首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 171 毫秒
1.
Cheng SH  Zhuang JY  Fan YY  Du JH  Cao LY 《Annals of botany》2007,100(5):959-966
BACKGROUND: China has been successful in breeding hybrid rice strains, but is now facing challenges to develop new hybrids with high-yielding potential, better grain quality, and tolerance to biotic and abiotic stresses. This paper reviews the most significant advances in hybrid rice breeding in China, and presents a recent study on fine-mapping quantitative trait loci (QTLs) for yield traits. SCOPE: By exploiting new types of male sterility, hybrid rice production in China has become more diversified. The use of inter-subspecies crosses has made an additional contribution to broadening the genetic diversity of hybrid rice and played an important role in the breeding of super rice hybrids in China. With the development and application of indica-inclined and japonica-inclined parental lines, new rice hybrids with super high-yielding potential have been developed and are being grown on a large scale. DNA markers for subspecies differentiation have been identified and applied, and marker-assisted selection performed for the development of restorer lines carrying disease resistance genes. The genetic basis of heterosis in highly heterotic hybrids has been studied, but data from these studies are insufficient to draw sound conclusions. In a QTL study using stepwise residual heterozygous lines, two linked intervals harbouring QTLs for yield traits were resolved, one of which was delimited to a 125-kb region. CONCLUSIONS: Advances in rice genomic research have shed new light on the genetic study and germplasm utilization in rice. Molecular marker-assisted selection is a powerful tool to increase breeding efficiency, but much work remains to be done before this technique can be extended from major genes to QTLs.  相似文献   

2.
中国水稻遗传育种历程与展望   总被引:8,自引:0,他引:8  
吴比  胡伟  邢永忠 《遗传》2018,40(10):841-857
我国的水稻育种经历了矮化育种、杂种优势利用和绿色超级稻培育3次飞跃,其间伴随矮化育种(第一次绿色革命)、三系杂交稻培育、二系杂交稻培育、亚种间杂种优势利用、理想株型育种和绿色超级稻培育等6个重要历程。育种目标从唯产量是举到高抗、优质和高产并重,育种理念从高产优质逐步提升为“少投入,多产出,保护环境”。水稻功能基因组研究为第二次绿色革命准备了大量的有重要利用价值的基因,水稻育种正迈向设计育种的新时代。基因组选择技术和转基因技术将为培育“少打农药,少施化肥,节水抗旱,优质高产” 绿色超级稻保驾护航。本文对我国水稻遗传育种的发展历程进行了概括,指出了各种育种方法和育种技术的优缺点,系统介绍了水稻细胞质雄性不育和光温敏雄性核不育以及籼粳杂种不育的分子机制的研究进展,综述了水稻株型、穗型、粒形和养分高效利用相关的重要功能基因,阐明了产量与开花期联动的关系,凸显了我国水稻基础研究在国际上的重要地位。特别指出,近年来,我国水稻生产方式发生了或正在发生巨大变革,育种理念也要与时俱进。未来,杂交育种技术要与现代育种技术紧密结合,选育水稻品种不仅要满足市场需求,而且更要具备绿色健康的特点,同时还要适应新耕作制度和新耕作方法。  相似文献   

3.
1998年早季在广州研究了3个两系法杂交水稻组合和2个常规稻品种的产量构成因素,初步认为:两系法杂交稻新组合培矮64s/E32的产量最高,它单穗湿重和穗长亦最大,分别达5.42g和24.7cm;而常规稻品种粤香占亩有效穗数最高和谷/秆比值最大,分别达23.3万穗/亩和1.53。如果把这些性状有机地组合起来后再加上粤杂122的优质特性,这种结构模式将为华南地区水稻超高产或超级稻育种,展示了一种美好的前景。  相似文献   

4.
超级杂交水稻谷粒产量与叶光合速率的关系   总被引:6,自引:0,他引:6  
在2000~2005年期间,通过测定几种超级杂交水稻与普通杂交水稻‘汕优63’的产量构成和叶片光合作用探讨了谷粒产量与光合作用的关系。结果表明:(1)4种超级杂交水稻‘培矮64S/E32’、‘P88S/O293’、‘金23A/611’和‘GD-lS/ RB207’的产量水平显著高于‘汕优63’,是对照的108%~120%。(2)与‘汕优63’相比,这些超级杂交水稻的株型好,上层叶片直立,穗大即每穗粒数多,是对照的125%~177%。(3)与‘汕优63’相比,这些组合第二叶的净光合速率显著提高,但第一叶即剑叶的未必都较高。(4)去半叶处理降低了‘GD-1S/RB207’的结实率,而去半穗处理显著提高了结实率。因此,这些超级杂交水稻的高产原因在于穗大、株型好以及群体光能利用效率高。增加单叶特别是剑叶的光合能力是克服谷粒产量的光合产物源限制和在未来的超级杂交水稻育种中实现产量潜力新突破的关键。  相似文献   

5.
 较为系统地研究了两个超高产杂交稻‘两优培九’、‘华安3号’和多年来大面积推广的常规杂交稻‘汕优63’不同生育期的光合色素含量、净光合速率和水分利用效率。结果表明,在苗期,3个杂交稻的单位叶面积的叶绿素(Chl)含量差别不大,类胡萝卜素(Car)的含量以‘汕优63’为最高。然而,随着发育阶段的推进,到分蘖期,尤其是抽穗期剑叶的单位叶面积Chl和Car含量,两个超高产杂交稻高于‘汕优63’。从苗期到抽穗期,超高产杂交稻‘两优培九’和‘华安3号’的净光合速率(Pn)都比‘汕优63’高,而在苗期的午间强光条件下和分蘖期的早晨以及抽穗期的早晚相对弱光条件下其Pn的差别尤为显著。在苗期,‘汕优63’的水分利用效率(WUE)略高于‘两优培九’和‘华安3号’;到分蘖期和抽穗期,在上午10时之前和下午14时以后的时间段,则是两个超高产杂交稻明显高于‘汕优63’。这些结果说明,超高产杂交稻‘两优培九’和‘华安3号’不仅有较高的Pn和较强的抗光抑制能力,而且还能充分利用早晨和傍晚较弱的光强进行光合作用,这些是它们之所以高产的重要生理基础。此外,超高产杂交稻在生长发育的中后期(分蘖期和抽穗期)具有较高的WUE,有利于节约农业用水。  相似文献   

6.
Rice is one of the most important global food crops and a primary source of calories for more than half of the world's population. Rice production increased steadily during the green revolution era primarily as a result of introducing high-yielding rice varieties. World rice production increased at a rate of 2.3–2.5% per year during 1970s and 1980s, but this rate of growth was only 1.5% per year during the 1990s. The yield growth rate for rice has further declined during the first decade of this century. However, the populations in the major rice-consuming countries continue to grow at a rate of more than 1.5% per year. According to various estimates, world rice production must increase at the rate of 2 million tons per year. To meet this challenge, rice varieties with higher yield potential and greater yield stability are needed. Various strategies for increasing the yield potential of rice include; (1) conventional hybridization and selection, (2) F1 hybrid breeding, (3) modification of plant architecture, and (4) enhancement of photosynthesis. Many genes and QTLs have recently been identified which will assist with rice breeding objectives.  相似文献   

7.
What it will take to Feed 5.0 Billion Rice consumers in 2030   总被引:22,自引:0,他引:22  
Major advances have occurred in rice production due to adoption of green revolution technology. Between 1966 and 2000, the population of densely populated low income countries grew by 90% but rice production increased by 130% from 257 million tons in 1966 to 600 million tons in 2000. However, the population of rice consuming countries continues to grow and it is estimated that we will have to produce 40 more rice in 2030. This increased demand will have to be met from less land, with less water, less labor and fewer chemicals. To meet the challenge of producing more rice from suitable lands we need rice varieties with higher yield potential and greater yield stability. Various strategies for increasing the rice yield potential being employed include: (1) conventional hybridization and selection procedures, (2) ideotype breeding, (3) hybrid breeding, (4) wide hybridization and (5) genetic engineering. Various conventional and biotechnology approach are being employed to develop durable resistance to diseases and insect and for tolerance to abiotic stresses. The availability of the rice genome sequence will now permit identification of the function of each of 60,000 rice genes through functional genomics. Once the function of a gene is identified, it will be possible to develop new rice varieties by introduction of the gene through traditional breeding in combination with marker aided selection or direct engineering of genes into rice varieties.  相似文献   

8.
Retrospective and perspective of rice breeding in China   总被引:1,自引:0,他引:1  
Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity.  相似文献   

9.
The cultivated rice (Oryza sativa L.) has two subspecies, indica and japonica. The japonica rice germplasm has a narrower genetic diversity compared to the indica subspecies. Rice breeders aim to develop new varieties with a higher yield potential, with enhanced resistances to biotic and abiotic stresses, and improved adaptation to environmental changes. In order to face some of these challenges, japonica rice germplasm will have to be diversified and new breeding strategies developed. Indica rice improvement could also profit from more “genepool mingling” for which japonica rice could play an important role. Interesting traits such as low-temperature tolerance, and wider climate adaptation could be introgressed into the indica subspecies. In the past decade, huge developments in rice genomics have expanded our available knowledge on this crop and it is now time to use these technologies for improving and accelerating rice breeding research. With the full sequence of the rice genome, breeders may take advantage of new genes. Also new genes may be discovered from the genepool of wild relatives, or landraces of the genus Oryza, and incorporated into elite japonica cultivars in a kind of “gene revolution” program. Expectedly, new technologies that are currently being optimized, aiming for novel gene discovery or for tracking the regions under selection, will be suggested as new breeding approaches. This paper revisits breeding strategies successfully employed in indica rice, and discusses their application in japonica rice improvement (e.g. ideotype breeding, wide hybridization and hybrid performance).  相似文献   

10.
我国杂交水稻基因工程育种策略探讨   总被引:2,自引:0,他引:2  
杂交水稻在我国水稻及粮食生产中占有突出地位 ,基因工程可在杂交水稻育种中发挥重要作用。针对杂交水稻育种存在的主要问题 ,指出应将优质、抗虫和抗病作为当前基因工程育种的研究重点。同时提出基因工程育种与常规育种紧密结合 ,优质基因工程着重改良保持系及聚合转基因等策略 ,以培育出超高产优质抗病虫转基因聚合杂交稻新组合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号