferation and differentiation of multipotential stem cells and progenitor cells of the granulocyte-macrophage, eosinophil, and erythroid lineages as well as being able to maintain factor-dependent cell lines in culture has been purified from pokeweed mitogen-stimulated mouse spleen cell-conditioned medium. The factor was purified over 2 million-fold by sequential fractionation using salting out chromatography, chromatography on phenyl-Sepharose, gel filtration on Sephadex G-75, ion exchange chromatography on DEAE-Sepharose, reverse-phase high performance liquid chromatography on a phenyl-silica column, and gel permeation high performance liquid chromatography. All of the biological activities ascribed to the multipotential colony-stimulating factor co-fractionated through all steps, and the other known mouse-active hemopoietic regulator in pokeweed mitogen-stimulated mouse spleen cell-conditioned medium, granulocyte-macrophage colony-stimulating factor, was separated at the ion exchange step. Two protein species having Mr = 24,000 and 19,000 were visualized by silver-staining of sodium dodecyl sulfate-polyacrylamide gels of the purified factor. Both species migrated coincidently with the biological activities. The factor was active at a half-maximal concentration of 1 X 10(-13) M when assayed on a factor-dependent cell line.  相似文献   

15.
The Src homology 2 domain-containing protein tyrosine phosphatases SHP-1 and SHP-2 play an important role in many intracellular signaling pathways. Both SHP-1 and SHP-2 have been shown to interact with a diverse range of cytosolic and membrane-bound signaling proteins. Generally, SHP-1 and SHP-2 perform opposing roles in signaling processes; SHP-1 acts as a negative regulator of transduction in hemopoietic cells, whereas SHP-2 acts as a positive regulator. Intriguingly, SHP-1 has been proposed to play a positive regulating role in nonhemopoietic cells, although the mechanisms for this are not understood. Here we show that green fluorescent protein-tagged SHP-1 is unexpectedly localized within the nucleus of transfected HEK293 cells. In contrast, the highly related SHP-2 protein is more abundant within the cytoplasm of transfected cells. In accordance with this, endogenous SHP-1 is localized within the nucleus of several other nonhemopoietic cell types, whereas SHP-2 is distributed throughout the cytoplasm. In contrast, SHP-1 is confined to the cytoplasm of hemopoietic cells, with very little nuclear SHP-1 evident. Using chimeric SHP proteins and mutagenesis studies, the nuclear localization signal of SHP-1 was identified within the C-terminal domain of SHP-1 and found to consist of a short cluster of basic amino acids (KRK). Although the KRK motif resembles half of a bipartite nuclear localization signal, it appears to function independently and is absolutely required for nuclear import. Our findings show that SHP-1 and SHP-2 are distinctly localized within nonhemopoietic cells, with the localization of SHP-1 differing dramatically between nonhemopoietic and hemopoietic cell lineages. This implies that SHP-1 nuclear import is a tightly regulated process and indicates that SHP-1 may possess novel nuclear targets.  相似文献   

16.
Differentiation and proliferation of almost all hemopoietic cell lines can now be studied in vitro. Cloning techniques and suspension cultures allow the study of proliferation of the multipotential hemopoietic progenitor cell and the committed progenitors for granulocytes, macrophages, eosinophils, megakryocytes, and erythrocytes. The proliferation of each of the committed progenitor cells is controlled by specific glycoproteins and two of these have recently been purified: granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin. The rate of proliferation of the GM-progenitor cells and their pattern of differentiation depends on the concentration of the hormone. At low concentrations of GM-CSF (10?11 M) fewer progenitor cells are stimulated and macrophage colonies rather than granulocyte colonies develop. The change in the direction of granulocyte-macrophage differentiation appears to be related to (a) the concentration of GM- CSF and (b) the different sensitivity of a subpopulation of monocyte colony-forming cells which are responsive to GM-CSF even at low concentrations of the regulator. Analysis of the rate of RNA synthesis by bone marrow cells has shown that GM-CSF stimulates the mature nondividing end cells of differentiation (ie, polymorphs) as well as the progenitor cells. Although GM-CSF and erythropoietin have been radiolabeled, binding studies have been hampered by the loss of biologic activity during the labeling procedure and the heterogeneity of the target cells to which the regulators bind. Surface proteins and receptors for erythrocytes have been well characterized but the relationships between these proteins and the cell surface proteins of nucleated blood cells is not well understood. It appears that some proteins are lost from the cell surface during the development of granulocytes, which are retained on the surface of the B lymphocyte. Other proteins such as chemotactic receptors and complement receptors only appear on the mature cells. External radiolabeling of the granulocyte surface using iodogen yielded a simple profile of 125I-labeled proteins when analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis.  相似文献   

17.
We have examined the effects of recombinant immune and leukocyte interferons (rIFN-gamma and rIFN-alpha) on the clonogenic growth of leukemic cells and normal hemopoietic progenitors using in vitro colony assays. Both interferons suppressed the colony formation by granulocyte-macrophage progenitors (CFU-gm) and erythroid progenitors (CFU-e and BFU-e) in a dose-dependent manner. Six myeloid leukemic cell lines were less sensitive to rIFN-gamma than CFU-gm. The colony formation of some myeloid leukemic cell lines was suppressed more potently by rIFN-alpha than by CFU-gm. Four lymphoid leukemic cell lines of the T-cell type were very resistant to both recombinant interferons. Reduced sensitivity of leukemic cells to rIFN-gamma, a possible hemopoietic regulator, may explain partially the unregulated proliferation of leukemic cells in vivo.  相似文献   

18.
The hemopoietic microenvironment consists of a diverse repertoire of cells capable of providing signals that influence hemopoietic stem cell function. Although the role of osteoblasts and vascular endothelial cells has recently been characterized, the function of the most abundant cell type in the bone marrow, the adipocyte, is less defined. Given the emergence of a growing number of adipokines, it is possible that these factors may also play a role in regulating hematopoiesis. Here, we investigated the role of adiponectin, a secreted molecule derived from adipocytes, in hemopoietic stem cell (HSC) function. We show that adiponectin is expressed by components of the HSC niche and its receptors AdipoR1 and AdipoR2 are expressed by HSCs. At a functional level, adiponectin influences HSCs by increasing their proliferation, while retaining the cells in a functionally immature state as determined by in vitro and in vivo assays. We also demonstrate that adiponectin signaling is required for optimal HSC proliferation both in vitro and in long term hemopoietic reconstitution in vivo. Finally we show that adiponectin stimulation activates p38 MAPK, and that inhibition of this pathway abrogates adiponectin's proliferative effect on HSCs. These studies collectively identify adiponectin as a novel regulator of HSC function and suggest that it acts through a p38 dependent pathway.  相似文献   

19.
Endocytosis mediated by clathrin, a cellular process by which cells internalize membrane receptors and their extracellular ligands, is an important component of cell signaling regulation. Actin polymerization is involved in endocytosis in varying degrees depending on the cellular context. In yeast, clathrin-mediated endocytosis requires a pulse of polymerized actin and its regulators, which recruit and activate the Arp2/3 complex. In this article, we seek to identify the main protein-protein interactions that 1) cause actin and its regulators to appear in pulses, and 2) determine the effects of key mutations and drug treatments on actin and regulator assembly. We perform a joint modeling/experimental study of actin and regulator dynamics during endocytosis in the budding yeast Saccharomyces cerevisiae. We treat both a stochastic model that grows an explicit three-dimensional actin network, and a simpler two-variable Fitzhugh-Nagumo type model. The models include a negative-feedback interaction of F-actin onto the Arp2/3 regulators. Both models explain the pulse time courses and the effects of interventions on actin polymerization: the surprising increase in the peak F-actin count caused by reduced regulator branching activity, the increase in F-actin resulting from slowing of actin disassembly, and the increased Arp2/3 regulator lifetime resulting from latrunculin treatment. In addition, they predict that decreases in the regulator branching activity lead to increases in accumulation of regulators, and we confirmed this prediction with experiments on yeast harboring mutations in the Arp2/3 regulators, using quantitative fluorescence microscopy. Our experimental measurements suggest that the regulators act quasi-independently, in the sense that accumulation of a particular regulator is most strongly affected by mutations of that regulator, as opposed to the others.  相似文献   

20.
Culture in agar of cloned promonocytic leukemia cell lines derived from Abelson virus-infected mice produced colonies of both a compact and diffuse morphology. Diffuse colonies contained fewer cells capable of forming colonies when recultured in agar than did compact colonies. Serial subcloning of cells from diffuse, but not compact, colonies ultimately led to the complete loss of colony-forming cells, i.e., to clonal extinction. The production of both compact and diffuse agar colonies was independent of the cell density of either the static liquid culture from which cells were taken for culture in agar, or the number of cells per agar culture. Furthermore, bioassays of culture supernatants indicated the leukemia cells did not secrete hemopoietic growth factors active on normal hemopoietic cells, transforming growth factors active on adherent cell lines, or factors that influenced the growth of the leukemic cells themselves. Collectively, these data suggest neither growth-factor independent replication nor the spontaneous differentiation of Abelson virus-infected myeloid cells involves autocrine secretion of growth regulators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号