首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We found that 82- and 76-kDa proteins in the outer-membrane fractions were overproduced in the hfq::cat mutant cells when grown in synthetic media. Expression of these proteins was repressed by addition of FeCl(3) in the mutant as well as in the wild type. It was revealed that these are FepA and FhuE proteins involved in iron transport. The hfq::cat mutant was more susceptible to killing by hydrogen peroxide, probably due to the excess incorporation of iron, which potentially generates hydroxyl radicals. Increased incorporation of iron in the hfq::cat mutant was also confirmed by the suppressive effect on the ftsH1 mutation. These results suggest that the hfq gene product is involved in the defense mechanism against oxidative stress.  相似文献   

2.
An insertional mutation in ftsK, encoding an Escherichia coli product similar to the sporulation protein SpoIIIE of Bacillus subtilis, results in uspA overexpression in stationary phase and impairs cell division. The ftsK1::cat insertion mutant forms chains which are the result of inhibited cell-cell separation, while chromosome synthesis and partitioning appear to be normal as judged by flow cytometry and electron and light microscopy in combination with DNA staining. The cells of the chains are attached to each other by a small envelope structure, and unlike in a spoIIIE mutant of B. subtilis, there is no DNA trapped in the division plane. In addition, plasmids harboring a truncated ftsK allele lacking the last 195 bp of the gene cause chain formation in wild-type cells. While the mutant cells grow at essentially the same rate as the parent in complex and defined minimal media, they are sensitive to stresses. Specifically, the mutant failed to grow at elevated salt concentrations and survived stationary phase poorly. The phenotypes of the ftsK1::cat mutant are complemented by the 3' end (spoIIIE-like half) of the ftsK locus. In contrast, the 5' end of the ftsK locus reported to complement ftsK44(Ts) phenotypes does not complement the phenotypes of the ftsK1::cat mutant.  相似文献   

3.
Brucella abortus is a facultative intracellular pathogen that causes abortion and infertility in domestic animals and a severe debilitating febrile illness in humans. The mechanisms that this highly successful intracellular pathogen uses to adapt to, and survive within, the harsh intracellular environment of the host macrophage are presently unknown. Maintenance of the stationary phase growth state has been proposed to be critical for the virulence of several mammalian pathogens, but analysis of this relationship for the brucellae has not been undertaken. In order to evaluate this relationship, we examined the in vitro and in vivo characteristics of an isogenic hfq mutant constructed from virulent Brucella abortus 2308. In Escherichia coli, the hfq gene product is an RNA-binding protein that participates in the regulation of stationary phase stress resistance, at least partly by enhancing translation of the stationary phase-specific sigma factor RpoS. As expected, the Brucella abortus hfq mutant, designated Hfq3, showed increased sensitivity to H2O2, and decreased survival under acidic conditions (pH 4.0), during stationary phase growth compared with 2308. Hfq3 was also less able to withstand prolonged starvation than 2308. The Brucella abortus hfq mutant, unlike its parental strain 2308, fails to replicate in cultured murine macrophages, and is rapidly cleared from the spleens and livers of experimentally infected BALB/c mice. These findings suggest that the Brucella abortus hfq gene product makes an essential contribution to pathogenesis in mice, probably by allowing the brucellae to adapt appropriately to the harsh environmental conditions encountered within the host macrophage.  相似文献   

4.
5.
6.
The Hfq protein mediates gene regulation by small RNAs (sRNAs) in about 50% of all bacteria. Depending on the species, phenotypic defects of an hfq mutant range from mild to severe. Here, we document that the purified Hfq protein of the plant pathogen and natural genetic engineer Agrobacterium tumefaciens binds to the previously described sRNA AbcR1 and its target mRNA atu2422, which codes for the substrate binding protein of an ABC transporter taking up proline and γ-aminobutyric acid (GABA). Several other ABC transporter components were overproduced in an hfq mutant compared to their levels in the parental strain, suggesting that Hfq plays a major role in controlling the uptake systems and metabolic versatility of A. tumefaciens. The hfq mutant showed delayed growth, altered cell morphology, and reduced motility. Although the DNA-transferring type IV secretion system was produced, tumor formation by the mutant strain was attenuated, demonstrating an important contribution of Hfq to plant transformation by A. tumefaciens.  相似文献   

7.
The yeast Saccharomyces cerevisiae cell surface outside of the bud scars displayed an increasing fluorescence intensity with increasing cell size (volume), where fluorescence was due to irreversible binding of the fluorescent dye calcofluor. The increase in fluorescence intensity appeared to be due to an increase in the density of fluorescence per unit surface area of the cell. Exposure time measurements from a photomicroscope were used to quantitate fluorescence intensity on individual cells. The cell size dependent increase in fluorescence intensity was displayed by unbudded cells from stationary phase populations, and unbudded and parent cells from exponentially growing populations. Abnormally large cells generated during the arrest of cell division with alpha-factor or restrictive temperature for cdc3, 8, 13, 24, and 28 cell division cycle mutants, displayed significantly greater fluorescence intensity compared to the smaller cells generated during the arrest of division for cdc25, 33, and 35 mutant strains. Fluorescence intensity on newly emerging buds was broadly dependent on both the size of the bud, and the size of the parent cells on which the buds were growing.  相似文献   

8.
9.
Peptidoglycan (PG) is a cell wall heteropolymer that is essential for cell integrity. PG hydrolases participate in correct assembly of the PG layer and have been shown to be required for cell division, cell daughter separation, and maintenance of bacterial morphology. In silico analysis of the Helicobacter pylori genome resulted in identification of three potential hydrolases, Slt, MltD, and AmiA. This study was aimed at determining the roles of the putative lytic transglycosylases, Slt and MltD, in H. pylori morphology, growth, and PG metabolism. Strain 26695 single mutants were constructed using a nonpolar kanamycin cassette. The slt and mltD mutants formed normal bacillary and coccoid bacteria in the exponential and stationary phases, respectively. The slt and mltD mutants had growth rates comparable to the growth rate of the parental strain. However, the mltD mutant exhibited enhanced survival in the stationary phase compared to the wild type or the slt mutant. PG was purified from exponentially growing bacteria and from bacteria in the stationary phase, and its muropeptide composition was analyzed by high-pressure liquid chromatography. This analysis revealed changes in the muropeptide composition indicating that MltD and Slt have lytic transglycosylase activities. Glycan strand analysis suggested that Slt and MltD have exo and endo types of lytic transglycosylase activity, indicating that Slt is involved mainly in PG turnover and MltD is involved mainly in rearrangement of the PG layer. In this study, we determined the distinct roles of the lytic transglycosylases Slt and MltD in PG metabolism.  相似文献   

10.
R Knoechel  E M Quinn 《Cytometry》1989,10(5):612-621
Track autoradiographic analysis of photosynthetic radiocarbon incorporation at the cellular level indicated that the carbon uptake rate and carbon pool size of exponentially growing (log phase) Scenedesmus cells was threefold that of stationary phase cells, while carbon turnover rates were similar. Carbon fixation was uncoupled from growth and cell division in the stationary phase cells, which were larger and contained less chlorophyll per unit volume than log phase cells. Changes in the temporal pattern of isotope incorporation were evident at the cell level prior to the cessation of division and transition to stationary phase, while bulk carbon fixation responded only the second day after cell division ceased. The carbon uptake patterns of a marine nanoplankter from a nutrient-enriched natural sample resembled that of log phase cells while the control population pattern resembled that of stationary cells. The physical, biochemical, and metabolic differences between log and stationary phase cells are potentially measurable by flow cytometry procedures currently in use and under development. The use of flow cytometry to sort cell types for analysis by track autoradiography and subsequent correlation of metabolic characteristics with flow cytometry signatures is a feasible means of investigating the heterogeneity of phytoplankton metabolic state in the marine environment.  相似文献   

11.
G Wang  LF Lo  RJ Maier 《DNA Repair》2012,11(9):733-740
Genomic DNA in a bacterial cell is folded into a compact structure called a nucleoid, and nucleoid-associated proteins are responsible for proper assembly of active higher-order genome structures. The human gastric pathogen Helicobacter pylori express a nucleoid-associated protein encoded by the hup gene, which is the homolog to the Escherichia coli histone-like protein HU. An H. pylori hup mutant strain (X47 hup:cat) showed a defect in stationary phase survival. The X47 hup:cat mutant was more sensitive to the DNA damaging agent mitomycin C, and displayed a decreased frequency of DNA recombination, indicating Hup plays a significant role in facilitating DNA recombinational repair. The X47 hup:cat mutant was also sensitive to both oxidative and acid stress, conditions that H. pylori commonly encounters in the host. The hup mutant cells survived significantly (7-fold) less upon exposure to macrophages than the wild type strain. In a mouse infection model, the hup mutant strain displayed a greatly reduced ability to colonize host stomachs. The geometric means of colonization number for the wild type and hup mutant were 6×10(5) and 1.5×10(4)CFU/g stomachs, respectively. Complementation of the hup strain by chromosomal insertion of a functional hup gene restored oxidative stress resistance, DNA transformation frequency, and mouse colonization ability to the wild type level. We directly demonstrated that the purified His-tagged H. pylori Hup protein can protect (in vitro) an H. pylori-derived DNA fragment from oxidative damage.  相似文献   

12.
13.
Mutation to resistance to bacteriophage T5 was studied in chemostat cultures of Escherichia coli strain WP2 Hcr exposed to ultraviolet radiation (UV). The results are in generally good agreement with those obtained earlier by Bridges and Munson for UV-induced reversion to tryptophan independence in exponentially growing cultures of the same strain: expressed mutant yields followed a dose-squared response, mutations were not expressed before approximately one generation after exposure to UV, there was a slow disappearance of dimers especially noticeable in slowly growing and stationary cultures, and the first replication gave rise to duplex mutants in both strands. Several new results were also obtained. In addition to expressed mutant yields, induction of mutational capacity was also observed to follow a dose-squared response, indcating that the response is not an artifact of selection or repair. Induction also increased with growth rate, apparently as the square of the number of genes for T5-sensitivity per cell. It is suggested that mutagenesis is proportional to the number of genes per cell, that recombination is also proportional to the number of genes per cell, and that the number of mutational lesions is proportional to the product of the two. These results also provide evidence that DNA replication occurs near the end of the cell cycle in slowly growing cultures. Under all growth conditions, latent mutant concentrations mutational capacity) decreased by a factor of two with each successive division. Latent mutants were, however, photoreversible for only the first two generations. If mutagenesis occurs as a recombinant event between two mutational lesions, then the results also indicate that these lesions are separated, on the average, by no more than a single cistron.  相似文献   

14.
DnaA protein activity, the initiator of chromosomal DNA replication in bacteria, is regulated by acidic phospholipids such as phosphatidylglycerol (PG) or cardiolipin (CL) via facilitation of the exchange reaction of bound adenine nucleotide. Total lipid isolated from exponentially growing Staphylococcus aureus cells facilitated the release of ATP bound to S. aureus DnaA protein, whereas that from stationary phase cells was inert. Fractionation of total lipid from stationary phase cells revealed that the basic phospholipid, lysylphosphatidylglycerol (LPG), inhibited PG- or CL-facilitated release of ATP from DnaA protein. There was an increase in LPG concentration during the stationary phase. A fraction of the total lipid from stationary phase cells of an integrational deletion mprF mutant, in which LPG was lost, facilitated the release of ATP from DnaA protein. A zwitterionic phospholipid, phosphatidylethanolamine, also inhibited PG-facilitated ATP release. These results indicate that interaction of DnaA protein with acidic phospholipids might be regulated by changes in the phospholipid composition of the cell membrane at different growth stages. In addition, the mprF mutant exhibited an increased amount of origin per cell in vivo, suggesting that LPG is involved in regulating the cell cycle event(s).  相似文献   

15.
Morphological changes of Campylobacter jejuni growing in liquid culture   总被引:2,自引:0,他引:2  
Campylobacter jejuni growing in liquid culture was found to exhibit gross morphological changes with time. Exponentially growing cells showed typical short spiral forms. At mid-stationary phase the cells became approximately twice the length of the exponential forms. Late stationary/early decline phase cells were seen to be a mixture of coccal forms and cells which were between 3 and 4 times the length of exponentially growing cells. Continued incubation of cultures eventually resulted in a population largely of coccal forms. These morphological changes have not previously been observed when Camp. jejuni has been grown on agar-based solid medium. It is likely that such changes result from the differential expression of genes that control the timing of cell division.  相似文献   

16.
17.
18.
Cells of Hansenula polymorpha growing exponentially on glucose generally contained a single peroxisome of small dimension, irregular in shape and located in close proximity to the cell wall. Crystalline inclusions in the peroxisomal matrix were not observed. Associations of the organelles with one or more strands of endoplasmic reticulum were evident. In stationary phase cells the size of the peroxisomes had increased considerably. They were more cubical in form and showed a partly or completely crystalline matrix.After the transfer of cells growing exponentially on glucose into media containing methanol, large peroxisomes with a partly crystalline matrix developed in the cells within 6 h. These organelles originated from the small peroxisomes in the glucose-grown cells. De novo synthesis of peroxisomes was not observed. Prolonged cultivation in the presence of methanol resulted in a gradual increase in the number of peroxisomes by means of separation of small peroxisomes from mature organelles. During growth of peroxisomes associations with the endoplasmic reticulum remained evident.The increase in volume density of peroxisomes in stationary phase cells grown on glucose and in methanol-grown cells was accompanied by the synthesis of the peroxisomal enzymes alcohol oxidase and catalase. Cytochemical staining techniques revealed that alcohol oxidase activity was only detected when the peroxisomes contained a crystalloid inclusion. Since in peroxisomes of an alcohol oxidase-negative mutant of Hansenula polymorpha crystalline inclusions were never detected, it is concluded that the development of crystalloids inside peroxisomes is due to the accumulation of alcohol oxidase in these organelles.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号