首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two-component system (TCS) composed of a pair of a sensor histidine kinase and a response regulator, allows bacteria to sense signals and respond to changes in their environment through specific gene activation or repression. The present study examined TCS in the obligatory intracellular bacteria Ehrlichia chaffeensis and Anaplasma phagocytophilum, that cause human monocytic ehrlichiosis (HME) and human granulocytic anaplasmosis (HGA) respectively. The genomes of E. chaffeensis and A. phagocytophilum were each predicted to encode three pairs of TCSs. All six genes encoding three histidine kinases and three response regulators were expressed in both E. chaffeensis and A. phagocytophilum cultured in human leukocytes. Pretreatment of host cell-free E. chaffeensis or A. phagocytophilum with closantel, an inhibitor of histidine kinases, completely blocked the infection of host cells. Treatment of infected cells 1 day post infection with closantel cleared infection in dose-dependent manner. All six genes in E. chaffeensis were cloned, recombinant proteins were expressed, and polyclonal antibodies were produced. Double immunofluorescence labelling and Western blot analysis revealed that all six proteins were expressed in cell culture. Autokinase activities of the three recombinant histidine kinases from E. chaffeensis were inhibited by closantel in vitro. A number of E. chaffeensis genes, including the six TCS genes, were downregulated within 5-60 min post closantel treatment. These results suggest that these TCSs play an essential role in infection and survival of E. chaffeensis and A. phagocytophilum in human leukocytes.  相似文献   

2.
We examined the impact of environmental characteristics, such as habitat type, topographic exposure and presence of leaf litter, on the abundance of Ixodes pacificus ticks infesting the western fence lizard (Sceloporus occidentalis) at the University of California Hopland Research and Extension Center (HREC), Mendocino County, California. A total of 383 adult lizards were slip-noosed and examined for tick infestation in April and May 1998. At least 94% of the lizards were infested by ticks and at least 20% of the females and 33% of the males carried > 15 ticks. This intensive utilization of western fence lizards (which do not serve as natural reservoirs for Lyme disease spirochetes) by subadult ticks, is probably the primary reason for the low prevalence of infection with Borrelia burgdorferi in I. pacificus nymphs and adults previously recorded at the HREC. Tick loads were higher on male than female lizards. Also, male lizards were generally more heavily infested in late April than in late May. The prevalence of tick infestation exceeded 88% in all habitat types but males collected in woodland and grass/woodland edges had higher tick loads than those collected in open grassland. Male lizards captured in open, exposed grassland tended to carry heavier tick loads in northern/eastern, as compared to southern/western, exposures, and when leaf litter was present.  相似文献   

3.
The coevolutionary history of Ixodes spp. ticks, the obligately tick-transmitted bacterial pathogen Anaplasma phagocytophilum, and its various rodent reservoir hosts world-wide is not known. According to coevolution theory, the most recently evolved of tick-bacterial complexes could have difficulty maintaining A. phagocytophilum in nature, because transmissibility has not been efficiently maximized. This study was intended to examine the phylogeographic history of I. ricinus-subgroup ticks and A. phagocytophilum, provide an estimate for the date of the divergence of A. marginale and A. phagocytophilum, and evaluate whether there is correspondence between tick and Anaplasma spp. trees. Analysis of Ixodes spp. ticks showed a New World clade consisting of I. scapularis and I. pacificus, European I. ricinus as a sister group to this clade, and Asian I. persulcatus as basal. Of the three A. phagocytophilum genes evaluated, the most resolution was provided by the ankA gene. ankA sequences formed an Old World clade with eastern North America strains as a sister clade. California strains were highly diverse and did not form a clade. Base substitution rates were very comparable along both A. marginale and A. phagocytophilum lineages. Based on 16S rDNA analysis, maximum and minimum divergence times of A. phagocytophilum and A. marginale were calculated to be 78,296,703 and 43,415,708 years, respectively. If A. phagocytophilum did closely coevolve with specific I. ricinus-subgroup tick species, then A. phagocytophilum strains could have specialized on local tick species and optimized local infectivity in the Old World and eastern US. However, lack of absolute resolution of tick trees and conflicting prevalence data (with low prevalence in Asia and western North America) preclude us from inferring a tight coevolutionary relationship of tick species from this phylogeographic analysis.  相似文献   

4.
In order to investigate the prevalence of tick-borne infectious agents among ticks, ticks comprising five species from two genera (Hemaphysalis spp. and Ixodes spp.) were screened using molecular techniques. Ticks (3,135) were collected from small wild-caught mammals or by dragging/flagging in the Republic of Korea (ROK) and were pooled into a total of 1,638 samples (1 to 27 ticks per pool). From the 1,638 tick samples, species-specific fragments of Anaplasma phagocytophilum (1 sample), Anaplasma platys (52 samples), Ehrlichia chaffeensis (29 samples), Ehrlichia ewingii (2 samples), Ehrlichia canis (18 samples), and Rickettsia rickettsii (28 samples) were amplified by PCR assay. Twenty-one pooled and individual tick samples had mixed infections of two (15 samples) or three (6 samples) pathogens. In addition, 424 spleen samples from small captured mammals (389 rodents, 33 insectivores, and 2 weasels) were screened for selected zoonotic pathogens. Species-specific DNA fragments of A. phagocytophilum (110 samples), A. platys (68 samples), E. chaffeensis (8 samples), E. ewingii (26 samples), E. canis (51 samples), and Rickettsia sp. (22 samples) were amplified by PCR assay. One hundred thirty small mammals had single infections, while 4, 14, and 21 striped field mice (Apodemus agrarius) had mixed infections of four, three, and two pathogens, respectively. Phylogenetic analysis based on nucleotide sequence comparison also revealed that Korean strains of E. chaffeensis clustered closely with those from China and the United States, while the Rickettsia (rOmpA) sequences clustered within a clade together with a Chinese strain. These results suggest that these agents should be considered in differential diagnosis while examining cases of acute febrile illnesses in humans as well as animals in the ROK.  相似文献   

5.
Epidemic typhus, caused by Rickettsia prowazekii, is maintained in a southern flying squirrel (Glaucomys volans) sylvatic cycle in the southeastern United States. The northern flying squirrel (Glaucomys sabrinus) has not been previously associated with R. prowazekii transmission. A second rickettsial pathogen, Anaplasma phagocytophilum, infects dusky-footed woodrats (Neotoma fuscipes) and tree squirrels in northern California. Because northern flying squirrels or their ectoparasites have not been tested for these rickettsial pathogens, serology and polymerase chain reaction (PCR) were used to test 24 northern flying squirrels for R. prowazekii and A. phagocytophilum infection or antibodies. Although there was no evidence of exposure to R. prowazekii, we provide molecular evidence of A. phagocytophilum infection in one flying squirrel; two flying squirrels also were seropositive for this pathogen. Fleas and ticks removed from the squirrels included Ceratophyllus ciliatus mononis, Opisodasys vesperalis, Ixodes hearlei, Ixodes pacificus, and Dermacentor paramapertus.  相似文献   

6.
Amblyomma americanum is an aggressive ixodid tick that has been implicated as a vector for several bacterial agents. Among these is Ehrlichia chaffeensis, which causes human monocytic (or monocytotropic) ehrlichiosis. In this study, experimental tick transmission of E. chaffeensis from infected lone star ticks to deer was revisited, and the question of whether it would be possible to re-isolate the organism from deer was asked, because this had not been done previously. Here, we were able to transmit a wild strain of E. chaffeensis from acquisition-fed lone star ticks to white-tailed deer. Ehrlichia chaffeensis was re-isolated from one white-tailed deer on multiple days during the infection and from another deer on one day during the infection. Peak rickettsemias for E. chaffeensis-infected deer were 17 DPI with acquisition-fed ticks and 14 DPI with needle-inoculated deer. This study supports the role of the lone star tick and white-tailed deer as vector and reservoir host for E. chaffeensis, demonstrating culture re-isolation of E. chaffeensis in deer infected by experimental tick transmission for the first time.  相似文献   

7.
Human anaplasmosis is an emerging tick-borne disease in the United States, but few studies of the causative agent, Anaplasma phagocytophilum, have been conducted in southeastern states. The aim of this study was to determine if A. phagocytophilum is present in small mammals and ticks in northeast Florida. Polymerase chain reaction assays designed to amplify portions of the major surface protein 2 gene (p44), 16S rDNA, and groESL operons were used to test rodent blood and tick DNA samples for the presence of A. phagocytophilum. Positive samples were confirmed by DNA sequence analysis. Anaplasma phagocytophilum DNA was detected in less than 5% of cotton mice and 45% of cotton rats from two sites in northeast Florida. Anaplasma phagocytophilum DNA was also confirmed in 1.3% of host-seeking adult Ixodes scapularis tested and 2.7% of host-seeking adult Amblyomma americanum. This report describes the first DNA sequence data confirming strains of A. phagocytophilum in rodents and ticks in Florida. The DNA sequences of the msp2, 16S rDNA, and groESL gene fragments obtained in this study were highly similar to reference strains of human pathogenic strains of A. phagocytophilum. These findings suggest that A. phagocytophilum is present and established among some small mammal species in northeast Florida. Although the infection prevalence was low in the total number of ticks tested, the presence of A. phagocytophilum in two human biting tick species, one of which is a known competent vector, suggests that humans in this region may be at risk of granulocytic anaplasmosis caused by this pathogen.  相似文献   

8.
Rio Grande wild turkeys (Meleagris gallopavo intermedia) were evaluated as potential hosts of ixodid ticks, lice, and Lyme disease spirochetes (Borrelia burgdorferi sensu lato [s.l.]) in three state parks in Sonoma County, California, USA, during 2003 and 2004. In total, 113 birds were collected, 50 (44.2%) of which were found to be infested by 361 ixodid ticks representing three species: the western black-legged tick (Ixodes pacificus, n=248), the rabbit tick (Haemaphysalis leporispalustris, n=112), and one American dog tick (Dermacentor variabilis). Year-round the prevalence of all ticks combined was unrelated to the age or sex of turkeys, and the prevalence of infestation by I. pacificus (35.4%) was significantly higher than it was for either H. leporispalustris (14.2%) or D. variabilis (0.9%). The proportion of the two prevalent tick species differed significantly by life stage with 86.3% of the I. pacificus and 82.1% of the H. leporispalustris enumerated being nymphs and larvae, respectively. Three species of lice were collected, including the chicken body louse Menacanthus stramineus (12.5% of total), Chelopistes meleagridis (37.5% of total), and Oxylipeurus polytrapezius (50% of total). The records for all three ticks are the first ever from wild turkeys, and those for the lice are the first from this host in the far-western United States. Wild turkeys potentially were exposed to the feeding activities of I. pacificus nymphs infected with B. burgdorferi s.l. as 15% of host-seeking nymphs (n=200) collected in woodlands used by turkeys as roosting or foraging areas were infected mainly with B. burgdorferi sensu stricto (s.s.). However, only one (1%) of 90 turkey blood specimens tested by PCR contained B. burgdorferi s.s., and four in vitro, complement-protein assays demonstrated that domestic turkey serum is moderately bacteriolytic for this spirochete. Taken together, these findings indicate that wild turkeys are important avian hosts of I. pacificus nymphs, but they appear to be inconsequential hosts of B. burgdorferi s.l.  相似文献   

9.
From 2000 to 2004, ticks were collected by dragging a blanket in four habitat areas in The Netherlands: dunes, heather, forest, and a city park. Tick densities were calculated, and infection with Borrelia burgdorferi and Anaplasma and Ehrlichia species was investigated by reverse line blot analysis. The lowest tick density was observed in the heather area (1 to 8/100 m2). In the oak forest and city park, the tick densities ranged from 26 to 45/100 m2. The highest tick density was found in the dune area (139 to 551/100 m2). The infection rates varied significantly for the four study areas and years, ranging from 0.8 to 11. 5% for Borrelia spp. and 1 to 16% for Ehrlichia or Anaplasma (Ehrlichia/Anaplasma) spp. Borrelia infection rates were highest in the dunes, followed by the forest, the city park, and heather area. In contrast, Ehrlichia/Anaplasma was found most often in the forest and less often in the city park. The following Borrelia species were found: Borrelia sensu lato strains not identified to the species level (2.5%), B. afzelii (2.5%), B. valaisiana (0.9%), B. burgdorferi sensu stricto (0.13%), and B. garinii (0.13%). For Ehrlichia/Anaplasma species, Ehrlichia and Anaplasma spp. not identified to the species level (2.5%), Anaplasma schotti variant (3.5%), Anaplasma phagocytophilum variant (0.3%), and Ehrlichia canis (0.19%) were found. E. canis is reported for the first time in ticks in The Netherlands in this study. Borrelia lusitaniae, Ehrlichia chaffeensis, and the human granylocytic anaplasmosis agent were not detected. About 1.6% of the ticks were infected with both Borrelia and Ehrlichia/Anaplasma, which was higher than the frequency predicted from the individual infection rates, suggesting hosts with multiple infections or a possible selective advantage of coinfection.  相似文献   

10.
Forty-seven mountain lions (Puma concolor) collected year-round in 1996 to 1998 from the Sierra Nevada foothills, the northern coast ranges, and in Monterey County (California, USA) were examined for infestation with Ixodes pacificus and Dermacentor variabilis ticks. Ticks were found predominantly in winter and spring. The seroprevalence of granulocytic ehrlichiae (GE) antibodies (Ehrlichia equi or the agent of human granulocytic ehrlichiosis) was 17% and the PCR-prevalence of DNA characteristic of GE in blood was 16%. There were eight polymerase chain reaction (PCR)-positive but seronegative mountain lions, one that was PCR-positive and seropositive, and eight that were PCR-negative and seropositive. Nineteen percent of engorged tick pools from mountain lions were PCR-positive. Because mountain lions inhabit tick-infested habitat and are frequently bitten by I. pacificus, surveillance for GE antibodies and DNA in mountain lions and other vertebrate hosts may be useful as indicators for geographical regions in which humans are at risk of GE infection.  相似文献   

11.
Ehrlichia chaffeensis and Ehrlichia canis are tick-transmitted rickettsial pathogens that cause human and canine monocytic ehrlichiosis respectively. We tested the hypothesis that these pathogens express unique proteins in response to their growth in vertebrate and tick host cells and that this differential expression is similar in closely related Ehrlichia species. Evaluation of nine E. chaffeensis isolates and one E. canis isolate demonstrated that protein expression was host cell-dependent. The differentially expressed proteins included those from the p28/30-Omp multigene locus. E. chaffeensis and E. canis proteins expressed in infected macrophages were primarily the products of the p28-Omp 19 and 20 genes or their orthologues. In cultured tick cells, E. canis expressed only the p30-10 protein, an orthologue of the E. chaffeensis p28-Omp 14 protein which is the only protein expressed by E. chaffeensis propagated in cultured tick cells. The expressed Omp proteins were post-translationally modified to generate multiple molecular forms. E. chaffeensis gene expression from the p28/30-Omp locus was similar in tick cell lines derived from both vector (Amblyomma americanum) and non-vector (Ixodes scapularis) ticks. Differential expression of proteins within the p28/p30-Omp locus may therefore be vital for adaptation of Ehrlichia species to their dual host life cycle.  相似文献   

12.
Liu L  Narasimhan S  Dai J  Zhang L  Cheng G  Fikrig E 《EMBO reports》2011,12(11):1196-1203
Ixodes ticks harbour several human pathogens belonging to the order Rickettsiales, including Anaplasma phagocytophilum, the agent of human anaplasmosis. When ticks feed on A. phagocytophilum-infected mice, the pathogen enters the ticks' gut. The bacteria then migrate from the gut to infect the salivary glands of the ticks and are transmitted to the next host via the saliva. The molecular mechanisms that enable the migration of A. phagocytophilum from the gut to the salivary glands are poorly understood. Here we show that a secreted tick protein, P11, is important in this process. We show that P11 enables A. phagocytophilum to infect tick haemocytes, which are required for the migration of A. phagocytophilum from the gut to the salivary glands. Silencing of p11 impaired the A. phagocytophilum infection of tick haemocytes in vivo and consequently decreased pathogen infection of the salivary glands. In vitro experiments showed that P11 could bind to A. phagocytophilum and thus facilitate its infection of tick cells. This report provides new insights into A. phagocytophilum infection of ticks and reveals new avenues to interrupt the life cycle of Anaplasma and related Rickettsial pathogens.  相似文献   

13.
Ehrlichia chaffeensis, transmitted from Amblyomma americanum ticks, causes human monocytic ehrlichiosis. It also infects white-tailed deer, dogs and several other vertebrates. Deer are its reservoir hosts, while humans and dogs are incidental hosts. E. chaffeensis protein expression is influenced by its growth in macrophages and tick cells. We report here infection progression in deer or dogs infected intravenously with macrophage- or tick cell-grown E. chaffeensis or by tick transmission in deer. Deer and dogs developed mild fever and persistent rickettsemia; the infection was detected more frequently in the blood of infected animals with macrophage inoculum compared to tick cell inoculum or tick transmission. Tick cell inoculum and tick transmission caused a drop in tick infection acquisition rates compared to infection rates in ticks fed on deer receiving macrophage inoculum. Independent of deer or dogs, IgG antibody response was higher in animals receiving macrophage inoculum against macrophage-derived Ehrlichia antigens, while it was significantly lower in the same animals against tick cell-derived Ehrlichia antigens. Deer infected with tick cell inoculum and tick transmission caused a higher antibody response to tick cell cultured bacterial antigens compared to the antibody response for macrophage cultured antigens for the same animals. The data demonstrate that the host cell-specific E. chaffeensis protein expression influences rickettsemia in a host and its acquisition by ticks. The data also reveal that tick cell-derived inoculum is similar to tick transmission with reduced rickettsemia, IgG response and tick acquisition of E. chaffeensis.  相似文献   

14.
In the far-western United States, the bacteria that cause Lyme disease (Borrelia burgdorferi, Bb) and human granulocytic anaplasmosis (Anaplasma phagocytophilum, Ap) are transmitted by the western black-legged tick (Ixodes pacificus). In a dense woodland, human behaviors involving contact with wood were recently found to pose greater risk for encountering I. pacificus nymphs than behaviors entailing exclusive exposure to leaf litter. A four-year follow-up study was undertaken in the same woodland and, as a comparison area in one year only, in a nearby woodland-grass habitat to explore the biotic and abiotic factors that might elevate human exposure to host-seeking nymphs. Nymphs were active in the dense woodland throughout the daytime, but no consistent pattern of activity was observed with respect to time of day, temperature, or relative humidity. Significantly more nymphs were collected from the southern aspects of dense-woodland trunks than from other aspects, and more nymphs quested at a height of < or = 1 m vs 1-2 m aboveground. The prevalence of bacterial infection in ticks from the dense woodland was highly variable among years, with maxima of 22.6% and 42.9% for Bb, and 15.6% and 1.8% for Ap, in nymphs from logs and trunks, respectively. The mean densities of nymphs, and of Bb- or Ap-infected nymphs, were typically higher on logs and trunks than in adjoining leaf litter or grass in both habitats. The acarologic risk of encountering an infected nymph on dense-woodland logs or trunks was 2.8 to 11 times higher for Bb than for Ap in two of three years, and it was usually higher in dense woodland than in woodland-grass for both agents. Coinfections were rare (0.27%, n = 369 nymphs from both habitats). Individuals having prolonged contact with logs or trunks in spring would be well advised to employ personal protective measures to minimize exposure to I. pacificus nymphs and their attendant bacterial zoonotic agents.  相似文献   

15.
Rhipicephalus sanguineus ticks (n = 63) collected from five dogs (two adults and three puppies) housed in a kennel were screened for Ehrlichial agents (Ehrlichia canis, E. chaffeensis, and E. ewingii) using a species-specific multicolor real-time TaqMan PCR amplification of the disulphide bond formation protein (dsb) gene. Ehrlichia chaffeensis DNA was detected in 33 (56%) ticks, E. canis DNA was detected in four (6%) ticks, and one tick was coinfected. The E. chaffeensis and E. canis nucleotide sequences of the amplified dsb gene (374 bp) obtained from the Cameroonian R. sanguineus ticks were identical to the North American genotypes.  相似文献   

16.
In northern California, antibodies to Borrelia burgdorferi were detected in 58 of 73 (79%), and spirochetemias in one of 26 (4%) black-tailed jackrabbits (Lepus californicus californicus), by indirect and direct immunofluorescence, respectively. Five species of ticks (Dermacentor occidentalis, D. parumapertus, Ixodes neotomae, I. pacificus, and Haemaphysalis leporispalustris) were collected from rabbits. Two of these species of ticks were found to contain spirochetes; two of 10 (20%) I. neotomae and two of 174 (1%) H. leporispalustris. A strain of B. burgdorferi was recovered from I. neotomae. One infected H. leporispalustris female passed spirochetes via eggs to about 67% of her progeny. The widespread distribution of the black-tailed jackrabbit, its infestation by at least four ticks (D. occidentalis, D. parumapertus, I. neotomae, and I. pacificus) known to be infected naturally with B. burgdorferi, and the high prevalence of spirochetal antibody in this lagomorph suggest that it might be useful as a sentinel for surveillance of Lyme borreliosis. Spirochetes were detected in 15% of 40 Columbian black-tailed deer (Odocoileus hemionus columbianus) by direct immunofluorescence bound with a Borrelia-specific monoclonal antibody (H9724), but not with a monoclonal antibody (H5332) specific for B. burgdorferi. The geographical overlap of different borreliae in ticks that bite wildlife such as deer may confound spirochetal serosurveys, and underscores the need for more specific serologic tests than those currently available.  相似文献   

17.
18.
Degenerate primers corresponding to highly conserved regions of previously characterized ftsZ genes were used to PCR amplify a portion of the ftsZ gene from the genomic DNA of Ehrlichia chaffeensis (ftsZ(Ech)), Anaplasma phagocytophilum (ftsZ(Ap)), and Rickettsia rickettsii (ftsZ(Rr)). Genome walking was then used to amplify the 5' and 3' termini of the genes. The DNA sequences of the resulting amplification products yielded open reading frames coding for proteins with molecular masses of 42.0, 45.7, and 48.3 kDa for A. phagocytophilum, E. chaffeensis, and R. rickettsii, respectively. These homologs are 20 to 70 amino acids longer than the FtsZ proteins characterized in bacteria such as Escherichia coli and Bacillus subtilis, but do not possess the large extended carboxyl-termini found in the FtsZ proteins of Bartonella, Rhizobium, and Agrobacterium species. The functional domains important for FtsZ activity are conserved within the ehrlichial and rickettsial FtsZ protein sequences. The R. rickettsii FtsZ sequence is highly homologous to the FtsZ protein previously described for Rickettsia prowazekii (89% identity), and identical to the FtsZ protein of Rickettsia conorii. The percent identity observed between the A. phagocytophilum and E. chaffeensis FtsZ proteins is only 79% and is particularly low in the carboxyl-terminal region (15.8% identity). Primers were designed to PCR amplify a portion of the variable carboxyl-terminal region of the ftsZ gene, and used to differentiate each agent based on the size of the amplicons: A. phagocytophilum, 278 bp; E. chaffeensis, 341 bp; and Rickettsia spp., 425 bp.  相似文献   

19.
Ehrlichia chaffeensis is an obligatory intracellular bacterium that infects the monocyte-macrophage. E. chaffeensis, which is transmitted to humans by ticks primarily from infected deer, causes human monocytic ehrlichiosis, an acute febrile systemic illness. This paper reviews current knowledge of clinical and biological aspects of infections caused by E. chaffeensis.  相似文献   

20.
During the spring and early summer of 2002, we examined the relative importance of Borrelia-refractory lizards (Sceloporus occidentalis, Elgaria spp.) versus potential Borrelia burgdorferi sensu lato (s.l.)-reservoirs (rodents) as hosts for Ixodes pacificus immatures in 14 woodland areas (six oak, five mixed oak/Douglas fir, and three redwood/tanoak areas) distributed throughout Mendocino County, California. Lizards were estimated to serve as hosts for 93-98% of all larvae and > or =99.6% of all nymphs infesting lizards or rodents in oak woodlands and oak/Douglas fir sites in the southern part of the county. In redwood/tanoak woodlands and oak/Douglas fir sites in northern Mendocino County, the contribution of rodents to larval feedings reached 36-69% but lizards still accounted for 94-100% of nymphal bloodmeals. From late April to mid-June, I. pacificus larvae were recovered from 95 to 96% of lizards and dusky-footed woodrats (Neotoma fuscipes) and from 59% of Peromyscus spp. mice. In contrast, 99% of lizards but few woodrats (15%) and none of the mice were infested by nymphs. Comparisons of tick loads for 19 lizard-Peromyscus spp. mouse pairings, where the lizard and mouse were captured within 10m of each other, revealed that the lizards harbored 36 times more larvae and >190 times more nymphs than the mice. In oak woodlands, loads of I. pacificus larvae decreased from late April/early May to late June for S. occidentalis lizards but increased for Peromyscus spp. mice. We conclude that the relative utilization of Borrelia-refractory lizards, as compared to rodents, by I. pacificus larvae was far higher in dry oak woodlands than in moister habitats such as redwood/tanoak and oak/Douglas fir woodlands in northern Mendocino County. Non-lizard-infesting potential enzootic vectors of B. burgdorferi s.l. (I. angustus and I. spinipalpis) were recorded from rodents in three of six oak woodland areas, two of five oak/Douglas fir woodland areas, and two of three redwood/tanoak woodland areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号