首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In a 2-year experiment, 187 genotypes were grown under well-watered and drought stress conditions, imposed at panicle initiation stage. The relationship of genotypic variation in yield under drought conditions to potential yield, heading date and flowering delay, reduction in plant height, and to a drought response index (DRI) was detected. Grain yield under drought stress conditions was associated with yield under well-watered conditions (r= 0.47**, and r= 0.61** during 2 years of tests). The delay of heading date ranged from -1 (no delay) to 24days, and was negatively associated with grain yield(r=-0.40*), spikelet fertility percentage (r=-0.40**), harvest index (r=-0.58**), but positively associated with yield reduction percentage (r= 0.60**). The reduction in plant height was negatively associated with grain yield (r =-0.24**, and r =-0.29**), spikelet fertility percentage (r =-0.23**, and r =-0.21*), harvest index (r =-0.37**, and r = -0.54**), and positively associated with yield reduction percentage (r = 0.58**, and r = 0.58**) in 2003 and 2004, respectively. The DRI of genotypes was strongly associated with grain yield (r = 0.87**, and r= 0.77**), fertility percentage (r= 0.66** and r = 0.54**), harvest index (r=0.67** and r=0.61**), and negatively associated with grain reduction percentage (r=-0.70**, and r=-0.73**)under drought stress. The results indicate that genotypes with drought resistance can be identified by measuring yield potential, delay in flowering, reduction in plant height, or DRI under test environments of well-watered and drought stress.  相似文献   

2.
Transpiration efficiency (TE) is an important trait for drought tolerance in peanut ( Arachis hypogaea L.). The variation in TE was assessed gravimetrically using a long time interval in nine peanut genotypes (Chico, ICGS 44, ICGV 00350, ICGV 86015, ICGV 86031, ICGV 91114, JL 24, TAG 24 and TMV 2) grown in lysimeters under well-watered or drought conditions. Transpiration was measured by regularly weighing the lysimeters, in which the soil surface was mulched with a 2-cm layer of polythene beads. TE in the nine genotypes used varied from 1.4 to 2.9 g kg−1 under well-watered and 1.7 to 2.9 g kg−1 under drought conditions, showing consistent variation in TE among genotypes. A higher TE was found in ICGV 86031 in both well-watered and drought conditions and lower TE was found in TAG-24 under both water regimes. Although total water extraction differed little across genotypes, the pattern of water extraction from the soil profile varied among genotypes. High water extraction within 24 days following stress imposition was negatively related to pod yield ( r 2   =   0.36), and negatively related to water extraction during a subsequent period of 32 days ( r 2   =   0.73). By contrast, the latter, i.e. water extraction during a period corresponding to grain filling (24 to 56 days after flowering) was positively related to pod yield ( r 2   =   0.36). TE was positively correlated with pod weight ( r 2   =   0.30) under drought condition. Our data show that under an intermittent drought regime, TE and water extraction from the soil profile during a period corresponding to pod filling were the most important components.  相似文献   

3.
通过对我国苦荞主产区171份苦荞地方资源籽实的千粒重、百粒米重、百粒皮壳重、皮壳率、籽粒及皮壳黄酮含量测定,运用频数分布、相关性和聚类分析,考察它们的遗传变异情况。结果表明,千粒重、百粒米重、百粒皮壳重、皮壳率、籽粒及皮壳黄酮含量变异范围较大,分别为21.73~42.13 g、0.974~2.606 g、0.468~1.363 g、17.594~38.017 %、1.008~4.368 %和0.002~0.986 %,均值分别为29.43 g、1.988 g、0.729 g、24.702 %、2.019 %和0.144 %。相关分析表明,苦荞千粒重分别与百粒米重(r12 = 0.579**,r12.其它 = 0.315**)、百粒皮壳重(r13 = 0.746**,r13.其它 = 0.989**)、皮壳率(r14 = 0.216**,r14.其它 = -0.980**)之间,百粒皮壳重与皮壳率(r34= 0.807**,r34.其它 = 0.993**)之间,分别呈极显著相关;百粒米重分别与百粒皮壳重(r23 = 0.521**)、皮壳率(r24= 0.247**)之间,皮壳率与皮壳黄酮含量(r46= 0.187*)之间,分别呈显著相关。聚类分析表明,171份苦荞地方资源聚为5类,6个性状聚为3类。筛选出了千粒重、籽粒和皮壳黄酮含量较高的苦荞地方资源。以上结果可作为苦荞遗传研究与育种亲本选配提供参考。  相似文献   

4.
5.
At anthesis, under field conditions at Fundulea, each of 6 Romanian winter wheat genotypes was inoculated with 3Fusarium graminearum isolates used individually.Fusarium head blight (FHB) was assessed according to the following traits: relative weight of spikes (RWS), percentage of Fusarium damaged kernels (FDK), relative weight of kernels per head (RWKH), area under the disease progress curve (AUDPC) and deoxynivalenol (DON) content in total sample of kernels. Correlations between these traits and parameters revealed important differences between examined wheat genotypes in: DON accumulation, progress of FHB development, yield reduction, and models of host — pathogen interactions in theTriticum - Fusarium pathosystem. Significant correlations between different attributes of FHB were found forFusarium isolate 1 which is a moderate producer of DON (0.89 μg g-1). Weight of spike was significantly correlated with weight of kernels per spike (r = 0.93**) and with percentage of damaged kernels (r = - 0.87**), while FDK was highly correlated with RWKH (r = - 0.85*) and with DON content (r = 0.82*). Area under the disease progress curve was also found to be significantly correlated with DON content (r = 0.86*).  相似文献   

6.
Drought stress has often caused significant decreases in crop production which could be associated with global warming. Enhancing drought tolerance without a grain yield penalty has been a great challenge in crop improvement. Here, we report the Arabidopsis thaliana galactinol synthase 2 gene (AtGolS2) was able to confer drought tolerance and increase grain yield in two different rice (Oryza sativa) genotypes under dry field conditions. The developed transgenic lines expressing AtGolS2 under the control of the constitutive maize ubiquitin promoter (Ubi:AtGolS2) also had higher levels of galactinol than the non‐transgenic control. The increased grain yield of the transgenic rice under drought conditions was related to a higher number of panicles, grain fertility and biomass. Extensive confined field trials using Ubi:AtGolS2 transgenic lines in Curinga, tropical japonica and NERICA4, interspecific hybrid across two different seasons and environments revealed the verified lines have the proven field drought tolerance of the Ubi:AtGolS2 transgenic rice. The amended drought tolerance was associated with higher relative water content of leaves, higher photosynthesis activity, lesser reduction in plant growth and faster recovering ability. Collectively, our results provide strong evidence that AtGolS2 is a useful biotechnological tool to reduce grain yield losses in rice beyond genetic differences under field drought stress.  相似文献   

7.
Three pigeonpea (Cajanus cajan L. Millsp.) genotypes- GT-1, AKP-1 and PRG-158 with varying crop duration, growth habit and flowering pattern were evaluated for variability in their response for drought stress. Drought stress was imposed at initiation of flowering and the observations on biomass and seed yield parameters were recorded at harvest. The magnitude of response of individual component to drought stress was found to be genotype specific. Drought stress significantly decreased photosynthetic rate (PN), transpiration rate (Tr) and relative water content (RWC) in all the genotypes, however the magnitude of reduction differed with genotype. With drought stress, the reduction of PN was highest in GT-1 while reduction in Tr was highest in PRG-158. The genotype AKP-1, accumulated significantly higher concentrations of osmotic solutes especially proline under water deficit stress, this facilitated it to maintain higher relative water content (RWC) and lower malondialdehyde (MDA) content as compared to other genotypes. Drought stress also impacted biomass production and their partitioning to vegetative and reproductive components at harvest. There was significant variability between the genotypes for seed yield under drought stress while it was non-significant under well-watered condition. Drought stress enhanced flower drop and decreased flower to pod conversion resulting in reduced pod number and seed number in PRG-158 and GT-1. The genotype AKP-1 recorded superior performance for seed yield under stress environment due to its ability in maintaining pod and seed number as well as improved test weight (100 seed weight). Under drought stress, significant positive association of seed yield with proline, seed number, pod number and test weight clearly indicating their role in drought tolerance.  相似文献   

8.
采用SSR标记连锁图谱和复合区间作图法在山西灌溉和干旱胁迫条件下,对玉米(Zea mays L.)自交系黄早四×掖107组合的F3群体雌雄开花间隔天数(ASI)、结穗率和籽粒产量进行了数量性状位点(QTL)定位及基因效应分析.结果表明,在两种水分处理下,ASI、结穗率与籽粒产量的相关性均达到显著水平(P<0.05).在灌溉和干旱胁迫下,分别检测到3个和2个控制ASI的QTL,位于第1、2、3和第2、5染色体上.在灌溉条件下,在第3和第6染色体上各检测到1个控制结穗率的QTL,基因作用方式呈加性或部分显性,可解释19.9%的表型变异;在干旱条件下,在第3、 7、10染色体上共检测到4个控制结穗率的QTL,基因作用方式为显性或部分显性,可解释60.4%的表型变异.在灌溉和干旱胁迫下,控制产量的QTL分别定位在第3、6、7和第1、2、4、8染色体上,基因作用方式均以加性或部分显性为主,可解释的表型变异为7.3%~22.0%.在干旱条件下,借助连锁分子标记和基因效应分析,可构建包含ASI、结穗率和产量QTL的选择指数,用于分子标记辅助育种.  相似文献   

9.
A pearl millet inbred germplasm association panel (PMiGAP) comprising 250 inbred lines, representative of cultivated germplasm from Africa and Asia, elite improved open-pollinated cultivars, hybrid parental inbreds and inbred mapping population parents, was recently established. This study presents the first report of genetic diversity in PMiGAP and its exploitation for association mapping of drought tolerance traits. For diversity and genetic structure analysis, PMiGAP was genotyped with 37 SSR and CISP markers representing all seven linkage groups. For association analysis, it was phenotyped for yield and yield components and morpho-physiological traits under both well-watered and drought conditions, and genotyped with SNPs and InDels from seventeen genes underlying a major validated drought tolerance (DT) QTL. The average gene diversity in PMiGAP was 0.54. The STRUCTURE analysis revealed six subpopulations within PMiGAP. Significant associations were obtained for 22 SNPs and 3 InDels from 13 genes under different treatments. Seven SNPs associations from 5 genes were common under irrigated and one of the drought stress treatments. Most significantly, an important SNP in putative acetyl CoA carboxylase gene showed constitutive association with grain yield, grain harvest index and panicle yield under all treatments. An InDel in putative chlorophyll a/b binding protein gene was significantly associated with both stay-green and grain yield traits under drought stress. This can be used as a functional marker for selecting high yielding genotypes with ‘stay green’ phenotype under drought stress. The present study identified useful marker-trait associations of important agronomics traits under irrigated and drought stress conditions with genes underlying a major validated DT-QTL in pearl millet. Results suggest that PMiGAP is a useful panel for association mapping. Expression patterns of genes also shed light on some physiological mechanisms underlying pearl millet drought tolerance.  相似文献   

10.
Drought causes serious yield losses in cotton production throughout the world. Association mapping allows identification and localization of the genes controlling drought-related traits which will be helpful in cotton breeding. In the present study, genetic diversity analysis and association mapping of yield and drought traits were performed on a panel of 99 upland cotton genotypes using 177 SSR (simple sequence repeat) markers. Yield parameters and drought tolerance-related traits were evaluated for two seasons under two watering regimes: water-stressed and well-watered. The traits included seed cotton yield (SCY), lint yield (LY), lint percentage (LP), water-use efficiency (WUE), yield potential (YP), yield reduction (YR), yield index (YI), drought sensitivity index (DSI), stress tolerance index (STI), harmonic mean (HM), and geometric mean productivity (GMP). The genotypes with the least change in seed cotton yield under drought stress were Zeta 2, Delcerro, Nazilli 87, and DAK 66/3 which were also the most water-use efficient cultivars. The average genetic diversity of the panel was 0.38. The linkage disequilibrium decayed relatively rapidly at 20–30 cM (r2?≥?0.5). We identified 30 different SSR markers associated with the traits. Fifteen and 23 SSR markers were linked to the traits under well-watered and water-stress conditions, respectively. To our knowledge, most of these quantitative yield and drought tolerance-associated loci were newly identified. The genetic diversity and association mapping results should facilitate the development of drought-tolerant cotton lines with high yield in molecular breeding programs.  相似文献   

11.
Population genetic affinities of 261 European sculpins Cottus gobio L. across the Rhenanian-Danubian and the Rhenanian-Rhónian watersheds were assessed by horizontal agarose-gel electrophoresis of up to 20 allozyme systems (encoded by 29 genetic loci). Polymorphism Pmean= 0.0689 (range: 0.000-0.1379), and heterozygosity He(mean)= 0.0167 (range: 0.000-0.0507) indicated low genetic variability within local stocks from single streams. Significant genetic distances Dmean= 0.1917 ± 0.0336 (Dmax= 0.2407), based on differential fixation at 3–6 loci (Acp-1**, Pgdh**, Fh**, Est-1**, Gpi-2**, and Pgm-1**) distinguished populations from the Neckar catchment basin from those of the Hochhrein-Oberrhein and Danube basins. Differential fixation of alleles and pronounced genetic distances also separated sculpins of the Rh6nian tributary Doubs from Neckarian populations (Dmen= 0.2131 ± 0.0033; Ah**, Acp-1**, Fh**), of the Doubs from the Danube (Dmean= 0.2177 ± 0.0028; Gpi-2**, Pgm-1**, Pgdh**, Ah**), and of the Doubs from the Hochrhein-Oberrhein (Dmean= 0.1780; Pgm-1**, Pgdh**, Ah**). Genetic distances between streams within these drainages proved low (Neckar: Dmen= 0.0047 ± 0.0014, Danube: Dmean= 0.026 ± 0.0179, Rhine: Dmean= 0.0308). Screening of another 16 small-size samples consisting of 55 sculpins for nine diagnostic loci (Aat-2**, Acp-1**, Acp-2**, Ah**, Est-1**, Fh**, Gpi-2**, Pgdh** and Pgm-1**) confirmed the genetic homogeneity of sculpins within the Danubian and Neckarian drainage systems, but Neckarian sculpins were similar to those from the river Main. Populations from Hochrhein-Oberrhein resembled the Danubian stock but contained a decreasing frequency of ‘Neckarian’ markers when approaching the Danubian region. The genetic divergence between Neckarian, Danubian and Rhdnian sculpins suggests the existence of hitherto neglected taxa of anteglacial divergence.  相似文献   

12.
不同抗旱性花生品种的根系形态发育及其对干旱胁迫的响应   总被引:11,自引:0,他引:11  
丁红  张智猛  戴良香  宋文武  康涛  慈敦伟 《生态学报》2013,33(17):5169-5176
为明确不同抗旱性花生品种的根系形态发育特征,探讨其根系形态发育特征对不同土壤水分状况的响应机制,在防雨棚旱池内进行土柱栽培试验,研究抗旱型品种“花育22号”、“唐科8号”和干旱敏感型品种“花育23号”3个不同抗旱性花生品种根系形态发育特征及其对干旱胁迫的响应.结果表明:抗旱型品种根系较发达,具有较大的根系生物量、总根长、总根系表面积.干旱胁迫使抗旱型品种根系总表面积和体积增加,而干旱敏感型品种则相反.干旱胁迫显著增加抗旱型品种“花育22号”20 cm以下土层内根长密度分布比例及根系表面积和体积,但“唐科8号”相应根系性状仅在20-40 cm土层内增加;干旱胁迫使干旱敏感型品种“花育23号”40 cm以下土层内各根系性状升高,但未达显著水平且其深层土壤内各根系性状增加幅度小于“花育22号”.花生根系总长、总表面积及0-20 cm土层内根系性状与产量间呈显著或极显著正相关.土壤水分亏缺条件下,花生主要通过增加深层土壤内根长、根系表面积和体积等形态特性,优化空间分布构型,以调节植株对水分的利用.  相似文献   

13.
河北省冬小麦丰产抗旱性表型鉴定指标分析   总被引:2,自引:0,他引:2  
以河北省审定的85个冬小麦品种为材料,采用防雨棚春季干旱和露地灌溉2个处理,分别于开花期、成熟期调查株高等27个表型性状,分析了各表型性状与单株子粒产量的相关性。结果表明,单株成穗数等12个性状与单株子粒产量抗旱系数或抗旱指数呈显著或极显著相关;结合表型性状变异系数,明确了提高单株成穗数、穗粒数、灌溉条件下较长的旗叶长度和干旱条件下较短的旗叶长度是培育丰产抗旱小麦新品种的主攻方向;子粒比重、子粒长度及干旱条件下的结实率和每穗小穗数可作为河北省小麦种质资源丰产抗旱性的鉴定依据;河北省小麦品种丰产性高,而抗旱性尚需进一步改善。  相似文献   

14.
In the dry savannas of West and Central Africa, where low soil fertility, unpredictable rainfall, weed competition and recurrent drought are major constraints to maize production, the development of tropical maize genotypes with high and stable yields under drought and low-nitrogen condition is very important since access to these improved genotypes may be the only affordable alternative to many small scale farmers. Field trials were conducted in 2002 and 2003 at Ikenne southwestern Nigeria to investigate the effect of weed pressures and drought stress on 2 maize (Zea mays L.) hybrids (9134-14, 9803-9) and 2 open-pollinated varieties (STREVIWD, IYFDCO1). Irrigation was withdrawn 4 weeks after planting (about four weeks to mid-flowering) in the drought stress while the adjacent watered treatment had irrigation throughout the growing period. The weed pressures were the completely weeded plots (hand weeding every week) and weedy plots (weeded once, 2 weeks after planting). The experiment was a split plot in a randomized complete block design with four replicates. Drought stress reduced the stover weight and grain yield of the maize cultivars by 6% and 34% respectively. Weed-free plots had maize with higher agronomic traits than unweeded treatments. Hybrid 9803-9 was more susceptible to drought and weed stress as indicated in the stover weight and grain yield. STREVIWD an open-pollinated variety (OPV) and Hybrid 9134-14 had superior performances in terms of grain yield and shorter anthesis silking interval. Soil moisture content was higher in the unweeded plots while the uptake of moisture was highest in drought susceptible hybrid 9803-9. Irrespective of the genotypes, maize (hybrid and OPV) was more tolerant to drought in a weed-free environment than in unweeded conditions. There existed a negative but significant correlation between weed biomass and chlorophyll content (−0.29, P < 0.01), grain yield (−0.45, P < 0.05), ear plant−1 (−0.27, P < 0.05) and kernel-number (−0.366 P < 0.01).  相似文献   

15.
Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (Δ18O) as a new secondary trait for yield potential and drought resistance in maize ( Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18O enrichment of plant matter (leaves and kernels). In addition, kernel Δ18O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel Δ18O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of Δ18O for selecting the genotypes best suited to differing water conditions.  相似文献   

16.
Involvement of polyamines in the drought resistance of rice   总被引:2,自引:0,他引:2  
This study investigated whether and how polyamines (PAs) in rice (Oryza sativa L.) plants are involved in drought resistance. Six rice cultivars differing in drought resistance were used and subjected to well-watered and water-stressed treatments during their reproductive period. The activities of arginine decarboxylase, S-adenosyl-L-methionine decarboxylase, and spermidine (Spd) synthase in the leaves were significantly enhanced by water stress, in good agreement with the increase in putrescine (Put), Spd, and spermine (Spm) contents there. The increased contents of free Spd, free Spm, and insoluble-conjugated Put under water stress were significantly correlated with the yield maintenance ratio (the ratio of grain yield under water-stressed conditions to grain yield under well-watered conditions) of the cultivars. Free Put at an early stage of water stress positively, whereas at a later stage negatively, correlated with the yield maintenance ratio. No significant differences were observed in soluble-conjugated PAs and insoluble-conjugated Spd and Spm among the cultivars. Free PAs showed significant accumulation when leaf water potentials reached -0.51 MPa to -0.62 MPa for the drought-resistant cultivars and -0.70 MPa to -0.84 MPa for the drought-susceptible ones. The results suggest that rice has a large capacity to enhance PA biosynthesis in leaves in response to water stress. The role of PAs in plant defence to water stress varies with PA forms and stress stages. In adapting to drought it would be good for rice to have the physiological traits of higher levels of free Spd/free Spm and insoluble-conjugated Put, as well as early accumulation of free PAs, under water stress.  相似文献   

17.
Drought is a major constraint to rice (Oryza sativa L.) production in rainfed and poorly irrigated environments. Identifying genomic regions influencing the response of yield and its components to water deficits will aid our understanding of the genetic mechanism of drought tolerance (DT) of rice and the development of DT varieties. Grain yield (GY) and its components of a recombinant inbred population developed from a lowland rice and an upland rice were investigated under different water levels in 2003 and 2004 in a rainout DT screening facility. Correlation and path analysis indicated that spikelet fertility (SF) was particularly important for grain yield with direct effect (P=0.60) under drought stress, while spikelet number per panicle (SN) contributed the most to grain yield (P=0.41) under well-watered condition. A total of 32 quantitative trait loci (QTLs) for grain yield and its components were identified. The phenotypic variation explained by individual QTLs varied from 1.29% to 14.76%. Several main effect QTLs affecting SF, 1,000-grain weight (TGW), panicle number (PN), and SN were mapped to the same regions on chromosome 4 and 8. These QTLs were detected consistently across 2 years and under both water levels in this study. Several digenic interactions among yield components were also detected. The identification of genomic regions associated with GY and its components under stress will be useful to improve drought tolerance of rice by marker-aided approaches.G. H. Zou and H. W. Mei contribute equally to this work.  相似文献   

18.
To investigate the genetic basis of drought tolerance in soybean ( Glycine max L. Merr.) a recombinant inbred population with 184 F2:7:11 lines developed from a cross between Kefeng1 (drought tolerant) and Nannong1138-2 (drought sensitive) were tested under water-stressed and well-watered conditions in field and greenhouse trials. Traits measured included leaf wilting coefficient, excised leaf water loss and relative water content as indicators of plant water status and seed yield. A total of 40 quantitative trait loci (QTLs) were identified: 17 for leaf water status traits under drought stress and 23 for seed yield under well-watered and drought-stressed conditions in both field and greenhouse trials. Two seed yield QTLs were detected under both well-watered and drought-stressed conditions in the field on molecular linkage group H and D1b, while two seed yield QTLs on molecular linkage group C2 were found under greenhouse conditions. Several QTLs for traits associated with plant water status were identified in both field and greenhouse trials, including two leaf wilting coefficient QTLs on molecular linkage group A2 and one excised leaf water loss QTL on molecular linkage group H. Phenotypic correlations of traits suggested several QTLs had pleiotropic or location-linked associations. These results will help to elucidate the genetic basis of drought tolerance in soybean, and could be incorporated into a marker-assisted selection breeding program to develop high-yielding soybean cultivars with improved tolerance to drought stress.  相似文献   

19.
20.
Drought is a serious agronomic problem and the single greatest factor contributing to crop yield loss in the world today. This problem may be alleviated by developing crops that are well adapted to dry-land environments. Sorghum (Sorghum bicolor (L.) Moench) is one of the most drought-tolerant grain crops and is an excellent crop model for evaluating mechanisms of drought tolerance. In this study, a set of 98 recombinant inbred (RI) sorghum lines was developed from a cross between two genotypes with contrasting drought reactions, TX7078 (pre-flowering-tolerant, post-flowering susceptible) and B35 (pre-flowering susceptible, post-flowering-tolerant). The RI population was characterized under drought and non-drought conditions for the inheritance of traits associated with post-flowering drought tolerance and for potentially related components of grain development. Quantitative trait loci (QTL) analysis identified 13 regions of the genome associated with one or more measures of post-flowering drought tolerance. Two QTL were identified with major effects on yield and 'staygreen under post-flowering drought. These loci were also associated with yield under fully irrigated conditions suggesting that these tolerance loci have pleiotropic effects on yield under non-drought conditions. Loci associated with rate and/or duration of grain development were also identified. QTL analysis indicated many loci that were associated with both rate and duration of grain development. High rate and short duration of grain development were generally associated with larger seed size, but only two of these loci were associated with differences in stability of performance under drought.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号