首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Carbon Monoxide Promotes Lateral Root Formation in Rapeseed   总被引:1,自引:0,他引:1  
Carbon monoxide (CO), an odorless, tasteless and colorless gas, has recently proved to be an important bioactive or signalmolecule in mammalian cells, with its effects mediated mainly by nitric oxide (NO). In the present report, we show thatexogenous CO induces lateral root (LR) formation, an NO-dependent process. Administration of the CO donor hematin torapeseed (Brassica napus L. Yangyou 6) seedlings for 3 days, dose-dependently promoted the total length and number ofLRs. These responses were also seen following the application of gaseous CO aqueous solutions of different saturatedconcentrations. Furthermore, the actions of CO on seedlings were fully reversed when the CO scavenger hemoglobin (Hb)or the CO-specific synthetic inhibitor zinc protoporphyrin-IX (ZnPPIX) were added. Interestingly, depletion of endogenousNO using its specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide potassium salt (cPTIO)or the nitric oxide synthase (NOS) inhibitor N~G-nitro-L-arginine methyl ester (L-NAME),led to the complete abolition ofLR development, illustrating an important role for endogenous NO in the action of CO on LR formation. However, theinduction of LR development by 200 umol/L sodium nitroprusside (SNP),an NO donor, was not affected by the presenceor absence of ZnPPIX. Furthermore, using an anatomical approach combined with laser scanning confocal microscopywith the NO-specific fluorophore 4,5-diaminofluorescein diacetate, we observed that both hematin and SNP increased NOrelease compared with control samples and that the NO signal was mainly distributed in the LR primordia (LRP), especiallyafter 36 h treatment. The LRP were found to have similar morphology in control, SNP-and hematin-treated seedlings.Similarly, the enhancement of the NO signal by CO at 36 h was differentially quenched by the addition of cPTIO, L-NAME,ZnPPIX and Hb. In contrast, the induction of NO caused by SNP was not affected by the application of ZnPPIX. Therefore,we further deduced that CO induces LR formation probably mediated by the NO/NOS pathway and NO may act downstreamof CO signaling, which has also been shown to occur in animals.  相似文献   

2.
Recently, in animals, carbon monoxide (CO), like nitric oxide (NO), was implicated as another important physiological messenger or bioactive molecule. Previous researches indicate that heme oxygenase (HO)-1 (EC 1.14.99.3) catalyzes the oxidative conversion of heme to CO and biliverdin IXa (BV) with the concomitant release of iron. However, little is known about the physiological roles of CO in plant, especially in stomatal movement of guard cells. In the present paper, the regulatory role of CO during stomatal movement in Vicia faba was surveyed. Results indicated that, like sodium nitroprusside (SNP), CO donor hematin induced stomatal closure in dose- and time-dependent manners. These responses were also proved by the addition of gaseous CO aqueous solution with different concentrations, showing for the first time that CO and NO exhibit similar regulation role in the stomatal movement. Moreover, our data showed that 2,4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO)/NG-nitro- l -arginine-methyl ester ( l -NAME) not only reversed stomatal closure by CO, but also suppressed the NO fluorescence induced by CO, implying that CO-induced stomatal closure probably involves NO/nitric oxide synthase (NOS) signal system. Additionally, the CO/NO scavenger hemoglobin (Hb) and CO-specific synthetic inhibitor zinc protoporphyrin IX (ZnPPIX), NO scavenger cPTIO and NOS inhibitor l -NAME reversed the darkness-induced stomatal closure and NO fluorescence. These results show that, maybe like NO, the levels of CO in guard cells of V.   faba is higher in dark than that in light, HO-1 and NOS are the enzyme systems responsible for generating endogenous CO and NO in darkness, respectively, and that CO being from HO-1 mediates darkness-induced NO synthesis in guard cells' stomatal closure of V.   faba .  相似文献   

3.
4.
5.
Possible modulation of Brewer's yeast-induced nociception by centrally (icv) administered nitric oxide (NO) modulators, viz., NO synthase (NOS) inhibitors, NO precursor, donors, scavengers and co-administration of NO donor (SIN-1) with NOS inhibitor (L-NAME) and NO scavenger (Hb) was investigated in rats. Administration of NOS inhibitors and NO scavenger Hb increased the pain threshold capacity significantly, whereas NO donors SIN-1, SNP and NO precursor L-arginine were found to be hyperalgesic. D-arginine, the inactive isomer of L-arginine and methylene blue, inhibitor of soluble guanylate cyclase failed to alter the nociceptive behaviour in rats. Co-administration of SIN-1 with L-NAME and Hb found to increase the nociceptive threshold. The results indicate, that centrally administered NO modulators alter the nociceptive transmission induced by Brewer's yeast in rats.  相似文献   

6.
Cadmium (Cd) is toxic to crown roots (CR), which are essential for maintaining normal growth and development in rice seedlings. Nitric oxide (NO) is an important signaling molecule that plays a pivotal role in plant root organogenesis. Here, the effects of Cd on endogenous NO content and root growth conditions were studied in rice seedlings. Results showed that similar to the NO scavenger, cPTIO, Cd significantly decreased endogenous NO content and CR number in rice seedlings, and these decreases were recoverable with the application of sodium nitroprusside (SNP, a NO donor). Microscopic analysis of root collars revealed that treatment with Cd and cPTIO inhibited CR primordia initiation. In contrast, although SNP partially recovered Cd-caused inhibition of CR elongation, treatment with cPTIO had no effect on CR elongation. l-NMMA, a widely used nitric oxide synthase (NOS) inhibitor, decreased endogenous NO content and CR number significantly, while tungstate, a nitrate reductase (NR) inhibitor, had no effect on endogenous NO content and CR number. Moreover, enzyme activity assays indicated that treatment with SNP inhibited NOS activity significantly, but had no effect on NR activity. All these results support the conclusions that a critical endogenous NO concentration is indispensable for rice CR primordia initiation rather than elongation, NOS is the main source for endogenous NO generation, and Cd decreases CR number by inhibiting NOS activity and thus decreasing endogenous NO content in rice seedlings.  相似文献   

7.
Chen YH  Kao CH 《Protoplasma》2012,249(1):187-195
In the present study, the role of nitric oxide (NO) in the regulation of lateral root (LR) formation in rice was examined. Application of sodium nitroprusside (SNP; a NO donor) and indole-3-butyric acid (IBA; a naturally occurring auxin) to rice seedlings induced LR formation. The effect is specific for NO because the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3- oxide (cPTIO) blocked the action of SNP and IBA. Endogenous NO was detected by the specific fluorescence probe 4-amino-5-methylamino-2′,7′-difluorofluorescein diacetate. SNP- and IBA-induced NO fluorescence was specifically suppressed by cPTIO. Nitrate reductase (NR) inhibitor sodium tungstate completely inhibited IBA-induced LR formation and NO fluorescence. However, nitric oxide synthase inhibitor N G-nitro-l-arginine methyl ester hydrochloride slightly reduced IBA-induced LR formation and NO generation. It appears that NO generation that occurs in response to IBA might primarily involve NR activity. Moreover, NO production caused by SNP and IBA was localized in root area corresponding to LR emergence. The effects of Ca2+ chelators, Ca2+-channel inhibitors, and calmodulin antagonists on LR formation induced by SNP and IBA were also examined. All these inhibitors were effective in reducing the action of SNP and IBA. However, Ca2+ chelators and Ca2+-channel inhibitors had no effect on SNP- and IBA-induced NO generation. It is concluded that cytosolic levels of Ca2+ may regulate SNP and IBA action through calmodulin-dependent mechanism.  相似文献   

8.
9.
Nitric oxide (NO) has been known as an important signal in plant antioxidative defense but its production and roles in water stress are less known. The present study investigated whether NO dependence on a NO synthase-lika (NOS) activity is involved in the signaling of drought-induced protective responses in maize seedlings. NOS activity, rate of NO release and drought responses were analyzed when NO donor sodium nitroprusside (SNP), NO scavenger c-PTIO (2-(4-carboxyphenyl)-4,4,5,5-tetramathylimidazoline-1-oxyl-3-oxide) and NOS inhibitor L-NAME (NG-nitro-L-arginine methyl ester) were applied to both detached maize leaves and whole plants. Both NOS activity and the rate of NO release increased substantially under dehydration stress. The high NOS activity induced by c-PTIO as NO scavenger and NO accumulation Inhibited by NOS inhibitor L-NAME In dehydration-treated maize seedlings Indicated that most NO production under water deficit stress may be generated from NOS-like activity. After dehydration stress for 3 h, detached maize leaves pretreated with NO donor SNP maintained more water content than that of control leaves pretreated with water. This result was consistent with the decrease in the transpiration rate of SNP-treated leaves subjected to drought treatment for 3 h. Membrane permeability, a cell injury index, was lower in SNP-trested maize leaves under dehydration stress for 4 h when compared with the control leaves. Also, superoxide dismutsse (SOD) activity of SNP combined drought treatment maize leaves was higher than that of drought treatment alone, indicating that exogenous NO treatment alleviated the water loss and oxidative damage of maize leaves under water deficit stress. When c-PTIO as a specific NO scavenger was applied, the effects of applied SNP were overridden. Treatment with L-NAME on leaves also led to higher membrane permeability, higher transpiration rate and lower SOD activities than those of control leaves, indicating that NOS-like activity was involved in the antioxidative defense under water stress. These results suggested that NO dependence on NOS-like activity serves as a signaling component in the induction of protective responses and is associated with drought tolerance in maize seedlings.  相似文献   

10.
NO和H2O2在光/暗调控蚕豆气孔运动中的作用及其相互关系   总被引:10,自引:0,他引:10  
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H_2O_2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索。结果显示,光下外源NO供体硝普钠(SNP)和H_2O_2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂N~G-氮-L-精氨酸-甲酯(L-NAME)和H_2O_2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H_2O_2水平比暗中明显降低。上述结果表明,光/暗通过影响保卫细胞NO和H_2O_2的水平调控气孔运动。研究还发现,光下H_2O_2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H_2O_2的这些效应;光下SNP既诱导H_2O_2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转。这些结果表明,NO和H_2O_2在生成及效应上均存在明显的相互作用。另外,L-NAME显著逆转暗和光下H_2O_2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H_2O_2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭。  相似文献   

11.
一氧化氮参与调节盐胁迫诱导的玉米幼苗脱落酸积累   总被引:12,自引:1,他引:11  
以三叶一心期的玉米幼苗为实验材料,研究了盐胁迫下玉米幼苗根尖和叶片中一氧化氮(NO)和脱落酸(ABA)积累之间的关系。结果表明,盐胁迫下玉米幼苗NO和ABA的含量均增加,用NO供体硝普钠(Sodium nitroprusside,SNP)处理时,ABA含量亦增加,且累积的时间较盐胁迫下早。用NO合成的抑制剂L-NAME (Nω-nitro-L-arginine methyl ester hydrochloride)和NaN,处理时,可减弱盐胁迫诱导的ABA含量的增加,用NO清除剂cPTIO处理时,这种盐胁迫诱导的ABA增加减少。推测盐胁迫下产生的NO参与调节ABA的积累及逆境下植物的防御反应。  相似文献   

12.
研究了一氧化氮(NO)供体普钠(SNP)、一氧化氮清除剂C-PTIO和一氧化氮合酶(NOS)抑制L-NAME对绿豆(Vigna radiataL.)下胚轴插条生根的影响.并对不定根生期间手条基部NO 和NADPH-黄递酶的时空变化进行了检测.所试浓度SNP均明显促进下胚轴不根发生.分别插条切取后24h和36h于其基部维管束之间检测到NADPH-黄递酶(NOS标记酶)阳性反应和NO荧光,根原基也于48h在相同位置出现,并于60h进一步伸长.48~60h期间,NADPH、黄递的阳性反应及NO荧光有增强趋势,并主要分布在不定根分生组织中.L-NAME既减弱NADPH-黄递酶的阳性反应和NO荧光,也延缓不不定根发生;而c-PTIO对NO荧光及不定根生均有抑制作用.上述结果证明:NO在不定根发生及发育过程中有重要作用,而且此过程中的NO很可能由类似的NOS催化产生.  相似文献   

13.
研究了一氧化氮(NO)供体硝普钠(SNP)、一氧化氮清除剂c-PTIO和一氧化氮合酶(NOS)抑制剂L-NAME对绿豆(Vigna radiata L.)下胚轴插条生根的影响,并对不定根发生期间插条基部NO和NADPH-黄递酶的时空变化进行了检测。所试浓度SNP均明显促进下胚轴不定根发生。分别在插条切取后24 h和36 h于其基部维管束之间检测到NADPH-黄递酶(NOS标记酶)阳性反应和NO荧光,根原基也于48 h在相同位置出现,并于60 h进一步伸长。48-60h期间,NADPH-黄递酶的阳性反应及NO荧光有增强趋势,并主要分布在不定根分生组织中。L-NAME既减弱NADPH-黄递酶的阳性反应和NO荧光,也延缓不定根发生;而c-PTIO对NO荧光及不定根发生均有抑制作用。上述结果证明:NO在不定根发生及发育过程中有重要作用,而且此过程中的NO很可能由类似的NOS催化产生。  相似文献   

14.
The major feature of the plant-growth-promoting bacteria Azospirillum brasilense is its ability to modify plant root architecture. In plants, nitric oxide (NO) mediates indole-3-acetic acid (IAA)-signaling pathways leading to both lateral (LR) and adventitious (AR) root formation. Here, we analyzed aerobic NO production by A. brasilense Sp245 wild type (wt) and its mutants Faj009 (IAA-attenuated) and Faj164 (periplasmic nitrate reductase negative), and its correlation with tomato root-growth-promoting effects. The wt and Faj009 strains produced 120 nmol NO per gram of bacteria in aerated nitrate-containing medium. In contrast, Faj164 produced 5.6 nmol NO per gram of bacteria, indicating that aerobic denitrification could be considered an important source of NO. Inoculation of tomato (Solanum lycopersicum Mill.) seedlings with both wt and Faj009 induced LR and AR development. In contrast, Faj164 mutant was not able to promote LR or AR when seedlings grew in nitrate. When NO was removed with the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5,-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), both LR and AR formation were inhibited, providing evidence that NO mediated Azospirillum-induced root branching. These results show that aerobic NO synthesis in A. brasilense could be achieved by different pathways and give evidence for an NO-dependent promoting activity on tomato root branching regardless of bacterial capacity for IAA synthesis.  相似文献   

15.
16.
Xu LL  Lai YL  Wang L  Liu XZ 《Fungal biology》2011,115(2):97-101
The in vitro effects of abscisic acid (ABA) and nitric oxide (NO) on the nematode-trapping fungus Drechslerella stenobrocha AS6.1 were examined. The average number of traps (constricting rings) per colony and the percentage of nematodes (Caenorhabditis elegans) trapped were greatly increased by addition of ABA but greatly suppressed by addition of sodium nitroprusside (SNP, an NO donor) to corn meal agar. The suppressive effect of SNP was not negated by addition of an NO synthase competitive inhibitor (l-naphthylacetic acid, L-NNA) or an NO-specific scavenger [2-(4-carboxyphenyl)-4,4, 5,5-tetramethylimidazoline-1-oxyl-3-oxide, cPTIO]. When added without SNP, however, L-NNA and cPTIO caused moderate increases in trap number and trapping. The results indicate that the trap formation and nematode-trapping ability of D. stenobrocha were enhanced by ABA but decreased by exogenous NO.  相似文献   

17.
Chen YH  Chao YY  Hsu YY  Hong CY  Kao CH 《Plant cell reports》2012,31(6):1085-1091
Lateral root (LR) development performs the essential tasks of providing water, nutrients, and physical support to plants. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of nitric oxide (NO), auxin, and hemin (Hm) on LR formation in rice. Treatment with Hm [a highly effective heme oxygenase (HO) inducer], sodium nitroprusside (SNP, an NO donor), or indole-3-butyric acid (IBA, a naturally occurring auxin) induced LR formation and HO activity. LR formation and HO activity induced by SNP and IBA but not Hm was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide. As well, Hm, SNP, and IBA could induce OsHO1 mRNA expression. Zn protoporphyrin IX (the specific inhibitor of HO) and hemoglobin (the carbon monoxide/NO scavenger) reduced LR number and HO activity induced by Hm, SNP, and IBA. Our data suggest that HO is required for Hm-, auxin-, and NO-induced LR formation in rice.  相似文献   

18.
借助表皮条分析和激光扫描共聚焦显微镜技术,对NO和H2O2在光/暗调控蚕豆(Vicia faba L.)气孔运动中的作用及其相互关系进行了探索.结果显示,光下外源NO供体硝普钠(SNP)和H2O2促进气孔关闭的效应明显大于暗中,暗中NO专一性清除剂2,4-羧基苯-4,4,5,5-四甲基咪唑-1-氧-3-氧化物(cPTIO)、一氧化氮合酶(NOS)抑制剂NG-氮-L-精氨酸-甲酯(L-NAME)和H2O2清除剂抗坏血酸(Vc)、过氧化氢酶(CAT)对气孔开度的效应明显大于光下,而且光下蚕豆保卫细胞NO和H2O2水平比暗中明显降低.上述结果表明,光/暗通过影响保卫细胞NO和H2O2的水平调控气孔运动.研究还发现,光下H2O2既诱导NO水平增加,也诱导气孔关闭,cPTIO和L-NAME有效地逆转H2O2的这些效应;光下SNP既诱导H2O2水平增加,也诱导气孔关闭,SNP的上述效应又被Vc和CAT有效逆转.这些结果表明,NO和H2O2在生成及效应上均存在明显的相互作用.另外,L-NAME显著逆转暗和光下H2O2处理对气孔关闭和NO生成的效应表明,蚕豆保卫细胞中可能存在NOS,暗和光下H2O2处理可能通过提高NOS的活性促进NO水平增加,进而诱导气孔关闭.  相似文献   

19.
Does NO play a role in cytokinin signal transduction?   总被引:1,自引:0,他引:1  
  相似文献   

20.
NO参与玉米幼苗对盐胁迫的应答   总被引:1,自引:0,他引:1  
以玉米幼苗为材料,研究盐胁迫下其內源NO含量、NR和NOS活性的变化;NOS专一性抑制剂L-NAME和NR非专一性抑制剂NaN3对玉米幼苗內源NO含量的影响;利用激光共聚焦显微技术观测盐胁迫下玉米幼苗根部NO含量的变化及其分布特点。结果表明,盐胁迫下玉米幼苗根尖和叶片中NO含量有猝发现象,NOS活性也随之显著提高,NR活性则显著降低;L-NAME或NaN3均可降低盐胁迫所引起的玉米幼苗NO水平的增加,L-NAME对NO含量的影响比NaN3更显著。推测,NO参与玉米幼苗对盐胁迫的应答,NOS途径是盐胁迫下玉米幼苗內源NO合成的主要途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号