首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Peritoneal exudate cells were collected from thioglycollate stimulated mice, extracted an examined for the presence of immunoreactive and bioactive fibroblast growth factor (FGF). The crude extract stimulated in a dose dependent fashion the proliferation of vascular endothelial cells derived from the bovine aortic arch. The extract also showed a parallel and dose-dependent inhibition of binding in a highly specific radioimmunoassay for FGF. The immunoreactive FGF (ir-FGF) contained in the extract was retained on a heparin-sepharose affinity column as is characteristic of pituitary FGF. Reverse-phase HPLC of the macrophage-derived material reveals one biologically active form of FGF which coelutes with the major form of immunoreactivity. The results demonstrate the presence of FGF in these cells and suggest that at least one of the hitherto unidentified mitotic activities in these extracts is due to a mitogen indistinguishable from FGF.  相似文献   

2.
A radioimmunoassay (RIA) was developed to measure fibroblast growth factor (FGF) using antiserum generated against a synthetic replicate of [Tyr10]FGF(1–10). The antisera, previously shown to be capable of inhibiting the biological action of FGF on bovine aortic arch endothelial cells in vitro [1], are highly specific for the amino-terminus of FGF. In the RIA, the antisera recognize the decapeptide antigen [Tyr10]FGF(1–10) and the intact mitogen on an equimolar basis and show less than 0.01% cross-reactivity with N-acetyl-[Tyr10]FGF(1–10).

Bovine adenohypophysial cells maintained in primary monolayer culture release and ir-FGF which is indistinguishable from the intact mitogen in as much as it is retained on heparin-Sepharose affinity columns and shows a dose-dependent and parallel displacement in RIA. The release of ir-FGF by the bovine adenohypophysis can be increased with forskolin (10−5 M) or KCl (50 mM). Preincubation of pituitary cells with 17β-estradiol has no measurable effects on basal ir-FGF, but increases the release after KCl treatment 2–3-fold. These results show that ir-FGF can be released by the bovine adenohypophysis in vitro and lend credence to the hypothesis that FGF plays a physiological role in the homeostatic mechanisms regulating mesoderm-derived cell growth.  相似文献   


3.
Acidic and basic fibroblast growth factors (FGFs) are proteins of 16-18 kDa. Other forms of 25-30 kDa related to this growth factor family have recently been described. All these components bind tightly to heparin-Sepharose, a property that allows the purification of several FGF-related proteins. During the purification of acidic and basic FGFs from bovine pituitary glands, we detected the presence of 28-30 kDa components that are immunoreactive against anti-basic FGF antisera. However, microsequencing analysis revealed that the 28-30 kDa components are lysosomal proteases that co-elute with basic FGF from heparin-Sepharose columns. The involvement of these proteases in the etiology of microheterogenous forms of FGFs and/or release of FGFs from the extracellular matrix is discussed.  相似文献   

4.
The previously described human pituitary-derived chondrocyte growth factor (CGF), mitogenic for rabbit fetal chondrocytes, was found to bind to heparin-Sepharose and was eluted with 1.5M NaCl. Further characterization of CGF demonstrated a molecular weight of 18-20 kD and cross-reactivity with antiserum to synthetic bovine basic fibroblast growth factor (FGF1-24). When human pituitaries were homogenized in 0.15 ammonium sulfate (pH 5.5) and the extract chromatographed on heparin-Sepharose, 98% of the mitogenic activity was adsorbed to heparin and eluted with 3M NaCl. These findings indicate that CGF is closely related or identical to basic FGF and that the bulk of mitogenic activity in the human pituitary extracts binds to heparin.  相似文献   

5.
The mitogenic effects of brain and pituitary fibroblast growth factors (FGF) on vascular endothelial cells derived from either human umbilical vein or bovine aortic arch have been compared. Both brain and pituitary FGF are mitogenic for low density human umbilical endothelial (HUE) cell cultures maintained on either fibronectin- or laminin-coated dishes or on biomatrices produced by cultured cells such as bovine corneal endothelial cells or the teratocarcinoma cell line PF-HR-9. Pituitary FGF triggered the proliferation of HUE cells at concentrations as low as 0.25 ng/ml, with a half-maximal response at 0.55 ng/ml and optimal effect at 2.5 to 5 ng/ml. It was 50,000-fold more potent than commercial preparations of endothelial cell growth factor and 40 times more potent than commercial preparations of pituitary FGF. Similar results were observed when the effect of pituitary FGF was tested on low density cultures of adult bovine aortic endothelial cells. When the activity of brain and pituitary FGF on low density HUE cell cultures was compared, both mitogens were active. To confirm the presence in brain extract of both acidic and neutral, as well as of basic mitogen, for HUE cells, brain tissues were extracted at acidic (4.5), neutral (7.2), and basic (8.5) pH. The three types of extracts were equally potent in supporting the proliferation of either HUE or adult bovine aortic endothelial cells. When the various extracts were absorbed at pH 6.0 on a carboxymethyl Sephadex C-50 column, the neutral and basic extracts had an activity after adsorption similar to that of unadsorbed extracts. In contrast, extracts prepared at pH 4.5 lost 90-95% of their activity which was recovered in the adsorbed fraction containing FGF.  相似文献   

6.
Summary Effects of fibroblast growth factor (FGF) and of bromocriptine, a dopaminergic receptor agonist, on the mitotic index in the organ-cultured anterior pituitary gland of the rat were investigated, using the colchicine metaphase-arrest technique. It has been found that FGF increases the mitotic index in the anterior pituitary explants. By contrast bromocriptine inhibits the mitogenic effect of FGF.  相似文献   

7.
By using a radioimmunoassay specific for alpha-N-acetyl beta-endorphin and its C-terminally shortened forms, we have established the presence of immunoreactive alpha-N-acetyl endorphin (irNacEP) in extracts of five postmortem human pituitary glands (2.27 +/- 0.64 ng/gland). This immunoreactivity has been further characterized by subjecting these extracts to reverse-phase high-performance liquid chromatography (RP-HPLC). In all cases the major peaks of irNacEP co-migrated with synthetic human standard alpha-N-acetyl alpha-endorphin (Nac alpha EP), alpha-N-acetyl gamma-endorphin (Nac gamma EP) and Nac beta EP. These studies thus represent the initial demonstration that alpha-N-acetylation of beta-endorphin and its shorter molecular forms occurs in the human pituitary gland.  相似文献   

8.
Fibroblast growth factors (FGF) play a critical role in bone growth and development affecting both chondrogenesis and osteogenesis. During the process of intramembranous ossification, which leads to the formation of the flat bones of the skull, unregulated FGF signaling can produce premature suture closure or craniosynostosis and other craniofacial deformities. Indeed, many human craniosynostosis disorders have been linked to activating mutations in FGF receptors (FGFR) 1 and 2, but the precise effects of FGF on the proliferation, maturation and differentiation of the target osteoblastic cells are still unclear. In this report, we studied the effects of FGF treatment on primary murine calvarial osteoblast, and on OB1, a newly established osteoblastic cell line. We show that FGF signaling has a dual effect on osteoblast proliferation and differentiation. FGFs activate the endogenous FGFRs leading to the formation of a Grb2/FRS2/Shp2 complex and activation of MAP kinase. However, immature osteoblasts respond to FGF treatment with increased proliferation, whereas in differentiating cells FGF does not induce DNA synthesis but causes apoptosis. When either primary or OB1 osteoblasts are induced to differentiate, FGF signaling inhibits expression of alkaline phosphatase, and blocks mineralization. To study the effect of craniosynostosis-linked mutations in osteoblasts, we introduced FGFR2 carrying either the C342Y (Crouzon syndrome) or the S252W (Apert syndrome) mutation in OB1 cells. Both mutations inhibited differentiation, while dramatically inducing apoptosis. Furthermore, we could also show that overexpression of FGF2 in transgenic mice leads to increased apoptosis in their calvaria. These data provide the first biochemical analysis of FGF signaling in osteoblasts, and show that FGF can act as a cell death inducer with distinct effects in proliferating and differentiating osteoblasts.  相似文献   

9.
The keratinocyte growth factor receptor (KGFR)/fibroblast growth factor receptor 2b is activated by high-affinity-specific interaction with two different ligands, keratinocyte growth factor (KGF)/fibroblast growth factor (FGF)7 and FGF10/KGF2, which are characterized by an opposite requirement of heparan sulfate proteoglycans and heparin for binding to the receptor. We investigated here the possible different endocytic trafficking of KGFR, induced by the two ligands. Immunofluorescence and immunoelectron microscopy analysis showed that KGFR internalization triggered by either KGF or FGF10 occurs through clathrin-coated pits. Immunofluorescence confocal microscopy using endocytic markers as well as tumor susceptibility gene 101 (TSG101) silencing demonstrated that KGF drives KGFR to the degradative pathway, while FGF10 targets the receptor to the recycling endosomes. Biochemical analysis showed that KGFR is ubiquitinated and degraded after KGF treatment but not after FGF10 treatment, and that the alternative fate of KGFR might depend on the different ability of the receptor to phosphorylate the fibroblast growth factor receptor substrate 2 (FRS2) substrate and to recruit the ubiquitin ligase c-Cbl. The recycling endocytic pathway followed by KGFR upon FGF10 stimulation correlates with the higher mitogenic activity exerted by this ligand on epithelial cells compared with KGF, suggesting that the two ligands may play different functional roles through the regulation of the receptor endocytic transport.  相似文献   

10.
Fibroblast growth factor-21 (FGF21) signaling requires the presence of β-Klotho, a co-receptor with a very short cytoplasmic domain. Here we show that FGF21 binds directly to β-Klotho through its C-terminus. Serial C-terminal truncations of FGF21 weakened or even abrogated its interaction with β-Klotho in a Biacore assay, and led to gradual loss of potency in a luciferase reporter assay but with little effect on maximal response. In contrast, serial N-terminal truncations of FGF21 had no impact on β-Klotho binding. Interestingly, several of them exhibited characteristics of partial agonists with minimal effects on potency. These data demonstrate that the C-terminus of FGF21 is critical for binding to β-Klotho and the N-terminus is critical for fibroblast growth factor receptor (FGFR) activation.

Structured summary

MINT-6799939: FGFR1c (uniprotkb:P11362) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)MINT-6799907, MINT-6799922: FGF21 (uniprotkb: Q9NSA1) binds (MI:0407) to β-Klotho (uniprotkb: Q86Z14) by surface plasmon resonance (MI:0107)  相似文献   

11.
It has been proposed that bile acid suppression of CYP7A1 gene expression is mediated through a gut-liver signaling pathway fibroblast growth factor (FGF)15/19-fibroblast growth factor receptor 4 which is initiated by activation of farnesoid X receptor in the ileum but not in the liver. This study evaluated whether FGF15/19 protein levels in the portal blood reflected changes in FGF15/19 mRNA in the ileum. Studies were conducted in Sprague Dawley rats and New Zealand white rabbits fed regular chow (controls), supplemented with cholesterol (Ch) or cholic acid (CA). After feeding CA, ileal FGF15 mRNA increased 8.5-fold in rats and FGF19 rose 16-fold in rabbits associated with 62 and 75% reduction of CYP7A1 mRNA, respectively. Neither FGF15 nor FGF19 protein levels changed in the portal blood to correspond with the marked increase of FGF15/19 mRNA levels in the ileum or inhibited CYP7A1 expression in the liver. Further, in Ch-fed rats, CYP7A1 mRNA increased 1.9-fold (P < 0.001) although FGF15 mRNA levels in the ileum and portal blood FGF15 protein levels were not decreased. In Ch-fed rabbits, although FGF19 mRNA levels in the ileum and liver did not increase significantly, CYP7A1 mRNA declined 49% (P < 0.05). We were unable to find corresponding changes of FGF15/19 protein levels in the portal blood in rats and rabbits where the mRNA levels of FGF15/19 in the ileum and CYP7A1 in the liver change significantly.  相似文献   

12.
Model analysis of difference between EGF pathway and FGF pathway   总被引:4,自引:0,他引:4  
The difference in time course of Ras and mitogen activated protein kinase (MAPK) cascade by different growth factors is considered to be the cause of different cellular responses. We have developed the computer simulation of Ras-MAPK signal transduction pathway containing newly identified negative feedback system, Sprouty, and adaptor molecules. Unexpectedly, negative feedback system did not profoundly affect time course of MAPK activation. We propose the key role of fibroblast growth factor receptor substrate 2 (FRS2) in NGF/FGF pathway for sustained MAPK activation. More Grb2-SOS complexes were recruited to the plasma membrane by binding to membrane-bound FRS2 in FGF pathway than in EGF pathway and caused sustained activation of ERK. The EGF pathway with high concentration of EGF receptor also induced sustained MAPK activation, which is consistent with the results in the PC12 cell overexpressing the EGF receptors. The simulated time courses of FRS2 knock-out cells were consistent with those of the reported experimental results.  相似文献   

13.
Like most cells in culture, stably transfected COS-1 cells (CF18) that constitutively overexpress basic fibroblast growth factor (FGF2) do not release the growth factor into conditioned media. Yet, when cells were biotinylated, 30% of the total cell-associated immunoreactive FGF2 was detected on the cell surface. Under similar conditions, up to 70% of the total immunoreactive FGF2 in transfected endothelial cells (MAE ZIP) or untransfected rat (C6) and human (U87MG) glioblastoma cell lines was detected on their cell surface. When peripheral plasma membrane proteins were removed from the cell surface with 0.1 M sodium carbonate, the amount of exported FGF2 was significantly reduced, whereas cell viability was unaffected. FGF2 then reappeared on the cell surface in a time-dependent manner. Ouabain, a cardenolide previously shown to inhibit the export of FGF2 from transiently transfected COS-1 cells, blocked the appearance of FGF2 onto the surface of transfected CF18 cells and MAE ZIP cells but had no detectable effect on C6 and U87MG cells. The observation that the translocation of FGF2 onto the cell surface is dissociated from its release into conditioned medium is consistent with FGF2's being rarely found in biological fluids but always cell associated and in the extracellular matrix. The findings point to a role played by the protein export pathway in controlling FGF2 activity and the normal physiological function that this growth factor plays in cell growth and differentiation. The widely accepted presumption that the absence of FGF2 in conditioned media reflects its inability to exit the cell needs to be reevaluated.  相似文献   

14.
15.
We previously described that the growth of human uterine leiomyomas was associated with a significant remodelling of the extracellular matrix of these tumours. Significant weight-related increase of collagen and heparan sulphate contents was detected. The latter was known as a component, which bound some peptide growth factors, mainly FGFs, therefore it was decided to evaluate the amounts of acidic FGF (aFGF) and basic FGF (bFGF) in human myometrium and in leiomyomas of various weight and FGF-binding to tissue components. It was found that myometrium and uterine leiomyomas contain picogram amount of aFGF and nanogram amounts of bFGF. No free aFGF was found. Slight amounts of free bFGF were detected both in myometrium and in the tumours. The aFGF and most of bFGF existed in a form of complex with a high molecular component(s). These complexes were very stable and they did not dissociate in denaturation conditions. In comparison to myometrium the tumours contained several times more FGFs and their amounts distinctly increased during the tumour growth. The expression of FGF-receptor I (FGF RI) in the tumours was more distinct in comparison to myometrium. The extracts from myometrium did not bind exogenous 125I-bFGF. In contrast to that the tumours of different weights contained at least two high molecular weight FGF-binding components. One of them (150 kDa) corresponded to FGF-receptor. The other one (190-200 kDa) might be a heparan sulphate-proteoglycan. It seems that aFGF and bFGF play an important role in transformation of normal myometrium into leiomyoma and further growth of this tumour. The action of FGFs on tumour cells enhances biosynthesis of collagen and sulphated glycosaminoglycans, especially heparan sulphate which binds FGFs in the vicinity of cells and facilitates their interaction with membrane receptors. The effect of these processes may be further stimulation of tumour growth and remodelling of tumour extracellular matrix.  相似文献   

16.
Summary The distributions of acidic fibroblast growth factor (aFGF) and basic FGF (bFGF) in extracts of various cultured mammalian cells were determined from their elution profiles on heparin-affinity chromatography, and assay of activity as ability to stimulate DNA synthesis in BALB/c3T3 cells. Only aFGF was found in extracts of mouse melanoma B 16 cell and rat Morris hepatoma cell (MH1C1) lines. Other tumor cell lines established from solid tumors and some normal cells contained bFGF as a main component, but blood tumor cell lines contained no aFGF or bFGF. The FGFs in extracts of solid tumor tissues derived by transplantations of these cultured tumor cells and various normal tissues of mice were also examined. Tumors formed by all cell lines, regardless of whether they produced aFGF, bFGF, or neither, contained bFGF that was probably derived from host cells including capillary endothelial cells, in addition to the tumor-derived aFGF or bFGF, if produced. The content of bFGF, possibly derived from the host, in these tumor tissues was comparable to those of various mouse organs other than thymus, lung, spleen, and testis, which have higher bFGF contents. Tumor tissues derived from cultured cells producing bFGF had relatively higher bFGF contents. Like bFGF, aFGF was distributed almost ubiquitously in normal mouse tissues.  相似文献   

17.
FGF1 and FGF2 bind to specific cell-surface tyrosine kinase receptors (FGFRs) and activate intracellular signaling that leads to proliferation, migration or differentiation of many cell types. Besides this classical mode of action, under stress conditions, FGF1 and FGF2 are translocated in a receptor-dependent manner via the endosomal membrane into the cytosol and nucleus of the cell. However, despite many years of research, the role of translocated FGF1 and FGF2 inside the cell remains unclear. Here, we reveal an anti-apoptotic activity of intracellular FGF1 and FGF2, which is independent of FGFR activation and downstream signaling. We observed an inhibition of cell apoptosis induced by serum starvation or staurosporine upon treatment with exogenous FGF1 or FGF2, despite the presence of highly potent FGFR inhibitors. Similar results were found when the tyrosine kinase of FGFR1 was completely blocked by a specific mutation. Moreover, the anti-apoptotic effect of the growth factors was abolished by known inhibitors of the translocation of FGF1 and FGF2 from the endosomes to the interior of the cell. Interestingly, FGF2 showed higher anti-apoptotic activity than FGF1. Since FGF2 is not phosphorylated by PKCδ and is present inside the nucleus longer than is FGF1, we speculated that the different activities could reflect their diverse nuclear export kinetics. Indeed, we observed that FGF1 mutations preventing binding to nucleolin and therefore phosphorylation in the nucleus affect the anti-apoptotic activity of FGF1. Taken together, our data indicate that the translocation of FGF1 and FGF2 protects cells against apoptosis and promotes cell survival.  相似文献   

18.
Hepatic injury and regeneration of the liver are associated with activation of hepatic stellate cells (HSC). Fibroblast growth factors (FGFs) and their receptors are important regulators of repair in various tissues. HSC express FGFR3IIIc as well as FGFGR4 and different spliced FGFR1IIIc and FGFR2IIIc isoforms which differ in the presence or absence of the acid box and of the first Ig-like domain. Expression of FGF9, known to be capable to activate the HSC FGFR2/3-isoforms, was increased in HSC in liver slice cultures after exposition to carbon tetrachloride, as an acute liver injury model. FGF9 significantly stimulated 3-H thymidine incorporation of hepatocytes, but failed to induce DNA synthesis in HSC despite the fact that FGF9 induced a sustained activation of extracellular signal-related kinases (ERK) 1/2. FGF9 induced an increased phosphorylation of Tyr436 of the fibroblast growth factor receptor substrate (FRS) 2, while phosphorylation of Tyr196 which is required for efficient Grb2 recruitment remained unchanged. Our findings suggest that HSC FGF9 provide a paracrine mitogenic signal to hepatocytes during acute liver injury, while the autocrine FGF9 signaling appears to be not sufficient to induce cell proliferation.  相似文献   

19.
Summary The somatomedin-like growth factors cartilage-derived factor (CDF) and multiplication-stimulating activity (MSA) stimulate DNA synthesis and proliferation of rabbit costal chondrocytes under serum-free conditions. Previously, we suggeted that CDF and MSA act on chondrocytes in an early G1 phase to stimulate DNA synthesis. CDF and MSA have synergistic effects with epidermal growth factor (EGF) or fibroblast growth factor (FGF) in stimulating DNA synthesis of the cells. The mode of combined action of CDF or MSA with EGF or FGF in chondrocytes was studied by sequential treatments with these agents. EGF or FGF had synergistic effects with CDF or MSA in stimulating DNA synthesis, even when added 10 h after the latter. Synergism was also observed in cells pretreated with CDF or MSA; That is, the cultures were treated for 5 h with CDF or MSA and then washed, and treated with FGF or EGF. However, when CDF or MSA was added more than 5 h after EGF or FGF, no synergism of effects was observed. These findings suggest that the cultured chondrocytes become activated to interact with FGF or EGF for commitment to DNA synthesis when they are exposed to somatomedin-like growth factors at an early stage in the G1 phase. Thus chondrocytes are under a different mechanism of growth control from fibroblastic cells.Abbreviations CDF cartilage-derived factor - MSA multiplication-stimulating activity - EGF epidermal growth factor - FGF fibroblast growth factor  相似文献   

20.
Quantitative assessment of FGF regulation by cell surface heparan sulfates   总被引:1,自引:0,他引:1  
Heparin/heparan sulfate-like glycosaminoglycans (HSGAGs) modulate the activity of the fibroblast growth factor (FGF) family of proteins. Through interactions with both FGFs and FGF receptors (FGFRs), HSGAGs mediate FGF-FGFR binding and oligomerization leading to FGFR phosphorylation and initiation of intracellular signaling cascades. We describe a methodology to examine the impact of heparan sulfate fine structure and source on FGF-mediated signaling. Mitogenic assays using BaF3 cells transfected with specific FGFR isoforms allow for the quantification of FGF1 and FGF2 induced responses independent of conflicting influences. As such, this system enables a systematic investigation into the role of cell surface HSGAGs on FGF signaling. We demonstrate this approach using cell surface-derived HSGAGs and find that distinct HSGAGs elicit differential FGF response patterns through FGFR1c and FGFR3c. We conclude that this assay system can be used to probe the ability of distinct HSGAG species to regulate the activity of specific FGF-FGFR pairs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号