首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previous study documented a high amplitude, morph-specific daily cycle in the hemolymph JH titer in the wing-polymorphic cricket, Gryllus firmus. The JH titer rose and fell 10-20 fold in the flight-capable [LW(f), long-winged] morph during the late-photophase-early scotophase, while it was relatively constant during that time in the flightless (SW, short-winged) morph. In the present study we documented a dramatic morph-specific daily cycle in the in vitro rate of juvenile hormone (JH) biosynthesis that was tightly correlated with the hemolymph JH titer on days 5-7 of adulthood. Biosynthetic rates rose and fell 1-2 fold between the late photophase-early scotophase on each of days 5-6 and 6-7 of adulthood in the LW(f) morph, while biosynthetic rates were relatively constant during this period in the flightless, short-winged morph (SW), except for a slight dip in the rate of biosynthesis late in the photophase on these days. Similar morph-specific patterns of JH biosynthesis were observed whether rates were measured on corpora allata attached to corpora cardiaca in males or females, or on corpora allata alone. Hemolymph juvenile hormone esterase activity was significantly higher in the LW(f) vs. the SW morph during the beginning of scotophase, when the JH titer is decreasing rapidly in the LW(f) morph. Results indicate that the morph-specific daily cycle in the JH titer in G. firmus is primarily regulated by a morph-specific daily cycle in the rate of JH biosynthesis and to a lesser degree by hemolymph JH esterase activity. This is the first documentation of a diurnal cycle in the rate of JH biosynthesis in any insect, or a daily cycle in the rate of JH biosynthesis that is correlated with a specific morph in a polymorphic species. Results have important implications for the endocrine regulation of dispersal polymorphism, circadian rhythms of insect hormone titers and their regulators, and general studies of the JH titer and its regulation in insects.  相似文献   

2.
The wing-polymorphic cricket, Gryllus firmus, contains (1) a flight-capable morph (LW(f)) with long wings and functional flight muscles, (2) a flightless morph with reduced wings and underdeveloped flight muscles (SW), and (3) a flightless morph with histolyzed flight muscles but with fully developed wings (LW(h)). The LW(f) morph differed genetically from the SW morph and phenotypically from the LW(h) morph in the size of flight muscles, ovarian growth during the first week of adulthood, and the hemolymph titer of juvenile hormone (JH). This is the first study to document that phenotypes that differ genetically in morphological aspects of dispersal capability and in ovarian growth also differ genetically in the titer of a hormone that potentially regulates those traits. The JH titer rose 9-100-fold during the photophase in the flight-capable LW(f) morph but did not change significantly during this time in either flightless morph. Prolonged elevation of the in vivo JH titer in flight-capable females, by topical application of a hormone analogue, caused a substantial increase in ovarian growth and histolysis of flight muscles. The short-term, diurnal rise in the JH titer in the dispersing morph may be a mechanism that allows JH to positively regulate nocturnal flight behavior, while not causing maladaptive histolysis of flight muscles and ovarian growth. This is the first demonstration of naturally occurring, genetically based variation for diurnal change in a hormone titer in any organism.  相似文献   

3.
Previous studies have documented a circadian cycle in juvenile hormone (JH) biosynthesis in the long-winged, flight-capable morph, but not in the short-winged flightless morph of the cricket Gryllus firmus. One rapid and reversible inhibitor of in vitro JH biosynthesis by the corpora allata (CA) in crickets is the neuropeptide Phe-Gly-Leu/Ile-amide type of allatostatins (ASTs). To investigate the possible role of allatostatin regulation of the morph-specific circadian cycle of JH production, the quantity of this type of AST in the nerves within the CA was determined by the density of anti-AST-immunostaining in confocal images using the Image J program. The density of immunostaining was inversely related to the rate of JH biosynthesis: Immunostaining in the CA was high and did not differ between morphs early in the photophase when the in vitro rate of JH biosynthesis is low and equivalent in the morphs. However, during the end of the photophase, when the rate of JH biosynthesis rises dramatically in the flight-capable morph, but not in the flightless morph, immunostaining was significantly lower in the flight-capable compared to the flightless morph. These results indicate that morph-specific differences in delivery of AST to the CA and its probable release likely regulate the morph-specific circadian pattern of JH biosynthesis. Also, the negative correlation between AST density and JH production provides evidence for predicting the periods of altered release of these rapid-acting paracine regulators of JH biosynthesis.  相似文献   

4.
Previous studies demonstrated a high-amplitude, diel cycle for the hemolymph JH titer in the wing-polymorphic cricket, Gryllus firmus. The JH titer rose and fell in the flight-capable morph (long-winged, LW(f)) above and below the relatively temporally invariant JH titer in the flightless (short-winged, SW) morph. The morph-specific JH titer cycle appeared to be primarily driven by a morph-specific diel cycle in the rate of JH biosynthesis. In the present study, cycles of the JH titer and rate of JH biosynthesis in the LW(f) morph persisted in the laboratory under constant darkness with an approximate 24 h periodicity. The JH titer cycle also shifted in concert with a shift in the onset of the scotophase, was temperature compensated in constant darkness, and became arrhythmic under constant light. These results provide strong support for the circadian basis of the morph-specific diel rhythm of the JH titer and JH biosynthetic rate. Persistence of the JH titer cycle under constant darkness in multiple LW-selected and SW-selected stocks also provides support for the genetic basis of the morph-associated circadian rhythm. The morph-specific JH titer cycle was observed in these stocks raised in the field, in both males and females, in each of 3 years studied. The onset of the cycle in the LW(f) morph, a few hours before sunset, correlated well with the onset of the cycle, a few hours before lights-off, in the laboratory. The morph-specific JH titer cycle is a general feature of G. firmus, under a variety of environmental conditions, and is not an artifact of specific laboratory conditions or specific genetic stocks. It is a powerful experimental model to investigate the mechanisms underlying endocrine circadian rhythms, their evolution, and their impact on life history evolution.  相似文献   

5.
Juvenile hormone titers and reproductive characteristics were measured in adult wing and flight-muscle morphs of the wing-polymorphic cricket, Gryllus firmus, during the first week of adulthood. This species has three morphs: one flight capable morph with fully-developed wings and fully-developed flight muscles [LW(F)], one flightless morph with fully-developed wings and histolyzed (non-functional) flight muscles [LW(H)], and another flightless morph with underdeveloped (short) wings and underdeveloped flight muscles (SW). Both flightless morphs [LW(H) and SW] had larger ovaries which contained a greater number of postvitellogenic eggs compared with the flight capable [LW(F)] morph. The juvenile hormone titer was significantly higher in SW compared with LW(F) females on days 3-7 of adulthood. On these days, the JH titer also was significantly higher in the other flightless morph, LW(H), compared with flight-capable [LW(F)] females as determined by one statistical test, but did not differ significantly by another test. The JH titer was positively correlated with ovarian mass or terminal oocyte length, but not with the number of post-vitellogenic eggs. This study is the first direct comparison of juvenile hormone titers in adult wing morphs of a wing-polymorphic insect. Results indicate that an elevated juvenile hormone titer may be at least partly responsible for one of the most distinctive features of wing-polymorphic species, the increased early fecundity of flightless females.  相似文献   

6.
The flight-capable morph of the wing-polymorphic cricket, Gryllus firmus, accumulated a substantially greater quantity of total lipid and triglyceride, compared with the obligately flightless morph, during the first five days of adulthood. Increased lipid accumulation in the flight-capable morph was genetically based, and was produced when ovarian growth is substantially reduced in that morph. Temporal changes in lipid levels suggest that the higher triglyceride reserves in the flight-capable morph fed a high-nutrient diet were produced by elevated lipid biosynthesis. By contrast, on a low-nutrient or high carbohydrate diet, increased lipid levels in the flight-capable morph appeared to result primarily from decreased lipid utilization. Increased biosynthesis or retention of triglyceride (the major flight fuel in Gryllus) by the flight-capable morph may significantly divert nutrients from egg production and hence may be an important physiological cause of its reduced ovarian growth. The obligately flightless morph allocated a greater proportion of total lipid to phospholipid than did the flight-capable morph. No functionally-significant differences in total lipid or triglyceride were produced between morphs during the last nymphal stadium. A second flightless morph, derived from the flight-capable morph by histolysis of flight muscles during adulthood, also had reduced amounts of total lipid and triglyceride but increased ovarian growth compared with the flight capable morph on the standard (high-nutrient) diet. Important qualitative and quantitative aspects of lipid metabolism differ genetically between the flight-capable and flightless morphs of G. firmus and likely contribute importantly to their respective adaptations for flight capability vs. reproduction. This is the first study to document genetically-based differences in energy reserves between morphs of a complex (phase, caste, flight) polymorphism in which morphs also differ genetically in key life history traits.  相似文献   

7.
The hormonal basis of variation in life-history traits is a poorly studied topic in life-history evolution. An important step in identifying the endocrine-genetic causes of life-history variation is documenting statistical and functional associations between hormone titers and genotypes/phenotypes that vary in life-history traits. To this end, we compared the blood ecdysteroid titer and the mass of the ovaries during the first week of adulthood among a flight-capable morph and two flightless morphs of the wing-polymorphic cricket Gryllus firmus. Ecdysteroids are a group of structurally related hormones that regulate many important aspects of reproduction in insects. Both the ecdysteroid titer and ovarian mass were significantly higher in each of two flightless morphs compared with the flight-capable morph throughout the first week of adulthood. Genetically based differences in the ecdysteroid titer and ovarian mass between morphs from different selected lines were similar to phenotypically based differences among morphs from the same control (unselected) lines. By day 7 of adulthood, ovaries were typically 200-400% larger and the ecdysteroid titer was 60-300% higher in flightless versus the flight-capable morph. In addition, highly significant, positive, phenotypic correlations were observed between the ecdysteroid titer and ovarian mass in pooled samples of the two flightless and flight-capable crickets from control lines or from selected lines. The ecdysteroid titer was sufficiently elevated in the flightless morphs to account for their elevated ovarian growth. This is the first direct documentation that naturally occurring phenotypes/genotypes that differ in early fecundity, a key life-history trait, also differ phenotypically and genetically in the titer of a key reproductive hormone that potentially regulates that trait.  相似文献   

8.
Virtually no published information exists on insect endocrine traits in natural populations, which limits our understanding of endocrine microevolution. We characterized the hemolymph titers of juvenile hormone (JH) and ecdysteroids (ECDs), two key insect hormones, in field-collected short-winged, flightless (SW) and long-winged, flight-capable (LW(f)) morphs of the cricket Gryllus firmus. The JH titer exhibited a dramatic circadian rhythm in the LW(f) morph but was temporally constant in the flightless SW morph. This pattern was consistent in each of three years; in young, middle-aged, and older G. firmus; and in three other cricket species. The ECD titer was considerably higher in SW than in LW(f) females but did not exhibit temporal variation in any morph and did not differ between male morphs. JH and ECD may control different aspects of the morph-specific trade-off between nocturnal dispersal and reproduction. Results confirm and extend laboratory studies on young female G. firmus; most, but not all, important aspects of morph-specific differences in JH and ECD titers can be extrapolated from field to laboratory environments and vice versa. Hormone titers in Gryllus are more complex than those proposed in evolutionary endocrine models. Directly measuring hormone titer variation remains a fundamentally important task of insect evolutionary endocrinology.  相似文献   

9.
The flight-capable morph of the wing-polymorphic cricket, Gryllus firmus, exhibited significantly higher activities of each of five lipogenic enzymes compared with the obligately flightless morph on a standard and a high-carbohydrate diet during early adulthood. Similarly, the rate of incorporation of [14C]-acetate into total lipid was higher in the flight-capable morph during this time. By contrast, activities of lipogenic enzymes and rates of lipid biosynthesis, in general, did not differ between morphs on a low nutrient diet during early adulthood. Differences in lipid biosynthesis account for previously documented differences in lipid reserves between morphs on some, but not all, diets. Results of the present and previous studies indicate that increased lipid biosynthesis in the flight capable morph on standard and high-carbohydrate diets constitutes an important adaptation for flight (production of lipid flight fuel). Lipid biosynthesis is negatively correlated with ovarian growth, and may be an important biochemical component of the trade-off between flight capability and ovarian growth in G. firmus. Morphs also differed in activities of three enzymes of lipid catabolism. However, the extent to which variation in activities of these enzymes between morphs results in variation in lipid catabolism is unclear. Finally, the flight-capable morph had a substantially higher activity of alanine aminotransferase in the fat body. Amino acids may be utilized for lipid biosynthesis or energy production to a greater degree in the dispersing morph compared with the oligately flightless morph. This study is the first to document differences in intermediary metabolism that underlie adaptations of morphs of a dispersal-polymorphic species for flight vs. egg production.  相似文献   

10.
11.
The endocrine mechanisms controlling the development and reproduction of flight-capable (long-winged) and flightless (short-winged or wingless) morphs of wing-polymorphic insects have been intensively investigated. The "classical model," put forward in the early 1960s, postulates that morph-specific differences in development and reproduction are caused by variation in the titers of juvenile hormone (JH) and/or ecdysone. Despite decades of study, the importance of these hormones in regulating wing polymorphism in aphids and planthoppers remains uncertain. This uncertainly is largely a consequence of technical and size constraints which have severely limited the types of endocrine approaches that can be used in these insects. Recent studies in wing-polymorphic crickets (Gryllus) have provided the first direct evidence that the in vivo blood titers of juvenile hormone and ecdysone, and especially the activity of the JH regulator, juvenile hormone esterase, differ between nascent morphs. Morph differences are largely consistent with the classical model, although some types of data are problematic, and other explanations are possible. Adult morphs differ dramatically in the JH titer but titer differences are more complex than those proposed by the classical model. Detailed endocrine information is thus far available only for a few species of crickets, and the hormonal control of wing polymorphism for insects as a whole remains poorly understood. Future studies should continue to investigate the role of JH and ecdysteroids in morph development and reproduction, and should expand to include studies of morph-specific differences in hormone receptors and neurohormones.  相似文献   

12.
In this study, the major pheromone component, 3‐hydroxy‐2‐butanone (3H‐2B), released by dominants was measured during early scotophase. Both the JH III titer in the hemolymph and the 3H‐2B content of the sternal glands of the dominants and subordinates were then measured during late scotophase and late photophase. These investigations were performed on encounter days 1, 2, 3, 5, 7, 9, 12, and 20. The results showed that, for non‐aggressive posture (AP)‐adopting socially naïve males (SNMs), both the 3H‐2B release and the hemolymph JH III titer were maintained at a low level. Once a fight occurred, 3H‐2B release was raised significantly in the AP‐adopting dominants, but not in non‐AP‐adopting subordinates, and remained raised throughout the entire experimental period. At 30 min after the first encounter, the hemolymph JH III titer was significantly increased in dominants, but not in subordinates. A significantly higher hemolymph JH III titer was observed in dominants during late scotophase on days 3, 5, 12, and 20 and during late photophase on days 3, 5, and 20. After fighting, the sternal gland 3H‐2B content of the dominants or subordinates was significantly lower than in SNMs. In dominants, the sternal gland 3H‐2B content during late scotophase was significantly lower than that during late photophase in the first 9 domination days, while, in the subordinates, the 3H‐2B content during late scotophase was either similar to, or significantly higher than, that in late photophase. In the dominants, 3H‐2B release and JH III titer were positively correlated. In rank switchers, the switched social status was positively correlated with both 3H‐2B release and JH III titer. Comparison of 3H‐2B release and JH III titer in 1‐time, 3‐time, or 5‐time dominants showed that, although winning significantly increased both 3H‐2B release and JH III titer, there is no significant difference in 3H‐2B release between 3‐ and 5‐time winners, while the JH III titer was most significantly increased in the 3‐time winners. The possible relationship between pheromone release, JH III titer, and social status is discussed. Arch. Insect Biochem. Physiol. 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

13.
Although a considerable amount of information is available on the ecology and physiology of wing polymorphism, much less is known about the biochemical-genetic basis of morph specialization for dispersal versus reproduction. Previous studies have shown that the dispersing morph of the wing-polymorphic cricket, Gryllus firmus, prioritizes the accumulation of triglyceride flight fuel over ovarian growth, while the opposite occurs in the flightless morph during the first week of adulthood. In this study, we compared the in vivo rate of lipid oxidation between genetic stocks of flight-capable versus flightless morphs to determine the role of lipid catabolism in morph specialization for flight versus reproduction. During the first five days of adulthood, in the absence of flight, fatty acid oxidation was substantially lower in the dispersing morph relative to the flightless morph, when either radiolabeled acetate or palmitate was used as a substrate. Differences between the morphs in fatty acid oxidation were genetically based, occurred co-incident with morph-specific differences in triglyceride accumulation and ovarian growth, and were observed on a variety of diets. A genetically based trade-off in the relative conversion of palmitate into CO(2) versus triglyceride was observed in morphs of G. firmus. Decreased oxidation of fatty acid and increased biosynthesis of triglyceride, both appear to play an important role in flight fuel accumulation, and hence morph specialization for flight. Conversely, increased oxidation of fatty acid likely fuels the enhanced ovarian growth in the flightless morph. The results of the present study on fatty acid catabolism, and previous studies on triglyceride and phospholipid biosynthesis, provide the first direct evidence that genetically based differences in in vivo flux through pathways of intermediary metabolism underlie a trade-off between flight capability and reproduction--a trade-off of central importance in insects.  相似文献   

14.
For decades, Juvenile Hormone (JH) has been a major focus of studies investigating the endocrine regulation of wing‐polymorphism. The most general model postulates a single threshold, above which JH causes the expression of traits that define the short‐winged morph (SW), and below which JH causes the expression of traits that define the long‐winged morph (LW). Early studies in aphids and crickets reported ambiguous results as a result of the small size of aphids or the very low JH titre in nymphal crickets. Detailed studies in wing morphs of adult Gryllus firmus Scudder uncovered an unexpected and novel morph‐specific JH titre circadian cycle (cycling in LW but not in SW) in both the laboratory and field. This finding clearly contradicts the classic model. Morph‐specific daily rhythms in global gene expression are strongly associated with (and are possibly caused by) the morph‐specific JH titre rhythm. Daily rhythms for hormonal traits and gene expression, which are largely ignored in studies of life‐history evolution, may be common and play an important role in adaptation. Juvenile Hormone has likely evolved a specialized within‐morph function in G. firmus, regulating aspects of daily flight in the LW morph, which exhibits circadian flight. Other hormones, such as insulin‐like peptides and ecdysteroids, possibly regulate the expression of chronic (long‐term, noncircadian) differences between LW and SW morphs. Future studies should aim to investigate JH titres in more detail, as well as other hormones, most notably peptides and biogenic amines, which are largely ignored in endocrine studies of wing polymorphism.  相似文献   

15.
Absorption efficiency (AD, approximate digestibility, assimilation efficiency) of various macronutrients and conversion of absorbed nutrients to biomass (ECD) were compared among the two types of flightless morph and the flight-capable morph of the cricket, Gryllus firmus. No biologically significant phenotypic or genetic difference in AD for carbohydrate, protein or lipid was observed among morphs fed either a high-nutrient (100%) or a low-nutrient (25%) diet. Thus, previously-documented differences among adult morphs in carbohydrate and lipid content must be caused by processes other than variation in nutrient absorption by morphs during adulthood. Relative absorption efficiency of total dry mass of food by morphs of G. firmus appears to be a valid indicator of relative AD of total calories. Morphs did not differ phenotypically or genetically in the excretion of end products of nitrogen metabolism (uric acid, hypoxanthine plus xanthine) on either the high nutrient or the low nutrient diet. Nutritional indices corrected for excreted nitrogenous metabolites were very similar to uncorrected indices, and the pattern of variation among the morphs was the same for corrected or uncorrected values. Each of the two types of flightless morph converted a greater proportion of absorbed nutrients into body mass, mainly ovaries, and allocated a smaller proportion of assimilated nutrients to respiration than did the flight-capable morph. Moreover, the trade-off between respiration and early reproduction was substantially magnified on the low nutrient diet. These results extend previous findings of a trade-off between flight capability and early reproduction in wing-polymorphic Gryllus species (1) to diets of very different nutrient quantity, and (2) to flightlessness arising from different causes: blockage of flight muscle development in juveniles vs histolysis of fully-developed flight muscles in adults.  相似文献   

16.
Although, in many insects, migration imposes a cost in terms of timing or amount of reproduction, in the migratory grasshopper Melanoplus sanguinipes performance of long-duration flight to voluntary cessation or exhaustion accelerates the onset of first reproduction and enhances reproductive success over the entire lifetime of the insect. Since juvenile hormone (JH) is involved in the control of reproduction in most species, we examined JH titer after long flight using a chiral selective radioimmunoassay. JH levels increased on days 5 and 8 in animals flown to exhaustion on day 4 but not in 1-h or non-flier controls. No difference was seen in the diel pattern of JH titer, but hemolymph samples were taken between 5 and 7 h after lights on. Treatment of grasshoppers with JH-III mimicked the effect of long-duration flight in the induction of early reproduction. The increased JH titer induced by performance of long-duration flight is thus at least one component of flight-enhanced reproduction. To test the possibility that post-flight JH titer increases are caused by adipokinetic hormone (AKH) released during long flights, a series of injections of physiological doses of Lom-AKH I were given to unflown animals to simulate AKH release during long flight. This treatment had no effect on JH titers. Thus, although AKH is released during flight and controls lipid mobilization, it is not the factor responsible for increased JH titers after long-duration flight.  相似文献   

17.
Although the differential flow of metabolites through alternate pathways of intermediary metabolism is thought to be an important functional cause of life-history trade-offs, this phenomenon remains understudied. Using a radiolabeled amino acid, we quantified genetic differences in in vivo amino acid metabolism between morphs of the wing-polymorphic cricket Gryllus firmus that trade off early-age reproduction and dispersal capability. Lines selected for the flight-capable morph, which delays reproduction, oxidized a greater proportion of radiolabeled glycine and converted a greater amount into somatic lipid, mainly triglyceride (flight fuel). By contrast, lines selected for the flightless, reproductive morph converted a substantially greater proportion of glycine into ovarian protein. Compensatory interactions between amino acid and lipid metabolism make up a key aspect of specialization for dispersal versus reproduction in G. firmus: increased oxidation of amino acids by the flight-capable morph spares fatty acid for enhanced conversion into triglyceride flight fuel. By contrast, increased oxidation of fatty acid by the flightless morph spares amino acids for enhanced biosynthesis of ovarian protein. Studies of amino acid and lipid metabolism in G. firmus currently represent the most detailed analyses of genetic modifications of intermediary metabolism that underlie a functionally important life-history trade-off found in natural populations.  相似文献   

18.
Abstract Adult Gryllus assimilis given an analog of juvenile hormone exhibited reduced flight muscles and enlarged ovaries similar to those found in naturally occurring flightless individuals of species that are polymorphic for dispersal capability. Control and hormone-treated (flightless) G. assimilis did not differ in the amount of food consumed or assimilated on any of three diets that differed in nutrient quantity. Thus, enhanced ovarian growth of flightless individuals resulted from increased allocation of internal nutrients to reproduction (i.e., a trade-off) rather than from increased acquisition of nutrients. Compared with flight-capable controls, flightless G. assimilis also had reduced whole-organism respiration, reduced respiration of flight muscles, and reduced lipid and triglyceride (flight fuel) reserves. These differences are remarkably similar to those between naturally occurring flightless and flight-capable morphs of other Gryllus species. Results collectively suggest that the increased allocation of nutrients to ovarian growth in flightless G. assimilis and other Gryllus species results from reduced energetic costs of flight muscle maintenance and/or the biosynthesis or acquisition of lipids. Reduction in these energetic costs appears to be an important driving force in the evolution of flightlessness in insects. Respiratory metabolism associated with flight capability utilizes an increasing proportion of the energy budget of crickets as the quantity of nutrients in the diet is decreased. This leads to a magnification of greater ovarian growth of flightless versus flight-capable individuals on nutrient-poor diets.  相似文献   

19.
Juvenile hormone (JH) titer in virgin females of Heliothis virescens is significantly lower than that in mated females of the same age. The JH titer in virgin females follows a diel pattern in which it begins to increase towards the end of photophase, remains high around the onset of scotophase, and declines during scotophase. The titer reaches its lowest levels at the onset of photophase, and remains low during the first half of photophase. In mated females, the diel pattern of JH titers is not as pronounced. JH-esterase (JHE) activity in mated females is significantly lower than that of virgin females during photophase; JHE levels in the former are similar to levels seen in newly emerged females. JHE activity in mated females also exhibits a diel pattern, in which activity is low during photophase and high at the onset of scotophase. Evidence for the indirect involvement of JHE in the mating-stimulated egg development is provided by the effect of selected JHE inhibitors in inhibiting JHE activity and stimulating egg production in virgin females.  相似文献   

20.
1. Trade‐offs play a fundamental role in the evolution of many traits. 2. In wing‐polymorphic field crickets, the long‐winged morph can disperse from unfavourable environments, but has lower reproductive success than the short‐winged morph, because of costs associated with flight capability. 3. However, long‐winged individuals may minimise costs in favourable environments by histolysing their flight muscles and becoming flightless. 4. Few studies have examined how flight‐muscle histolysis affects male signalling and mate attraction. 5. We examined differences in singing activity and song characteristics among the flightless (short‐winged and histolysed long‐winged) and the flight‐capable male morphs, and female preferences for male song, in the sand field cricket. 6. We found: (i) both flightless morphs sang more than the flight‐capable morph, (ii) song characteristics varied among the three morphs, and (iii) females preferred songs characteristic of the long‐winged morphs. 7. Histolysis should increase mating success of long‐winged males because it increases singing activity. 8. Histolysed long‐winged males may have higher mating success than short‐winged males as they sing as frequently but produce more attractive songs. 9. Therefore, plasticity within the long‐winged morph may reduce costs of maturing in environments from which dispersal is not advantageous; non‐flying morphs may be pursuing different reproductive tactics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号