首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio cholerae O1 strains isolated from various sources in Japan over the years 1977 through 1987 were examined to confirm the presence or absence of the cholera enterotoxin (CT) gene and production of CT and to determine the kappa-phage type. The CT gene was detected in none of 225 isolates from natural waters but was present in all of the 10 isolates from environmental waters implicated in domestic cholera cases, in 64 strains (26.6%) of the 241 isolates from imported seafoods, in 43 strains (95.6%) of the 45 isolates from domestic cholera cases, and in 119 strains (93.7%) of the 127 isolates from imported cholera cases. The results suggest that the CT gene-positive strains of V. cholerae O1 have been imported into Japan through seafoods and/or by travelers. Sporadic cholera cases have resulted in contamination of the surrounding environment, but the CT gene-positive strains may not have persisted in natural waters to serve as a reservoir for epidemic cholera. The commercially available VET-RPLA kit (a latex agglutination kit for immunological detection of CT) detected production of CT in all of the CT gene-positive strains, indicating that there was no silent CT gene in the test strains. There was a strong correlation between the kappa-phage type and the presence or absence of the CT gene, suggesting a significant clonal difference between CT gene-positive and -negative strains. Five CT gene-negative strains isolated from imported cholera cases (travelers with mild diarrhea) induced a considerable amount of fluid accumulation in rabbit and/or suckling mouse intestines, indicating production of an enterotoxic factor(s) other than CT.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Abstract Two strains of cholera toxin (CT) gene-positive Vibrio cholerae O1, Ogawa, isolated from patients with diarrhoea and the hypertoxigenic V. cholerae O1, Inaba (569B), were found to produce the new cholera toxin that has earlier been demonstrated to be elaborated by CT gene-negative human and environmental isolates of V. cholerae O1. The CT gene-positive strains produce the new cholera toxin simultaneously with CT, indicating that they contain the gene coding for the new cholera toxin in addition to that of CT.  相似文献   

3.
A collection of 521 environmental isolates of Vibrio cholerae which were previously examined by the suckling mouse assay and found to be negative for the heat-stable enterotoxin NAG-ST were reassessed by a recently developed DNA probe for NAG-ST. A total of 12 (2.3%) of the isolates hybridized with the NAG-ST probe. By using a cholera toxin (CT) DNA probe, the CT gene was detected in six of the strains in the collection, although none of the isolates of V. cholerae non-O1 hybridized with both of the toxin probes. All of the NAG-ST and CT probe-positive strains were hemolysin positive. Thirty-fold-concentrated supernatants of the three representative NAG-ST DNA probe-positive V. cholerae non-O1 strains gave positive fluid accumulation ratios in the suckling mouse assay even after heating (100 degrees C for 5 min) and also inhibited the binding of a NAG-ST monoclonal antibody to the bound NAG-ST in a competitive enzyme-linked immunosorbent assay (ELISA). Likewise, all six CT probe-positive V. cholerae non-O1 strains produced in vitro CT when examined by the CT bead ELISA. HindIII digest patterns of chromosomal DNA from the representative NAG-ST gene-positive strains were visually indistinguishable. Between the groups of NAG-ST probe-positive strains examined, there was a variation in the hybridizable fragments, with one group of strains exhibiting a hybridizable fragment similar to that of the NRT 36 reference strain; a smaller HindIII fragment hybridized with the NAG-ST probe in the other group of strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
A collection of 521 environmental isolates of Vibrio cholerae which were previously examined by the suckling mouse assay and found to be negative for the heat-stable enterotoxin NAG-ST were reassessed by a recently developed DNA probe for NAG-ST. A total of 12 (2.3%) of the isolates hybridized with the NAG-ST probe. By using a cholera toxin (CT) DNA probe, the CT gene was detected in six of the strains in the collection, although none of the isolates of V. cholerae non-O1 hybridized with both of the toxin probes. All of the NAG-ST and CT probe-positive strains were hemolysin positive. Thirty-fold-concentrated supernatants of the three representative NAG-ST DNA probe-positive V. cholerae non-O1 strains gave positive fluid accumulation ratios in the suckling mouse assay even after heating (100 degrees C for 5 min) and also inhibited the binding of a NAG-ST monoclonal antibody to the bound NAG-ST in a competitive enzyme-linked immunosorbent assay (ELISA). Likewise, all six CT probe-positive V. cholerae non-O1 strains produced in vitro CT when examined by the CT bead ELISA. HindIII digest patterns of chromosomal DNA from the representative NAG-ST gene-positive strains were visually indistinguishable. Between the groups of NAG-ST probe-positive strains examined, there was a variation in the hybridizable fragments, with one group of strains exhibiting a hybridizable fragment similar to that of the NRT 36 reference strain; a smaller HindIII fragment hybridized with the NAG-ST probe in the other group of strains.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Of 97 strains of Vibrio cholerae isolated from various seafoods in Malaysia in 1998 and 1999, 20 strains carried the ctx gene and produced cholera toxin. Fourteen, one, and five of these toxigenic strains belonged to the O139, O1 Ogawa, and rough serotypes, respectively. The rough strains had the rfb gene of the O1 serotype. The toxigenic strains varied in their biochemical characteristics, the amount of cholera toxin produced, their antibiograms, and the presence or absence of the pTLC plasmid sequence. DNA fingerprinting analysis by arbitrarily primed PCR, ribotyping, and a pulsed-field gel electrophoresis method classified the toxigenic strains into 3, 7, and 10 types, respectively. The relatedness of these toxigenic strains to clinical strains isolated in other countries and from international travelers was examined by using a dendrogram constructed from the pulsed-field gel electrophoresis profiles. The results of the examination of the antibiogram and the possession of the toxin-linked cryptic plasmid were consistent with the dendrogram-based relatedness: the O139 strains isolated from Malaysian seafoods could be separated into two groups that appear to have been introduced from the Bengal area independently. The rough strains of Malaysian seafood origin formed one group and belonged to a cluster unique to the Thailand-Malaysia-Laos region, and this group may have persisted in this area for a long period. The single O1 Ogawa strain detected in Malaysian seafood appears to have an origin and route of introduction different from those of the O139 and the rough strains.  相似文献   

6.
Vibrio cholerae strains isolated from patient, food and environmental sources in Taiwan and reference V. cholerae strains were examined by repetitive element sequence-based PCR (rep-PCR). Specimens from broth cultures were used directly in the PCR mixture with three different primers. The PCR fingerprinting profiles of toxigenic 01 isolates were not only homogeneous with primers from enterobacterial repetitive intergenic consensus (ERIC) sequences, but also allowed the differentiation from non-toxigenic O1 and non-O1 strains. Toxigenic 01 strains were further differentiated into El Tor and classical biotypes with primers designed from ERIC-related sequences of V. cholerae. Primers from the other V. cholerae repetitive DNA sequences, VCR, separated toxigenic El Tor strains into six groups and a unique pattern was also obtained in 16 isolates from imported cases of cholera and imported seafood. The results indicated that rep-PCR can be used to identify and differentiate different toxigenic 01, non-toxigenic 01 and non-O1 V. cholerae isolates.  相似文献   

7.
A collection of Vibrio cholerae non-O1 isolated from the aquatic environs of Calcutta, a cholera-hyperendemic area, were examined for the production of cholera toxin (CT), Shiga-like toxins (Vero toxins), heat-stable enterotoxin, and hemolysins. Two (0.5%) V. cholerae non-O1 isolates produced CT. The DNA from both these isolates also hybridized with a DNA probe containing sequences encoding the A subunit of CT. None of the strains produced Shiga-like toxins or heat-stable enterotoxin. Hemolytic activity was observed in 89.7% of the strains, of which 36.1% exhibited biological activity in the suckling mouse. However, none of them produced a hemolysin that cross-reacted with the thermostable direct hemolysin of Vibrio parahaemolyticus. It appears from this study that a small percentage of environmental V. cholerae non-O1 strains do possess the potential for causing cholera-like diarrhea.  相似文献   

8.
A collection of Vibrio cholerae non-O1 isolated from the aquatic environs of Calcutta, a cholera-hyperendemic area, were examined for the production of cholera toxin (CT), Shiga-like toxins (Vero toxins), heat-stable enterotoxin, and hemolysins. Two (0.5%) V. cholerae non-O1 isolates produced CT. The DNA from both these isolates also hybridized with a DNA probe containing sequences encoding the A subunit of CT. None of the strains produced Shiga-like toxins or heat-stable enterotoxin. Hemolytic activity was observed in 89.7% of the strains, of which 36.1% exhibited biological activity in the suckling mouse. However, none of them produced a hemolysin that cross-reacted with the thermostable direct hemolysin of Vibrio parahaemolyticus. It appears from this study that a small percentage of environmental V. cholerae non-O1 strains do possess the potential for causing cholera-like diarrhea.  相似文献   

9.
A chemotaxonomic study was carried out on 31 strains of non-O1 Vibrio cholerae bio-serogroup Hakata, isolated in Japan, which possesses the Inaba antigen C of O1 V. cholerae. On the basis of the compositional sugar pattern of the polysaccharide portion of their lipopolysaccharides, the 23 strains isolated from the environment were separated into two groups, one (20 strains) containing mannose, glucose, fructose, L-glycero-D-mannoheptose, glucosamine, perosamine, quinovosamine, and an unidentified amino sugar AS, and the other (3 strains) containing two additional sugars, galactose and a trace amount of galactosamine. All of the eight strains isolated from imported seafoods belonged to the former group.  相似文献   

10.
Four hundred ninety seven strains of Vibrio cholerae selected from isolates in Romania in the last decade 1990-1999 were investigated for antibiotic resistance and for classical and putative virulence factors. V. cholerae O1 strains predominated in clinical cases and non O1 strains in the environment, excepting in 1992 when non O1 strains were frequent in clinical and environmental sources. V. cholerae O1 strains previously susceptible to tetracycline acquired clinically significant resistance to this drug during 1993-1994, but this trend was reversed in 1995, following the introduction of nalidixic acid in cholera treatment in 1994. V. cholerae O1 and non O1 clinical isolates acquired simultaneous resistance to the vibriostatic agent O/129 and cotrimoxazole during 1994-1995. High levels of intrinsic resistance to multiple antibiotics were exhibited by all strains examined. The presence of cholera toxin (CT) was concentrated in clinical V. cholerae O1 strains and was substituted in clinical non O1 strains by four putative virulence markers (Kanagawa haemolysin, slime, lipase, and colonial opacity). Colonial opacity (30%) was present only in clinical isolates of V. cholerae non O1. Pigmentogenesis (11.7%) has present only in environmental sources. Antibioresistance profiles differ for V. cholerae O1 and non O1 strains with respect to their source of isolation. This aspect may imply a role in virulence and survival of V. cholerae in the natural environment where they may serve as a reservoir of virulence and multiple drug resistance genes.  相似文献   

11.
Distribution of virulence-associated genes in Vibrio mimicus was studied including the toxin genes ctxA, tdh, st and vmh and the genes necessary for regulation of toxin production, toxR, toxS, toxT, tcpA and tcpP. Approximately half of clinical V. mimicus isolates possessed one or more genes encoding V. cholerae enterotoxic factors such as ctxA, tdh and st. All of the clinical and environmental isolates possessed vmh encoding V. mimicus hemolysin (VMH). The ctxA encoding cholera toxin was detected in only 2 strains, 5% of the clinical isolates. Furthermore, there were very few strains possessing tcpP and toxT needed for the expression of ctxA. These results may suggest that VMH is a more important pathogenic factor than well recognized toxins such as cholera toxin (CT) in V. mimicus infection.  相似文献   

12.
Although thermostable direct hemolysin (TDH)-producing Vibrio parahaemolyticus has caused many infections in Asian countries, the United States, and other countries, it has been difficult to detect the same pathogen in seafoods and other environmental samples. In this study, we detected and enumerated tdh gene-positive V. parahaemolyticus in Japanese seafoods with a tdh-specific PCR method, a chromogenic agar medium, and a most-probable-number method. The tdh gene was detected in 33 of 329 seafood samples (10.0%). The number of tdh-positive V. parahaemolyticus ranged from <3 to 93/10 g. The incidence of tdh-positive V. parahaemolyticus tended to be high in samples contaminated with relatively high levels of total V. parahaemolyticus. TDH-producing strains of V. parahaemolyticus were isolated from 11 of 33 tdh-positive samples (short-necked clam, hen clam, and rock oyster). TDH-producing strains of V. parahaemolyticus were also isolated from the sediments of rivers near the coast in Japan. Representative strains of the seafood and sediment isolates were examined for the O:K serovar and by the PCR method specific to the pandemic clone and arbitrarily primed PCR and pulsed-field gel electrophoresis techniques. The results indicated that most O3:K6 tdh-positive strains belonged to the pandemic O3:K6 clone and suggested that serovariation took place in the Japanese environment.  相似文献   

13.
A collection of ten strains of Vibrio cholerae O139, comprising six isolates from Eichhornia crassipes, two from water of the River Ganga, and one each from a well and a hand pump, were characterized. All the strains carried the CTX genetic element (ctxA, zot, and ace) except for the st gene and carried structural and regulatory genes for toxin-coregulated pilus (tcpA, tcpI, and toxR), adherence factor (ompU), and accessory colonization factor (acfB); all produced cholera toxin (CT). These strains were resistant to trimethoprim, sulfamethoxazole, streptomycin, and to the vibriostatic agent pteridine. Results obtained by ribotyping and enterobacterial repetitive intergenic consensus sequence-PCR fingerprint analysis indicate that multiple clones of toxigenic-pathogenic V. cholerae O139 were present in the aquatic environment.  相似文献   

14.
Eroshenko GA  Smirnova NI 《Genetika》2004,40(4):445-453
New data were obtained concerning cell sensitivity of pathogenic strains of cholera vibrions, which belong to the serogroup O1 of classical biovar, to the temperate bacteriophage K139, the native host of which is Vibrio cholerae O139. Molecular-genetic and biochemical studies showed that phage 139 integrated into the chromosome of strains V. cholerae O1 can change their toxigenic properties. A change in the production of cholera toxin (CT) in lysogens is associated both with an increase in the activity of the toxR regulatory gene and with a distortion of the structure of a chromosomal DNA region that contains a copy of the operon ctxAB encoding CT biosynthesis.  相似文献   

15.
Abstract The extent of contamination of a freshwater lake with Vibrio cholerae 0139 Bengal and the toxigenicity of all the V. cholerae isolates recovered during the period of the study were examined during and after an explosive outbreak of 0139 cholera in Calcutta. Strains biochemically characterized as V. cholerae could be isolated throughout the period of study examined from the freshwater lake samples. Most probable number of V. cholerae belonging to the 0139 serogroup in surface waters was 3 to 4 per 100 ml during major part of the study but isolation of this serogroup from sediment and plankton samples was infrequent. Of the total of 150 strains recovered, 23 (15.3%) agglutinated with the 0139 antiserum while the remaining belonged to the non-O1 non-O139 serogroups. None of the strains agglutinated with the O1 antiserum. All the 23 strains of V. cholerae O139 produced cholera toxin while 7.9% of the 127 non-O1 non-O139 strains also produced cholera toxin. Resistance to ampilicillin, furazolidone and streptomycin was encountered among strains belonging to both V. cholerae O139 and V. cholerae non-O1 non-O139 strains, but the percentage of resistant strains in the former was much higher than in the latter. During this cholera epidemic, possibly due to the introduction of large numbers of toxigenic V. cholerae such as the O139 serogroup, there was an increase in the number of toxigenic vibrios among the innocuous aquatic residents. This presumably occured through genetic exchange and, if substantiated, could play an important role in the re-emergence of epidemics.  相似文献   

16.
Pathogenic strains of Vibrio cholerae O139 possess the cholera toxin A subunit (ctxA) gene as well as the gene for toxin co-regulated pili (tcpA). We report the isolation of a ctxA-negative, tcpA-negative V. cholerae O139 strain (INDREI) from a patient in Mexico diagnosed with gastrointestinal illness. Certain phenotypic characteristics of this strain were identical to those of V. cholerae O1 biotype El Tor. Unlike ctxA-positive V. cholerae O139 strains, this strain was sensitive to a wide panel of antibiotics, including ampicillin, chloramphenicol, ciprofloxacin, gentamicin, furazolidone, nalidixic acid, nitrofurantoin, tetracycline, trimethoprim-sulfamethoxazole, and streptomycin, but was resistant to polymyxin B. Ribotype and pulsed-field gel electrophoresis profiles of INDRE1 differed from those of ctxA-positive V. cholerae O139 and other V. cholerae strains. Phenotypic characteristics of the Mexico strain were similar to those reported for V. cholerae O139 isolates from Argentina and Sri Lanka.  相似文献   

17.
DNA colony hybridization with a polynucleotide clonal DNA probe for heat-stable enterotoxin of Vibrio cholerae non-O1 (NAG-ST) was used to screen 197 isolates of V. cholerae O1. Under stringent hybridizing and washing conditions, one strain (GP156) reacted with the probe. The concentrated supernatant from V. cholerae O1 GP156, heated at 100 degrees C for 5 min, elicited fluid accumulation in the suckling mice and that could be completely neutralized by an anti-NAG-ST monoclonal antibody (mAb2F). The preparation from V. cholerae O1 GP156 also inhibited the binding of mAb2F to NAG-ST in a competitive ELISA. V. cholerae O1 GP156 was confirmed to possess a gene encoding cholera toxin (CT). These results indicate that a heat-stable enterotoxin is produced by certain strains of CT-producing V. cholerae O1.  相似文献   

18.
The study of 27 V. cholerae strains, isolated from cholera patients and found to be hemolytically inactive, with a view to establish their capacity for the production of cholera toxin has revealed that 4 strains (V. cholerae cholerae Dacca 35, V. cholerae cholerae Dacca 3, V. cholerae cholerae B1307, V. cholerae cholerae J89) produce this protein. The quantitative determination of enterotoxin has been made with the use of GM1 ELISA technique. Strain Dacca 35 has been found to be highly toxigenic and, as regards the amount of exotoxin it produces, no different from V. cholerae cholerae strain 569B, a well-known producer of cholera toxin. In strain Dacca 35 correlation between the capacity of the cells for toxin production and the morphology of colonies has been established. The study has revealed that the chromosome of strain Dacca 35 contains two copies of gene vctAB responsible for the synthesis of cholera toxin.  相似文献   

19.
Abstract The distribution of the zot gene that encodes the zonula occludens toxin, a newly described toxin of Vibrio cholerae , among clinical, environmental and food isolates of V. cholerae 01 and non-01 was investigated. Both the zot gene and the ctx gene that encode cholera toxin were found in 247 of 257 clinical strains and 62 of 415 environmental or food isolates of V. cholerae 01. The zot gene, but not the ctx gene was found in 37 strains (one clinical strain and 36 environmental or food isolates). In addition, two of 31 clinical strains and six of 98 environmental or food isolates of V. cholerae non-01 possessed both the zot gene and the ctx gene. These results demonstrated the predominantly concurrent occurrence of the zot gene and ctx genes among strains of V. cholerae 01 which suggests a possible synergistic role of ZOT in the causation of acute dehydrating diarrhea produced by V. cholerae 01.  相似文献   

20.
The evolution of the genome of the pathogenic agent of the seventh cholera pandemia Vibrio cholerae eltor biovariant was thought to occur by acquiring not only structural genes of virulence but also regulatory systems as a result of horizontal transfer events. The polymerase chain reaction revealed the presence of the following regulatory genes that control the virulence gene expression in the chromosome of pre-pandemic and pandemic strains of cholera vibrios eltor: toxR, toxT, tcpP, tcpH, luxS, luxO, crp, vicH, pepA. The avirulent V. cholerae strain ATCC14033 isolated in 1910 (hypothetical predecessor of the cholera eltor agent) was shown to be lacking the regulatory genes toxT, tcpP, tcpHlocalized in the pathogenicity island VPI-1, and to be capable of realizing positive control over the expression of the virulence genes involved in the ToxR regulon. The virulent strains isolated from cholera patients during the local cholera outbreak in Indonesia in 1937 did not differ from the strains that caused cholera eltor pandemic in 1961. The strains had identical content of the regulatory genes tested. Only one strain of the four isolates studied contained no tcpPgene. Two key regulatory genes, toxR and toxT, were sequenced in all the isolates. The toxR nucleotide sequence of three pre-pandemic strains was shown to be indistinguishable from that of the pandemic isolates. On the other hand, the clinical strain MAK757 isolated prior to the emergence of the epidemic demonstrated an altered nucleotide sequence in its toxR gene. Experiments with the intra-intestinal challenge of suckling rabbits were indicative of similar virulence levels for the pre-pandemic and pandemic clinical strains. These results may serve as the evidence of the in vivo activity of the pre-pandemic strains of the toxT, tcpH, and tcpP positive regulatory genes that acquired in V. cholerae during the evolutionary process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号