首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Gwynn-Jones  D. 《Plant Ecology》2001,154(1-2):65-73
To test the hypothesis that plant source-sink relations are important in determining response to UV-B radiation, a short-term (45 d) field experiment was conducted at Abisko Scientific Research Station, Abisko, Sweden (68° N). Tillers of the grass Calamagrostis purpurea were grown outdoors at levels of UV-B radiation representing 25% ozone depletion. Growth, respiration, photo-assimilate allocation and UV-B protective compounds were subsequently measured.There were no significant effects of enhanced UV-B on total plant dry weight, leaf area, Shoot: Root ratio, leaf weight ratio, leaf area ratio, specific leaf area, tiller number per plant or blade thickness of this species. However, the amount of UV-B absorbing compounds and respiration rates were significantly increased in young and mature leaves. Increases in leaf respiration were accompanied by alterations in plant carbohydrate allocation at enhanced UV-B. The amount of soluble root carbohydrates was reduced following UV-B exposure. Enhanced UV-B also caused increases in the soluble sugar: starch ratio of young leaves, the stem and total aboveground biomass. The importance of source-sink relations and constitutive versus induced defense are discussed in relation to UV-B response.  相似文献   

2.
Deckmyn  Gaby  Cayenberghs  Erwin  Ceulemans  Reinhart 《Plant Ecology》2001,154(1-2):123-133
The purpose of this study was to investigate whether differences in canopy architecture due to the investigated species (planophile versus erectophile, single versus mixed canopies) or to UV-B effects on plant morphology, lead to differences in UV-B and UV-B/PAR doses within canopies.The development of a very small (10 mm diameter) UV-B and PAR sensor on a long 5 mm wide stick allowed us to measure the penetration of UV-B and PAR in single and mixed canopies of the grass Dactylis glomerata and white clover, Trifolium repens. The plants were grown in greenhouses covered with different thicknesses (3 and 5 mm) of UV-transmittant plexi (12 and 18% UV-B exclusion).For clover, a planophile vegetation, radiation penetration was very low for both UV-B and PAR. UV-B penetration was much less than for PAR, resulting in low UV-B/PAR ratio's within the canopy. This is explained by the low UV-B transmittance of the leaves (<0.1 %) in combination with the planophile leaves.In the grass species, both UV-B and PAR penetrated much deeper into the canopy due to the erectophile structure. The difference between UV-B and PAR penetration was generally quite small except in very tall canopies.The mixed species canopies showed results comparable to the clover canopies. Due to the strongly increased grass growth in these plots, light penetration was generally much lower than in the single species cultures. The increased growth of grass in these mixed plots could be linked to the lower UV-B/PAR dose they received.In plots grown under the higher UV-B level there was a relative decrease in UV-B/PAR ratio within the canopy for both species, compared to canopies from the lower UV-B greenhouses. This could not be explained by changes in leaf angle or biomass, but might be linked to the increase in leaf transmittance of PAR.  相似文献   

3.
Hunt  John E.  McNeil  David L. 《Plant Ecology》1999,143(1):39-50
Seedlings of two Southern Hemisphere temperate trees species (mountain beech: Nothofagus solandri var. cliffortioides (Hook. f.) Poole and broadleaf: Griselinia littoralis Raoul) were grown in the field to determine the effects of present-day levels of ultraviolet-B radiation (UV-B) on growth, biomass, UV-B absorbing compounds, leaf optical properties and photoinhibition. Plants were covered with either UV-B transmitting or UV-B absorbing filters. After 125 days of typical summer weather, total biomass of both species was not affected by the UV-B treatments. Without UV-B, height increased (23%) and the number of leaves produced decreased (–21%) in beech, but broadleaf was unaffected. The effect of UV-B on beech height and leaf number was manifest during a second flush of leaves suggesting differences in response to UV-B of leaves initiated in different seasons and UV-B radiation regimes. Leaves of both species were essentially opaque to the transmission of UV-B. In the absence of UV-B the transmission of photosynthetically active radiation through leaves of both species increased, foliar nitrogen concentrations increased and levels of UV-B absorbing compounds decreased. In the youngest leaves of beech but not of broadleaf, removal of UV-B reduced midday photoinhibition, and did not alter the complete recovery of the fluorescence ratio FV/FM in the evening to predawn levels. As leaves of both species aged, midday photoinhibition decreased, with the result that UV-B had no effect on photoinhibition in mature leaves. Results of this experiment show that even under present-day UV-B levels, UV-B radiation modifies the physiology, optical properties and secondary compounds of leaves of both beech and broadleaf seedlings.  相似文献   

4.
To test the hypothesis that leaf surface wax influences plant responses to UV-B, 6 lines of cultivated pea (Pisum sativum L.), selected as having more or less wax, were grown at 0 or 6.5 kJ m-2 day-1 plant-weighted UV-B against a background of 850–950 μmol m-2 s-1 photosynthetically active radiation. In the 4 lines with least leaf surface wax the amount of wax on adaxial and abaxial leaf surfaces was increased following exposure to 6.5 kJ m-2 day-1 UV-B, but UV-B decreased surface wax in Scout, which had the greatest wax deposits. On the adaxial leaf surface, UV-B radiation caused a shift in wax composition from alcohols to esters and hydrocarbons and the ratio of short to long chain length alkyl ester homologues was increased. There was no evidence of a shortening in carbon chain length of hydrocarbons, primary alcohols or fatty acids due to UV-B and no significant correlation between wax amount and UV reflectance from leaves. UV-B induced significant increases in UV-absorbing compounds in the expanded leaves and buds of most lines. UV-B reduced the growth of all lines. Foliage area (leaves plus stipules) declined by 5–30%, plant dry weight by 12–30%, and plant height by 24–38%. Reductions in growth occurred in the absence of any changes in chlorophyll fluorescence or photosynthetic rate. UV-B also had no major effect on carbon allocation patterns. The effects of UV-B on growth appeared to be due to changes in tissue extension and expansion. Indeed, many of the responses to UV-B observed in this study of pea appear more consistent with indirect effects being expressed in developing tissues rather than through the direct action of UV-B on mature tissues. There was no evidence that wax amount or biochemistry was associated with the sensitivity of the lines to UV-B radiation. Furthermore, induction of pigments was not correlated with changes in growth. However, lines with the greatest constitutive amounts of pigments in unexpanded bud tissues were most tolerant of elevated UV-B.  相似文献   

5.
Stephanou  M.  Manetas  Y. 《Plant Ecology》1997,128(1-2):109-112
Young seedlings of Dittrichia viscosa L. (syn. Inula viscosa (L.) Aiton) (Asteraceae) were extensively treated with artificial rain in order to remove the water soluble component of their epicuticular UV-B absorbing compounds. As a result, 75% of the epicuticular absorbing capacity at 300 nm was lost. The seedlings were subsequently grown in a naturaly lit glasshouse for 80 days under 0.06, 6.41 and 10.14 kJ m-2 day -1 biologicaly effective UV-B radiation doses. The initial, pre-rain values of the water soluble, epicuticular UV-B absorbing potential was restored in about three weeks. During this transient period the plants were exposed to the enhanced UV-B radiation doses with part of their UV-B radiation screen removed. Although a trend for increased accumulation of epicuticular UV-B absorbing capacity was observed with increasing UV-B radiation doses, the allelopathic potential of the epicuticular material remained unchanged. Internal (cellular) UV-B absorbing compounds and chlorophylls were unaffected, but total carotenoids were increased, indicating a possible protective role against UV-B radiation damage. Leaf, stem and root dry mass were the same under all treatments but UV-B radiation caused a reduction in the dry mass invested per unit leaf area with a concomitant increase in leaf area. The importance of this UV-B radiation induced selective allocation of photosynthate to the production of assimilative surfaces is discussed.  相似文献   

6.
Terrestrial plant species vary widely in their adaptation to (increasing) solar UV-B radiation. Among the various responses of higher plants to enhanced UV-B are increasing leaf thickness and increasing concentrations of UV-B absorbing compounds. In some (UV-B resistant) plant species increased leaf thickness and UV-B absorbance may form part of mechanisms protecting plants from UV-B damage. However, in UV-B sensitive plant species leaf thickness and UV-B absorbance may increase as well with enhanced UV-B radiation. In the latter case however, this response cannot prevent plant damage and disturbance. In the present field study the relationship between these plant parameters and a natural elevational UV-B gradient on the tropical island of Jamaica was described. Four plant species of the Blue Mountain Tropical Montane Forest, occurring on open forest sites along the roadside and paths were studied along an elevational gradient. Plant species studied are Redbush (Polygonum chinense), Wild ginger (Hedychium gardneranum), John Crow Bush (Bocconia frutescens) and White clover (Trifolium repens). The elevational sites were at 800, 1000, 1200, 1400 and 1600 m above sea level. Leaf thickness was measured of leaves of intact plants around midday in the field. Leaf disks (5 mm) were sampled and extracted with a methanol/HCl mixture. UV-B absorption of these leaf extracts was measured spectrophotometrically. For all species leaves from higher elevations were thicker than those from lower elevations. In addition, the absorption of UV-B of leaf extracts increased with increasing elevations. It is assumed that the calculated gradient of the UV-BBE from 800 m above sea level: 9.45 kJ m-2 day-1 to 9.75 kJ m-2 day-1 at 1600 m is related to the measured increase of leaf thickness and UV-B absorbing compounds. The responsiveness of these plant parameters to the elevational gradient does not necessarily imply that the plant species are UV-B resistant. One possibility is that the species studied, which are growing on open, disturbed sites on the forest floor and along mountain-roads, are relatively sensitive to UV-B. In addition to clear sky conditions, mist and clouds occur frequently in this tropical mountane forest at Jamaica. Also, the low nutrient status of the soil (low pH, nutrient deficiency) and the high content of polyphenols in leaves of many plant species of the tropical montane rain forest may relate to the marked response of the species studied with increasing elevation. Abbreviations: asl – above sealevel, UV-B – ultraviolet-B radiation (280–320 nm), TMCF – Tropical Montane Cloud Forest.  相似文献   

7.
Using quartz optical fibres, penetration of both monochromatic (310 nm) and polychromatic UV-B (280–320 nm) radiation in leaves of Brassica napus L. (cv. Ceres) was measured. Plants were grown under either visible light (750 μmol m−2 s−1 photosynthetically active radiation) or with the addition of 8. 9 KJ m−2 day−1 biologically effective UV-B (UV-BBE) radiation. Results showed that of the 310 nm radiation that penetreated the leaf, 90% was within the intial one third of the leaf with high attenuation in the leaf epidermis, especially in UV-treated plants. Polychromatic UV-B radiation, relative to incident radiation, showed a relatively uniform spectral distribution within the leaf, except for collimated radiation. Over 30% of the UV-screening pigments in the leaf, including flavonoids, were found in the adaxial epidermal layer, making this layer less transparent to UV-B radiation than the abaxial epidermis, which contained less than 12% of the UV-screening pigments. UV-screening pigments increased by 20% in UV-treated leaves relative to control leaves. Densely arranged epicuticular wax on the adaxial leaf surface of UV-treated plants may have further decreased penetration of UV-B radiation by reflectance. An increased leaf thickness, and decreases in leaf area and leaf dry weight were also found for UV-treated plants.  相似文献   

8.
增强UV-B辐射对3种芦荟蒽醌类物质含量的影响   总被引:1,自引:0,他引:1  
以中华芦荟、库拉索芦荟和木立芦荟为试验材料,采用HPLC技术,研究了增强UV-B辐射对3种芦荟叶片中主要药用成分总蒽醌、芦荟素和芦荟大黄素含量的影响。结果显示:增强UV-B辐射20 d,每天处理6 h,库拉索芦荟和木立芦荟叶中总蒽醌、芦荟素、芦荟大黄素的含量增加,叶提取物中出峰数量增多,总峰面积增大;而中华芦荟中蒽醌类物质含量显著降低,叶提取物中出峰数量减少,总峰面积减少。研究表明,增强UV-B辐射能刺激库拉索芦荟和木立芦荟叶片中蒽醌类物质的积累和新物质的合成,而不利于中华芦荟蒽醌类物质的积累。  相似文献   

9.
以青藏高原矮嵩草草甸的主要伴随种美丽风毛菊为材料,通过滤除太阳辐射光谱中UV-B成分的模拟试验,研究了强太阳UV-B辐射对高山植物光合作用、光合色素和紫外吸收物质的影响.结果表明:与对照相比,弱UV-B处理能促使美丽风毛菊叶片净光合速率增加和提高稳态PSⅡ光化学效率;对照中叶片厚度的相对增加能弥补单位叶面积光合色素的光氧化损失,是高山植物对强UV B辐射的一种适应方式.短期滤除UV-B辐射处理时紫外吸收物质含量几乎没有变化,说明高山植物叶表皮层中该类物质受环境波动的影响较小.强UV-B环境下光合色素的相对增加是一种表象,而青藏高原强太阳UV-B辐射对高山植物美丽风毛菊的光合生理过程仍具有潜在的负影响.  相似文献   

10.
The effects of sub-ambient levels of UV-B radiation on the shrub Rosmarinus officinalis L. were investigated in a field filtration experiment in which the ambient UV-B was manipulated by a combination of UV-B transmitting and UV-B absorbing filters. As a result, the plants were receiving near-ambient or drastically reduced UV-B radiation doses. Drastic reduction of UV-B radiation had no effect on mean, total and maximum stem length, number of stems per plant, dry mass of leaves, stems and roots and leaf nitrogen and phenolic contents. However, flowering was more pronounced under reduced UV-B radiation during the winter period which coincides with ascending ambient UV-B radiation. In contrast, during autumn and early winter, a period which coincides with descending ambient UV-B radiation, flowering was unaffected by reduced UV-B radiation. We can conclude that natural UV-B radiation does not affect growth of Rosmarinus officinalis, but its reduction could influence the flowering pattern of the species.  相似文献   

11.
An open-air experiment was performed in Pistoia (Italy) to investigate the possible protective role played by different contents of UV-B absorbing compounds to realistic UV-B supplementation and to study its effect on plant fruit production. A mutant line and its normal counterpart of Lycopersicon esculentum Mill, which differ in the content of UV-B absorbing compounds, were used. Additional UV-B radiation in the field was supplied to simulate a 20% stratospheric ozone depletion. Two groups of plants were grown: ‘control’, where plants received only natural solar UV-B radiation, and ‘UV-B’ treatment, where plants were grown under supplemental UV-B. The results of the experiment showed that the content of UV-B absorbing compounds of treated plants did not differ from that of the control in both lines. This indicates that natural sunlight, in Mediterranean areas, is saturating for synthesis of these compounds also in plants with normal content of UV-B absorbing compounds. Consequently, plants are not able to produce significant additional amounts of them, in response to a realistic UV-B supplementation, in order to protect the plant from additional UV-B radiation. No different responses to the UV-B supplementation were found between the two lines. The most significant UV-B effect was an earlier reddening of fruits in comparison with the ‘control’ accompanied by a reduction in the size of mature fruits. No significant effects of UV-B treatment were observed in biomass accumulation, leaf ontogeny, flowering or productivity.  相似文献   

12.
The epicuticular wax covering on plant surface plays important roles in protecting plants against UV radiation. However, the role of epicuticular wax in affecting leaf gas exchange under enhanced ultraviolet-B (UV-B) radiation remains obscure. In the present study, different aged leaves of Brassica napus were used to analyze the responses of crystal structure and chemical constituents of epicuticular wax to UV-B radiation and the effects of such responses on gas exchange indices. Enhanced UV-B radiation significantly decreased the amount of esters in all leaves except the first leaf, amount of secondary alcohols in the second, third and fourth leaves, and amount of primary alcohols in the second and third leaves, while increased the amounts of ketones and aldehydes in the first leaf. Enhanced UV-B level had no significant effect on the amounts of alkanes and total wax in all leaves. Exposure to UV-B radiation resulted in wax fusion on adaxial leaf and stomata opening on abaxial leaf. Fusions of plates and rods on adaxial leaf surface covered most of the stomata, thereby influencing the photosynthesis in the upper mesophyll of leaves. Enhanced UV-B level significantly reduced the net photosynthesis rate (P N) but increased the stomata conductance (g s), concentrations of intercellular CO2 (C i ), and transpiration rate (E) in all leaves. Both UV-B radiation and the wax fusion induced by enhanced UV-B radiation resulted in different stomata status on abaxial and adaxial leaf surface, causing decrease of P N, and increase of g s, C i and E in leaves.  相似文献   

13.
Aims UV-B radiation is known to affect plant physiology and growth rate in ways that can influence community species composition and structure. Nevertheless, comparatively little is known about how UV-B radiation induced changes in the performance of individual species cascades to affect overall community properties. Because foliage leaves are primarily responsible for photosynthesis and carbon gain and are the major organ that senses and responds to UV-B radiation, we hypothesized that, under reduced UV-B radiation, species with larger leaf areas per plant would manifest higher growth rates and hence tend to improve their community status compared to species with smaller leaf areas per plant in herbaceous plant communities.Methods We tested this hypothesis by examining plant traits (leaf area per plant and plant height), plant growth rate (aboveground biomass per plant and plant biomass per area) and community status (species within-community relative biomass) for 19 common species in a two-year field experiment in an alpine meadow on Tibetan Plateau.Important findings Aboveground biomass per plant, as well as per area, progressively increased in a 39% reduced (relative to ambient) UV-B treatment during the experimental period. At the second year, 11 out of 19 species significantly or marginally significantly increased their plant height, leaf area per plant and aboveground biomass per plant. No species was negatively affected by reducing UV-B. As hypothesized, the increase in aboveground biomass per plant increased with increasing leaf area per plant, as indicated by cross-species regression analysis. Moreover, the change in species within-community status increased with increasing leaf area per plant. Our study demonstrates that UV-B radiation has differential effects on plant growth rate across species and hence significantly affects species composition and plant community structure. We suggest that UV-B radiation is an ecological factor structuring plant communities particularly in alpine and polar areas.  相似文献   

14.
一种狗尾草病原真菌的鉴定及菌株致病性研究   总被引:3,自引:1,他引:2  
经形态学鉴定和rDNA ITS序列分析,16株分离自北京、河北、河南发病狗尾草的菌株、2株分别分离自河南发病虎尾草、牛筋草的菌株和1株分离自青海发病野燕麦的菌株被鉴定为狗尾草平脐蠕孢Bipolaris setariae。接种试验表明,来自狗尾草的菌株比来自其他寄主植物的菌株对狗尾草致病性强,分离自野燕麦的菌株对狗尾草无致病性,分离自不同地区不同样品狗尾草的菌株其致病性有显著差异。菌株NY1对狗尾草有很强致病性,接种后5d植株叶片即全部呈枯死状,接种后7d整个植株枯萎死亡。菌株NY1对马唐和虎尾草也有很强致病性,但对于大多数供试栽培植物致病性很弱或无致病性。因此,B. setariae NY1菌株具有进一步开发成为狗尾草、马唐和虎尾草等杂草的生物除草剂的潜力。  相似文献   

15.
The influence of ultraviolet-B (UV-B) radiation (280-320 nanometers) on the morphology of 12 common dicot and monocot crop or weed species was examined to determine whether any common responses could be found that might, in turn, be useful in predicting possible changes in competitive balance under solar UV-B enhancement. Under glasshouse conditions, UV-B exposure (simulating a 20% reduction in stratospheric ozone at Logan, Utah) was found to reduce leaf blade and internode lengths and increase leaf and axillary shoot production in several species. Overall, the directions of these trends were similar in the majority of species that exhibited a significant response. These morphological changes occurred without any significant reduction in total shoot dry matter production. There was no clear distinction in the response of crops and weeds, though monocots were found to be generally more responsive than dicots. Previous work in dense canopies has shown that the photomorphogenetic effects of UV-B alter leaf placement and thereby influence competition for light. Our results suggest that, under these conditions, changes in competitive balance resulting from increased UV-B might be expected more frequently when monocots are involved in mixtures, rather than mixtures of only dicots.  相似文献   

16.
Sunflower is the most important oil crop in Hungary, is the base of the production of cooking oil and moreover takes an important part in production of margarine too. Extracted sunflower groats as a secondary product origining from the mentioned procedure can be used in forage successfully. The amount of harvested sunflower reaches the 20-25% of the EU's yield. The sowing area approaches 500 thousand hectares. The essential condition of successful crop production is the perfect weed control. Sowing areas are infected with monocotyledon and dicotyledonous weeds too. Annual dicotyledonous weeds are the most troublesome. The worst species is the Ambrosia artemisiifolia L. Many other weed species as Abutilon theophrasti MEDIC., Datura stramonium L. and Xanthium strumarium L. can cause serious damages. In our model experiments we examined the herbicide sensibility of two commercial sunflower cultivars as "Iregi szürke csikos", "Marica II" and a sulfonylurea-urea tolerant new hybrid "PR63E82". The experiment was set up under greenhouse conditions with the use of four important weed and different post-emergent herbicide as Modown 4F (bifenox), Pledge 50 WP (flumioxazin) and Granstar 75 DF (tribenuron-methyl). We applied normal and double doses too. Sunflower was cultivated to 4-6 leaf stage. Post-emergent herbicides were sprayed out when weeds were in 2, 2-4 and 4-6 leaf stage. Weed killer and phytotoxic effects of post-emergent herbicides were examined. We declared that development of weeds had significally effect on the effectiveness of different herbicides.  相似文献   

17.
Arabidopsis thaliana grown in a light regime that included ultraviolet-B (UV-B) radiation (6 kJ m−2 d−1) had similar light-saturated photosynthetic rates but up to 50% lower stomatal conductance rates, as compared to plants grown without UV-B radiation. Growth responses of Arabidopsis to UV-B radiation included lower leaf area (25%) and biomass (10%) and higher UV-B absorbing compounds (30%) and chlorophyll content (52%). Lower stomatal conductance rates for plants grown with UV-B radiation were, in part, due to lower stomatal density on the adaxial surface. Plants grown with UV-B radiation had more capacity to down regulate photochemical efficiency of photosystem II (PSII) as shown by up to 25% lower φPSII and 30% higher non-photochemical quenching of chlorophyll fluorescence under saturating light. These contributed to a smaller reduction in the maximum photochemical efficiency of PSII (F v/F m), greater dark-recovery of F v/F m, and higher light-saturated carbon assimilation and stomatal conductance and transpiration rates after a four-hour high light treatment for plants grown with UV-B radiation. Plants grown with UV-B were more tolerant to a 12 day drought treatment than plants grown without UV-B as indicated by two times higher photosynthetic rates and 12% higher relative water content. UV-B-grown plants also had three times higher proline content. Higher tolerance to drought stress for Arabidopsis plants grown under UV-B radiation may be attributed to both increased proline content and decreased stomatal conductance. Growth of Arabidopsis in a UV-B-enhanced light regime increased tolerance to high light exposure and drought stress.  相似文献   

18.
在温室条件下,研究了模拟UV-B辐射(280~320 nm)增强对6个灯盏花居群的类黄酮、丙二醛(MDA)含量和抗氧化酶活性的影响及其种内差异,并利用ISSR分子标记技术对灯盏花居群进行遗传背景分析.结果表明:在UV-B辐射增强条件下,灯盏花D01、D53、D63和D65居群在成苗期、盛花期和成熟期的类黄酮含量均显著增加,成苗期与盛花期MDA含量显著降低;而D47和D48居群3个生育期的MDA含量和盛花期类黄酮含量均显著增加,成熟期显著降低.D01居群3个生育期的POD、APX活性,成苗期、盛花期CAT活性与盛花期SOD活性均显著升高;D47居群3个生育期的SOD、CAT和APX活性,成熟期POD活性显著下降;D48居群3个生育期的POD、APX活性,成苗期、成熟期的SOD活性均显著下降;D53居群成苗期和盛花期SOD、APX活性,盛花期CAT活性显著增加;D63居群3个生育期的SOD、POD和APX活性均显著上升;D65居群除成熟期的CAT和APX活性没有显著变化外,3个生育期的4种抗氧化酶活性均显著上升.灯盏花居群对UV B辐射增强的响应有明显的种内差异,D01、D53、D63和D65为UV耐性居群,而D47和D48居群的UV敏感性较高.灯盏花居群不同生育期对UV-B辐射的响应为盛花期>成苗期>成熟期.居群间的遗传多样性差异明显,在遗传距离为0.11的水平上,可将D01、D53、D63和D65居群归为一类,D47和D48居群为另一类,这与根据生理响应指数判断的UV耐性与敏感居群的结果基本一致.  相似文献   

19.
Influences of UV-B radiation on Rhizophora apiculata were studied in terms of chlorophylls, their presence in protein complexes of the chloroplast, PS I and PS II photochemical activities, in vitro absorption spectrum of the chloroplast, in vivo leaf fluorescence and UV absorbing compounds. The seedlings were exposed to the various levels of UV-B radiations, equivalent to 0 (control), 10, 20, 30 and 40% stratospheric ozone depletion of the study area. The low doses of UV-B (10 and 20%) increased the reaction centre chlorophyll (10 and 8%) and activities of PS-I (98 and 39%) and PS-II (77 and 38%) respectively; whereas, 30 and 40% UV-B treatments decreased the reaction centre chlorophylls by 11 and 33% and PS II activity by 0 and 20%; while PS I activity did not show any inhibitory effect. Chloroplasts isolated from control and 10% UV-B treated plants exhibited the same level of absorption at 676 nm. In vivo leaf fluorescence was found to be diminished with UV-B radiation and at the 10% UV-B, variable fluorescence was promoted significantly by 10%. The content of UV-absorbing compounds was progressively enhanced with doses of UV-B radiation along with higher absorption at 276 and 330 nm.  相似文献   

20.
为了探讨低剂量微波对增强UV-B辐射损伤菘蓝(Isatis indigotica Fort.)的修复作用,将经过10.08 kJ·m-2·d-1辐射损伤(PAR=220 μmol·m-2·s-1)的菘蓝幼苗分别经0、3、6、9和12 s等不同时间的微波辐照(126 mW·cm-2,2 450 MHz),然后测定其幼苗MDA含量、紫外吸收物质含量、抗坏血酸含量以及3种抗氧化酶SOD、CAT和POD活性.结果表明,增强UV-B辐射损伤菘蓝在微波的作用下其菘蓝幼苗中SOD、CAT和POD活性及紫外吸收物质含量、抗坏血酸含量提高,MDA含量得到显著的降低,说明微波对增强UV-B辐射伤害菘蓝幼苗具有修复作用.但是,随着微波剂量的增加,这种修复效应减弱,甚至消失.上述参数的变化说明适量时间的微波处理可以提高菘蓝对增强UV-B辐射的抵抗能力,并在此基础上初步探讨了微波的修复机理.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号