首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
With the recent availability of complete genomic sequences of many organisms, high-throughput and cost-efficient systems for gene cloning and functional analysis are in great demand. Although site-specific recombination-based cloning systems, such as Gateway cloning technology, are extremely useful for efficient transfer of DNA fragments into multiple destination vectors, the two-step cloning process is time consuming and expensive. Here, we report a zero background TA cloning system that provides simple and high-efficiency direct cloning of PCR-amplified DNA fragments with almost no self-ligation. The improved T-vector system takes advantage of the restriction enzyme XcmI to generate a T-overhang after digestion and the negative selection marker gene ccdB to eliminate the self-ligation background after transformation. We demonstrate the feasibility and flexibility of the technology by developing a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, protein subcellular localization detection, and promoter fragment activity analysis in plants. Because the system can be easily adapted for developing specialized expression vectors for other organisms, zero background TA provides a general, cost-efficient, and high-throughput platform that complements the Gateway cloning system for gene cloning and functional genomics.  相似文献   

3.
With the sequencing of genomes from many organisms now complete and the development of high-throughput sequencing, life science research has entered the functional post-genome era. Therefore, deciphering the function of genes and how they interact is in greater demand. To study an unknown gene, the basic methods are either overexpression or gene knockout by creating transgenic plants, and gene construction is usually the first step. Although traditional cloning techniques using restriction enzymes or a site-specific recombination system (Gateway or Clontech cloning technology) are highly useful for efficiently transferring DNA fragments into destination plasmids, the process is time consuming and expensive. To facilitate the procedure of gene construction, we designed a TA-based cloning system in which only one step was needed to subclone a DNA fragment into vectors. Such a cloning system was developed from the pGreen binary vector, which has a minimal size and facilitates construction manipulation, combined with the negative selection marker gene ccdB, which has the advantages of eliminating the self-ligation background and directly enabling high-efficiency TA cloning technology. We previously developed a set of transient and stable transformation vectors for constitutive gene expression, gene silencing, protein tagging, subcellular localization analysis and promoter activity detection. Our results show that such a system is highly efficient and serves as a high-throughput platform for transient or stable transformation in plants for functional genome research.  相似文献   

4.
5.
We created a pair of vectors allowing simple and efficient molecular cloning of any gene of interest with minimal consumption of time, labor and material. This system is applicable for standard molecular cloning, high-throughput cloning and generation of fusion protein libraries as well as for more complex gene assembly purposes. Also, this zero-background procedure allows going from cDNA to gene expression analysis in a defined vector in <2 days.  相似文献   

6.
7.
8.
To establish high-throughput methods for protein crystallography, all aspects of the production and analysis of protein crystals must be accelerated. Automated, plate-based methods for cloning, expression, and evaluation of target proteins will help researchers investigate the vast numbers of proteins now available from sequenced genomes. Ligation-independent cloning (LIC) is well suited to robotic cloning and expression, but few LIC vectors are available commercially. We have developed a new LIC vector, pMCSG7, that incorporates the tobacco etch virus (TEV) protease cleavage site into the leader sequence. This protease is highly specific and functions under a wide range of conditions. The new vector incorporates an N-terminal his-tag followed by the TEV protease recognition site and a SspI restriction site used for LIC. The vector functioned as expected, giving high cloning efficiencies and strong expression of proteins. Purification and cleavage of a target protein showed that the his-tag and the TEV cleavage site function properly. The protein was purified and cleaved under different conditions to simulate both plate-based screening methods and large-scale purifications for crystal production. The vector also includes a pair of adjacent, unique restriction sites that will allow insertion of additional modules between the his-tag and the cleavage site of the leader sequence to generate a family of vectors suitable for high-throughput production of proteins.  相似文献   

9.
The success of structural genomics and proteomics initiatives is dependent on the availability of target genes in vectors suitable for protein production. Here, we compare two high-throughput methods for producing expression vectors from plasmid-derived cDNA fragments. Expression vectors were constructed for compatibility with the Gateway recombination cloning system and the Flexi Vector restriction-based cloning system. Cloning protocols for each system were conducted in parallel for 96 different target genes from PCR through the production of sequence-verified expression clones. The short nucleotide sequences required to prepare the target open reading frames for Flexi Vector cloning allowed a single-step PCR protocol, resulting in fewer mutations relative to the Gateway protocol. Furthermore, through initial cloning of the target open reading frames directly into an expression vector, the Flexi Vector system gave time and cost savings compared to the protocol required for the Gateway system. Within the Flexi Vector system, genes were transferred between four different expression vectors. The efficiency of gene transfer between Flexi Vectors depended on including a region of sequence identity adjacent to one of the restriction sites. With the proper construction in the flanking sequence of the vector, gene transfer efficiencies of 95-98% were demonstrated.  相似文献   

10.
W L Gardner  W B Whitman 《Genetics》1999,152(4):1439-1447
A series of integrative and shuttle expression vectors was developed for use in Methanococcus maripaludis. The integrative expression vectors contained the Methanococcus voltae histone promoter and multiple cloning sites designed for efficient cloning of DNA. Upon transformation, they can be used to overexpress specific homologous genes in M. maripaludis. When tested with ilvBN, which encodes the large and small subunits of acetohydroxyacid synthase, transformants possessed specific activity 13-fold higher than that of the wild type. An expression shuttle vector, based on the cryptic plasmid pURB500 and the components of the integrative vector, was also developed for the expression of heterologous genes in M. maripaludis. The beta-galactosidase gene from Escherichia coli was expressed to approximately 1% of the total cellular protein using this vector. During this work, the genes for the acetohydroxyacid synthase (ilvBN) and phosphoenolpyruvate synthase (ppsA) were sequenced from a M. maripaludis genomic library.  相似文献   

11.
Genetic studies with Burkholderia cepacia complex isolates are hampered by the limited availability of cloning vectors and by the inherent resistance of these isolates to the most common antibiotics used for genetic selection. Also, some of the promoters widely employed for gene expression in Escherichia coli are inefficient in B. cepacia. In this study, we have utilized the backbone of the vector pME6000, a derivative of the pBBR1 plasmid that was originally isolated from Bordetella bronchiseptica, to construct a set of vectors useful for gene expression in B. cepacia. These vectors contain either the constitutive promoter of the S7 ribosomal protein gene from Burkholderia sp. strain LB400 or the arabinose-inducible P(BAD) promoter from E. coli. Promoter sequences were placed immediately upstream of multiple cloning sites in combination with the minimal sequence of pME6000 required for plasmid maintenance and mobilization. The functionality of both vectors was assessed by cloning the enhanced green fluorescent protein gene (e-gfp) and determining the levels of enhanced green fluorescent protein expression and fluorescence emission for a variety of clinical and environmental isolates of the B. cepacia complex. We also demonstrate that B. cepacia carrying these constructs can readily be detected intracellularly by fluorescence microscopy following the infection of Acanthamoeba polyphaga.  相似文献   

12.
13.
真核生物启动子的研究及应用   总被引:4,自引:0,他引:4  
随着基因工程的发展,常常需要构建能高水平表达异源蛋白质的表达载体。启动子对外源基因的表达水平影响很大,是基因工程表达载体的重要元件。因此,研究启动子的克隆方法,对探讨基因表达调控和构建表达载体至关重要。近年来有许多改进的克隆启动子的方法获得了多方面的成功。我们简要综述启动子克隆方法及应用,阐述了启动子的一般特点,介绍了研究启动子功能的常用方法及在肿瘤治疗中的应用前景,为肿瘤靶向治疗提供理论依据及探索新的治疗途径。  相似文献   

14.
Oh SK  Kim SB  Yeom SI  Lee HA  Choi D 《Molecules and cells》2010,30(6):557-562
Transient expression is an easy, rapid and powerful technique for producing proteins of interest in plants. Recombinational cloning is highly efficient but has disadvantages, including complicated, time consuming cloning procedures and expensive enzymes for large-scale gene cloning. To overcome these limitations, we developed new ligationindependent cloning (LIC) vectors derived from binary vectors including tobacco mosaic virus (pJL-TRBO), potato virus X (pGR106) and the pBI121 vector-based pMBP1. LIC vectors were modified to enable directional cloning of PCR products without restriction enzyme digestion or ligation reactions. In addition, the ccdB gene, which encodes a potent cell-killing protein, was introduced between the two LIC adapter sites in the pJL-LIC, pGR-LIC, and pMBP-LIC vectors for the efficient selection of recombinant clones. This new vector does not require restriction enzymes, alkaline phosphatase, or DNA ligase for cloning. To clone, the three LIC vectors are digested with SnaBI and treated with T4 DNA polymerase, which includes 3′ to 5′ exonuclease activity in the presence of only one dNTP (dGTP for the inserts and dCTP for the vector). To make recombinants, the vector plasmid and the insert PCR fragment were annealed at room temperature for 20 min prior to transformation into the host. Bacterial transformation was accomplished with 100% efficiency. To validate the new LIC vector systems, we were used to coexpressed the Phytophthora AVR and potato resistance (R) genes in N. benthamiana by infiltration of Agrobacterium. Coexpressed AVR and R genes in N. benthamiana induced the typical hypersensitive cell death resulting from in vivo interaction of the two proteins. These LIC vectors could be efficiently used for high-throughput cloning and laboratory-scale in planta expression. These vectors could provide a powerful tool for high-throughput transient expression assays for functional genomic studies in plants.  相似文献   

15.
16.
Targeted mutagenesis is one of the major tools for determining the function of a given gene and its involvement in bacterial pathogenesis. In mycobacteria, gene deletion is often accomplished by using allelic exchange techniques that commonly utilise a suicide delivery vector. We have adapted a widely-used suicide delivery vector (p1NIL) for cloning two flanking regions of a gene using ligation independent cloning (LIC). The pNILRB plasmid series produced allow a faster, more efficient and less laborious cloning procedure. In this paper we describe the making of pNILRB5, a modified version of p1NIL that contains two pairs of LIC sites flanking either a sacB or a lacZ gene. We demonstrate the success of this technique by generating 3 mycobacterial mutant strains. These vectors will contribute to more high-throughput methods of mutagenesis.  相似文献   

17.
A new versatile mammalian vector system for protein production, cell biology analyses, and cell factory engineering was developed. The vector system applies the ligation-free uracil-excision based technique – USER cloning – to rapidly construct mammalian expression vectors of multiple DNA fragments and with maximum flexibility, both for choice of vector backbone and cargo. The vector system includes a set of basic vectors and a toolbox containing a multitude of DNA building blocks including promoters, terminators, selectable marker- and reporter genes, and sequences encoding an internal ribosome entry site, cellular localization signals and epitope- and purification tags. Building blocks in the toolbox can be easily combined as they contain defined and tested Flexible Assembly Sequence Tags, FASTs. USER cloning with FASTs allows rapid swaps of gene, promoter or selection marker in existing plasmids and simple construction of vectors encoding proteins, which are fused to fluorescence-, purification-, localization-, or epitope tags. The mammalian expression vector assembly platform currently allows for the assembly of up to seven fragments in a single cloning step with correct directionality and with a cloning efficiency above 90%. The functionality of basic vectors for FAST assembly was tested and validated by transient expression of fluorescent model proteins in CHO, U-2-OS and HEK293 cell lines. In this test, we included many of the most common vector elements for heterologous gene expression in mammalian cells, in addition the system is fully extendable by other users. The vector system is designed to facilitate high-throughput genome-scale studies of mammalian cells, such as the newly sequenced CHO cell lines, through the ability to rapidly generate high-fidelity assembly of customizable gene expression vectors.  相似文献   

18.
Fujita A  Misumi Y  Koyama Y 《Plasmid》2012,67(3):272-275
Two versatile shuttle vectors for Thermus thermophilus and Escherichia coli were developed on the basis of the T. thermophilus cryptic plasmid pTT8 and E. coli vector pUC13. These shuttle vectors, pTRK1T and pTRH1T, carry a gene encoding a protein homologous to replication protein derived from pTT8, a replicon for E. coli, new multiple cloning sites and a lacZα gene from E. coli vector pUC13, and also have a gene encoding a thermostable protein that confers resistance to kanamycin or hygromycin, which can be used as a selection marker in T. thermophilus. These shuttle vectors are useful to develop enzymes and proteins of biotechnological interest. We also constructed a plasmid, pUC13T, which carries the same multiple cloning sites of pTRK1T and pTRH1T. These vectors should facilitate cloning procedures both in E. coli and T. thermophilus.  相似文献   

19.
JW Wang  ES Beck  BD McCabe 《PloS one》2012,7(7):e42102
Transgenic Drosophila have contributed extensively to our understanding of nervous system development, physiology and behavior in addition to being valuable models of human neurological disease. Here, we have generated a novel series of modular transgenic vectors designed to optimize and accelerate the production and analysis of transgenes in Drosophila. We constructed a novel vector backbone, pBID, that allows both phiC31 targeted transgene integration and incorporates insulator sequences to ensure specific and uniform transgene expression. Upon this framework, we have built a series of constructs that are either backwards compatible with existing restriction enzyme based vectors or utilize Gateway recombination technology for high-throughput cloning. These vectors allow for endogenous promoter or Gal4 targeted expression of transgenic proteins with or without fluorescent protein or epitope tags. In addition, we have generated constructs that facilitate transgenic splice isoform specific RNA inhibition of gene expression. We demonstrate the utility of these constructs to analyze proteins involved in nervous system development, physiology and neurodegenerative disease. We expect that these reagents will facilitate the proficiency and sophistication of Drosophila genetic analysis in both the nervous system and other tissues.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号