首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The molecular cause of germ cell meiotic defects in azoospermic men is rarely known. During meiotic prophase I, a proteinaceous structure called the synaptonemal complex (SC) appears along the pairing axis of homologous chromosomes and meiotic recombination takes place. Newly-developed immunofluorescence techniques for SC proteins (SCP1 and SCP3) and for a DNA mismatch repair protein (MLH1) present in late recombination nodules allow simultaneous analysis of synapsis, and of meiotic recombination, during the first meiotic prophase in spermatocytes. This immunofluorescent SC analysis enables accurate meiotic prophase substaging and the identification of asynaptic pachytene spermatocytes. Spermatogenic defects were examined in azoospermic men using immunofluorescent SC and MLH1 analysis. Five males with obstructive azoospermia, 18 males with nonobstructive azoospermia and 11 control males with normal spermatogenesis were recruited for the study. In males with obstructive azoospermia, the fidelity of chromosome pairing (determined by the percentage of cells with gaps [discontinuities]/splits [unpaired chromosome regions] in the SCs, and nonexchange SCs [bivalents with 0 MLH1 foci]) was similar to those in normal males. The recombination frequencies (determined by the mean number of MLH1 foci per cell at the pachytene stage) were significantly reduced in obstructive azoospermia compared to that in controls. In men with nonobstructive azoospermia, a marked heterogeneity in spermatogenesis was found: 45% had a complete absence of meiotic cells; 5% had germ cells arrested at the zygotene stage of meiotic prophase; the rest had impaired fidelity of chromosome synapsis and significantly reduced recombination in pachytene. In addition, significantly more cells were in the leptotene and zygotene meiotic prophase stages in nonobstructive azoospermic patients, compared to controls. Defects in chromosome pairing and decreased recombination during meiotic prophase may have led to spermatogenesis arrest and contributed in part to this unexplained infertility.  相似文献   

2.
Variation in meiotic recombination frequencies among human males   总被引:11,自引:0,他引:11  
Sun F  Trpkov K  Rademaker A  Ko E  Martin RH 《Human genetics》2005,116(3):172-178
Meiotic recombination is essential for the segregation of homologous chromosomes and the formation of normal haploid gametes. Little is known about patterns of meiotic recombination in human germ cells or the mechanisms that control these patterns. Here, newly developed immunofluorescence techniques, based on the detection of MLH1 (a DNA mismatch repair protein) foci on synaptonemal complexes (SCs) at prophase I of meiosis, were used to examine recombination in human spermatocytes. The mean number of MLH1 foci per cell in all donors was 48.0 with range from 21 to 65. Remarkable variation in the recombination frequency was noted among 11 normal individuals: the mean frequencies of chromosomal recombination foci ranged from a low of 42.5 to a high of 55.0 exchanges. Donor age did not contribute to this variation. There was no correlation between this variation and the frequency of gaps (discontinuities) or splits (unpaired chromosome regions) in the SCs. The mean percentage of cells with gaps was 35% (range: 20% to 58%) and with splits was 7% (range: 0% to 37%). Bivalents without a recombination focus were rare, with a frequency of only 0.3%. Thus, achiasmate chromosomes appear to be rare in human male meiosis.  相似文献   

3.
Initiation of genetic recombination and recombination-dependent replication   总被引:21,自引:0,他引:21  
Recombination initiates at double-stranded DNA breaks and at single-stranded DNA gaps. These DNA strand discontinuities can arise from DNA-damaging agents and from normal DNA replication when the DNA polymerase encounters an imperfection in the DNA template or another protein. The machinery of homologous recombination acts at these breaks and gaps to promote the events that result in gene recombination, as well as the reattachment of detached replication arms and the resumption of DNA replication. In Escherichia coli, these events require collaboration (RecA, RecBCD, RecFOR, RecQ, RuvABC and SSB proteins) and DNA replication (PriABC proteins and the DNA polymerases). The initial steps common to these recombination and recombination-dependent replication processes are reviewed.  相似文献   

4.
Transient generation of displaced single-stranded DNA during nick translation   总被引:10,自引:0,他引:10  
R C Lundquist  B M Olivera 《Cell》1982,31(1):53-60
We show that displaced single-stranded overhangs are transiently generated and destroyed during nick translation by E. coli DNA polymerase I. Evidence that hyper-rec mutants have an increased frequency of such overhang structures is discussed. The transient generation of overhangs may be significant for general recombination. The 5' leads to 3' exonuclease activity of polymerase I specifically hydrolyzes such overhangs to yield a nick. Overhangs are generated by polymerization, but after every polymerization step, either polymerase or exonuclease can act--55% of the time, polymerization occurred first. At this frequency overhangs of greater than or equal to 12 nucleotides are generated every 1300 nucleotides polymerized. We suggest that many DNA strand discontinuities are displaced single-stranded overhangs, rather than gaps or simple nicks.  相似文献   

5.
Daughter-strand gaps in deoxyribonucleic acid (DNA) synthesized after exposure of excision-deficient Escherichia coli to ultraviolet light are filled during subsequent incubation in buffer, and the rate of filling is increased when the incubation in buffer is carried out in the presence of 360-nm light. It is concluded that daughter-strand discontinuities are prevented from being rapidly sealed in the dark not because of some structural feature of the daughter-strand but because of the presence of a pyrimidine dimer on the opposite (parental) strand. "Photoreactivation-stimulated gap filling" is dependent on the polA(+) and recA(+) but not the exrA(+) genes. It is suggested that the removal of the dimer allows gap-filling by DNA polymerase I and polynucleotide ligase. The recA(+) gene may be needed at a very early stage, possibly for gap stabilization.  相似文献   

6.
Adler ID 《Mutation research》1976,35(2):247-256
MC is well known to induce dominant lethal mutations in mouse spermatocytes. Tests were done to determine whether chromosomal aberrations could be identified in spermatocytes as being responsible for the dominant lethal effects. Male mice were treated with single doses of MC during DNA synthesis preceding meiosis and during early prophase of meiosis. Simultaneous labeling was performed to identify cells that were in S-phase during the time of treatment. Diakineses-metaphases I were analyzed for the occurrence of univalents, gaps, fragments and rearrangements. The frequencies of cells with aberrations increased with dose and time after treatment. Maximal values were obtained after 12 days, indicating that MC was most effective in cells undergoing DNA replication. 95% of these cells were labeled. The majority of aberrant cells contained one or more fragments. These cells will lead to dominant lethality of the zygotes after fertilization. Cells with rearrangements occurred 11 and 12 days after treatment. These cells can develop into sperm carrying a reciprocal translocation which would then give rise to semi-sterile progeny after fertilization. Further investigations are needed to study the transmission of rearrangements observed in primary spermatocytes.  相似文献   

7.
Bridges BA 《DNA Repair》2005,4(5):618-9, 634
Dean Rupp and Paul Howard-Flanders showed that, following exposure to ultraviolet light, bacteria deficient in nucleotide excision repair synthesised DNA with minimal delay and in pieces roughly the size of the distances between pyrimidine dimmers. The discontinuities or gaps between these pieces were subsequently sealed. This led directly to the hypothesis of translesion synthesis.  相似文献   

8.
9.
Actidione (cycloheximide), an antibiotic inhibitor of protein synthesis, blocked the incorporation of leucine and lysine during the S phase of Physarum polycephalum. Actidione added during the early prophase period in which mitosis is blocked totally inhibited the initiation of DNA synthesis. Actidione treatment in late prophase, which permitted mitosis in the absence of protein synthesis, permitted initiation of a round of DNA replication making up between 20 and 30% of the unreplicated nuclear DNA. Actidione treatment during the S phase permitted a round of replication similar to the effect at the beginning of S. The DNA synthesized in the presence of actidione was replicated semiconservatively and was stable through at least the mitosis following antibiotic removal. Experiments in which fluorodeoxyuridine inhibition was followed by thymidine reversal in the presence of actidione suggest that the early rounds of DNA replication must be completed before later rounds are initiated.  相似文献   

10.
Strokov AA 《Genetika》2007,43(11):1468-1477
The qualitative and quantitative changes in molecular chromatin structures during the meiotic prophase I were studied. The following patterns were discovered: (1) unlike somatic cells, the syntheses of total histone and DNA and its integration into the chromatin occur independently and asynchronously: DNA replication is completed by the interphase, whereas the synthesis of histone and its integration into the chromatin continue to late meiotic prophase I, and (2) individual histone fractions are synthesized and integrated into the chromatin during meiotic prophase independently and asynchronously. Chromatin hydrolysis with nucleases DNI, STN, and SI demonstrated considerable differences in the hydrolysis products obtained at different stages of the meiotic prophase I; presumably, this reflects the differences between the structures of initial chromatin at different stages of the meiotic prophase I.  相似文献   

11.
Oogonia undergo numerous mitotic cell cycles before completing the last DNA replication and entering the meiotic prophase I. After chromosome pairing and chromatid exchanges between paired chromosomes, the oocyte I remains arrested at the diplotene stage of the first meiotic prophase. Oocyte growth then occurs independently of cell division; indeed, during this growth period, oocytes (4n DNA) are prevented from completing the meiotic divisions. How is the prophase arrest regulated? One of the players of the prophase block is the high level of intracellular cAMP, maintained by an active adenylate cyclase. By using lethal toxin from Clostridium sordellii (LT), a glucosyl-transferase that glucosylates and inactivates small G proteins of the Ras subfamily, we have shown that inhibition of either Ras or Rap or both proteins is sufficient to release the prophase block of Xenopus oocytes in a cAMP-dependent manner. The implications of Ras family proteins as new players involved in the prophase arrest of Xenopus oocytes will be discussed here.  相似文献   

12.
The qualitative and quantitative changes in molecular chromatin structures during the meiotic prophase I were studied. The following patterns were discovered: (1) unlike somatic cells, the syntheses of total histone and DNA and its integration into the chromatin occur independently and asynchronously: DNA replication is completed by the interphase, whereas the synthesis of histone and its integration into the chromatin continue to late meiotic prophase I, and (2) individual histone fractions are synthesized and integrated into the chromatin during meiotic prophase independently and asynchronously. Chromatin hydrolysis with nucleases DNI, STN, and SI demonstrated considerable differences in the hydrolysis products obtained at different stages of the meiotic prophase I; presumably, this reflects the differences between the structures of initial chromatin at different stages of the meiotic prophase I.  相似文献   

13.
Nucleotide sequence of cauliflower mosaic virus DNA   总被引:1,自引:0,他引:1  
The complete nucleotide sequence (8024 nucleotides) of the circular double-stranded DNA of cauli-flower mosaic virus has been established. The DNA molecule is known to possess three discrete single-stranded discontinuities, often referred to as “gaps”, two in one strand and one in the other. The sequence data indicate that gap 1, the single discontinuity in the α strand, corresponds to the absence of no more than one or two nucleotides with respect to the complementary β strand. The two discontinuities in the β strand, however, are not authentic gaps since no nucleotides are missing, but are instead regions of sequence overlap: a short sequence (19 residues for gap 2, at least 2 residues for gap 3) at one terminus of each discontinuity, probably the 5′ terminus, is displaced from the double helix by an identical sequence at the other boundary of the discontinuity. Analysis of the distribution of nonsense codons in the DNA sequence is consistent with other evidence that only the α strand is transcribed. The coding region extends around the circular molecule from 4 map units of gap 1, the map origin, to map position 91, and consists of six long open reading frames. Our findings suggest, but do not prove, that the DNA sequence of the open reading frames is colinear with viral protein sequences. The cistron for the viral coat protein, which is probably synthesized in the form of a precursor, has been situated in coding region IV on the basis of its unusual amino acid composition.  相似文献   

14.
The generalized mismatch repair system of Streptococcus pneumoniae (the Hex system) can eliminate base pair mismatches arising in heteroduplex DNA during transformation or by DNA polymerase errors during replication. Mismatch repair is most likely initiated at nicks or gaps. The present work was started to examine the hypothesis that strand discontinuities arising after removal of uracil by uracil DNA-glycosylase (Ung) can be utilised as strand discrimination signals. We show that mismatch repair efficiency is enhanced 3- to 6-fold when using uracil-containing DNA as donor in transformation. In order to assess the contribution of Ung to nascent strand discrimination for postreplication mismatch repair, we developed a positive selection procedure to isolate S. pneumoniae Ung- mutants. We succeeded in isolating Ung- mutants using this procedure based on chromosomal integration of uracil-containing hybrid DNA molecules. Cloning and characterization of the ung gene was achieved. Comparison of spontaneous mutation rates in strains either proficient or deficient in mismatch and/or uracil repair gave no support to the hypothesis that Ung plays a major role in targeting the Hex system to neosynthesized DNA strands. However Ung activity is responsible for the increased efficiency of mismatch repair observed in transformation with uracil-containing DNA. In addition Ung is involved in repair of bisulfite-treated transforming DNA.  相似文献   

15.
Genomic methylation patterns are established during maturation of primordial germ cells and during gametogenesis. While methylation is linked to DNA replication in somatic cells, active de novo methylation and demethylation occur in post-replicative spermatocytes during meiotic prophase (1). We have examined differentiating male germ cells for alternative forms of DNA (cytosine-5)-methyltransferase (DNA MTase) and have found a 6.2 kb DNA MTase mRNA that is present in appreciable quantities only in testis; in post-replicative pachytene spermatocytes it is the predominant form of DNA MTase mRNA. The 5.2 kb DNA MTase mRNA, characteristic of all somatic cells, was detected in isolated type A and B spermatogonia and haploid round spermatids. Immunobolt analysis detected a protein in spermatogenic cells with a relative mass of 180,000-200,000, which is close to the known size of the somatic form of mammalian DNA MTase. The demonstration of the differential developmental expression of DNA MTase in male germ cells argues for a role for testicular DNA methylation events, not only during replication in premeiotic cells, but also during meiotic prophase and postmeiotic development.  相似文献   

16.
Native newly synthesized DNA from human cells (xeroderma pigmentosum type) irradiated with ultraviolet light releases short pieces of DNA (L-DNA) when incubated with the single-strand specific S1 nuclease. This is not observed in the case of unirradiated cells. Previous experiments had shown that the L-DNA resulted from the action of S1 nuclease upon gaps, i.e., single-stranded DNA discontinuities in larger pieces of double-stranded DNA. We verified that the duplex L-DNA, that arises from the inter-gap regions upon S1 nuclease treatment, has a size which approximates the distance between two pyrimidine dimers on the same strand; this has been observed at different fluences of ultraviolet-light and indicates that the gap is related to or opposite the dimer. A method was devised to measure the size of the gaps. A Poisson distribution analysis of the percentage of the L-DNA produced as a function of S1 nuclease concentration made this possible. 65% of the gaps corresponded to stretches of 1,250 nucleotides and 35% to stretches of 150 nucleotides. These parameters have been considered in the proposition of a model for DNA synthesis on a template containing pyrimidine dimers.  相似文献   

17.
Previously, the activity of DNA polymerase alpha was found in the meiotic prophase I including non-S phase stages, in the basidiomycetes, Coprinus cinereus. To study DNA polymerase alpha during meiosis, we cloned cDNAs for the C. cinereus DNA polymerase alpha catalytic subunit (p140) and C. cinereus primase small subunit (p48). Northern analysis indicated that both p140 and p48 are expressed not only at S phase but also during the leptotene/zygotene stages of meiotic prophase I. In situ immuno-staining of cells at meiotic prophase I revealed a sub population of p48 that does not colocalize with p140 in nuclei. We also purified the pol alpha-primase complex from meiotic cells by column chromatography and characterized its biochemical properties. We found a subpopulation of primase that was separated from the pol alpha-primase complex by phosphocellulose column chromatography. Glycerol gradient density sedimentation results indicated that the amount of intact pol alpha-primase complex in crude extract is reduced, and that a smaller complex appears upon meiotic development. These results suggest that the form of the DNA polymerase alpha-primase complex is altered during meiotic development.  相似文献   

18.
19.
Individual chromosomes are not directly visible within the interphase nuclei of most somatic cells; they can only be seen during mitosis. We have developed a method that allows DNA strands to be observed directly in living cells, and we use it to analyze how mitotic chromosomes form. A fluorescent analogue (e.g., Cy5-dUTP) of the natural precursor, thymidine triphosphate, is introduced into cells, which are then grown on the heated stage of a confocal microscope. The analogue is incorporated by the endogenous enzymes into DNA. As the mechanisms for recognizing and removing the unusual residues do not prevent subsequent progress around the cell cycle, the now fluorescent DNA strands can be followed as they assemble into chromosomes, and segregate to daughters and granddaughters. Movies of such strands in living cells suggest that chromosome axes follow simple recognizable paths through their territories during G2 phase, and that late replicating regions maintain their relative positions as prophase chromosomes form. Quantitative analysis confirms that individual regions move little during this stage of chromosome condensation. As a result, the gross structure of an interphase chromosome territory is directly related to that of the prophase chromosome.  相似文献   

20.
A large DNA-containing body is present in addition to the chromosomes in oocytes of the house cricket Acheta domesticus. Large masses of nucleolar material accumulate at the periphery of the DNA body during the diplotene stage of meiotic prophase I. RNA-DNA hybridization analysis demonstrates that the genes which code for 18S and 28S ribosomal RNA are amplified in the ovary. In situ hybridization indicates that the amplified genes are localized within the DNA body of early prophase cells. As the cells proceed through diplotene the DNA which hybridizes with ribosomal RNA is gradually incorporated into the developing nucleolar mass.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号