首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 78 毫秒
1.
It has been known that arginine is used as the basic amino acid in the ?subunit of cytochrome b559 (Cyt b559) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) Ⅱ and there are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study,two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSII (Fv/Fm) of R18G and R18E mutants was approximately 42%-46% that of WT cells. Furthermore, levels of the ?subunit of Cyt b559 and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt b559 maintain the structure of the PSII complex and its activity,although it is not directly bound to the heme group.  相似文献   

2.
It has been known that arginine is used as the basic amino acid in the α-subunit of cytochrome b559 (Cyt b559) except histidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) II and there are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study, two arginine18 (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in which R18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complex in the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high light intensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency of light capture by PSII (Fv/Fm) of R18G and R18E mutants was approximately 42%–46% that of WT cells. Furthermore, levels of the α-subunit of Cyt b559 and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, these data suggest that R18 plays a significant role in helping Cyt b559 maintain the structure of the PSII complex and its activity, although it is not directly bound to the heme group.  相似文献   

3.
Strong light (800μmol photons/m^2 per s)-induced bleaching of the pigment in the isolated photosystem Ⅱ reaction center (PSII RC) under aerobic conditions (in the absence of electron donors or acceptors) was studied using high-pressure liquid chromatography (HPLC), absorption spectra, 77K fluorescence spectra and resonance Raman spectra. Changes in pigment composition of the PSII RC as determined by HPLC after light treatment were as follows: with Increasing illumination time chlorophyll (Chl) a and β-carotene (β-car) content decreased. However, decreases in pheophytin (Pheo) could not be observed because of the mixture of the Pheo formed by degraded chlorophyll possibly. On the basis of absorption spectra, it was determined that, with a short time of illuminatlon, the initial bleaching occurred maximally at 680 nm but that with Increasing Illumination time there was a blue shift to 678 nm. It was suggested that P680 was destroyed Initially, followed by the accessory chlorophyll. The activity of P680 was almost lost after 10 mln light treatment. Moreover, the bleaching of Pheo and β-car was observed at the beginning of illumination. After Illumination, the fluorescence emission Intensity changed and the fluorescence maximum blue shifted, showing that energy transfer was disturbed. Resonance Raman spectra of the PSII RC excited at 488.0 and 514.5 nm showed four main bands, peaking at 1 527 cm^-1 (υ101), 1 159 cm^-1 (υ2), 1 006 cm^-1 (υ3), 966 cm^-1 (υ4) for 488.0 nm excitation and 1 525 cm^-1 (υ1), 1 159 cm^-1 (υ2), 1 007 cm^-1 (υ3), 968 cm^-1 (υ4) for 514.5 nm excitation. It was confirmed that two spectroscopically different β-car molecules exist In the PSII RC. After light treatment for 20 mln, band positions and bandwidths were unchanged. This indicates that carotenoid configuration Is not the parameter that regulates photoprotectlon in the PSII RC.  相似文献   

4.
5.
6.
It has been known that arginine is used as the basic amino acid in the a-subunit of cytochrome b_(559)(Cyt b_(559)) excepthistidine. However, previous studies have focused on the function of histidine in the activities of photosystem (PS) II andthere are no reports regarding the structural and/or functional roles of arginine in PSII complexes. In the present study,two arginine (R18) mutants of Chlamydomonas reinhardtii were constructed using site-directed mutagenesis, in whichR18 was replaced by glutamic acid (E) and glycine (G). The results show that the oxygen evolution of the PSII complexin the R18G and R18E mutants was approximately 60% of wild-type (WT) levels and that, after irradiation at high lightintensity, oxygen evolution for the PSII of mutants was reduced to zero compared with 40% in WT cells. The efficiency oflight capture by PSII (F_v/F_m) of R18G and R18E mutants was approximately 42%-46% that of WT cells. Furthermore, levelsof the a-subunit of Cyt b_(559) and PsbO proteins were reduced in thylakoid membranes compared with WT. Overall, thesedata suggest that R18 plays a significant role in helping Cyt b_559 maintain the structure of the PSII complex and its activity,although it is not directly bound to the heme group.  相似文献   

7.
Heterogeneous expression of multiple genes in the nucleus of transgenic plants requires theintroduction of an individual gene and the subsequent backcross to reconstitute multi-subunit proteins ormetabolic pathways.In order to accomplish the expression of multiple genes in a single transformationevent,we inserted both large and small subunits of allophycocyanin gene (apcA and apcB) into Chlamydomonasreinhardtii chloroplast expression vector,resulting in papc-S.The constructed vector was then introducedinto the chloroplast of C.reinhardtii by micro-particle bombardment.Polymerase chain reaction and Southernblot analysis revealed that the two genes had integrated into the chloroplast genome.Western blot andenzyme-linked immunosorbent assay showed that the two genes from the prokaryotic cyanobacteria couldbe correctly expressed in the chloroplasts of C.reinhardtii.The expressed foreign protein in transformantsaccounted for about 2%-3% of total soluble proteins.These findings pave the way to the reconstitution ofmulti-subunit proteins or metabolic pathways in transgenic C.reinhardtii chloroplasts in a single transformationevent.  相似文献   

8.
The work outlines the isolation of transformant Chlamydomonas reinhardtii cells that appear to be unable to repair Photosystem II from photoinhibitory damage. A physiological and biochemical characterization of three mutants is presented. The results show differential stability for the D1 reaction center protein in the three mutants compared to the wild type and suggest lesions that affect different aspects of the Photosystem II repair mechanism. In the ag16.2 mutant, significantly greater amounts of D1 accumulate in the thylakoid membrane than in the wild type under steady-state growth conditions, and D1 loss is significantly retarded in the presence of the protein biosynthesis inhibitor chloramphenicol. Moreover, aberrant electrophoretic mobility of D1 in the ag16.2 suggests that this protein is modified to an as yet unknown configuration. These results indicate that the biosynthesis and/or degradation of D1 is altered in this strain. A different type of mutation occurred in the kn66.7 and kn27.4 mutants of C. reinhardtii. The stability of D1 declined much faster as a function of light intensity in these mutants than in the wild type. Thereby, the threshold of photoinhibition in these mutants was significantly lower than that in the wild type. It appears that kn66.7 and kn27.4 are similar conditional mutants, with the only difference between them being the amplitude of the chloroplast response to the mutation and the differential sensitivity they display to the level of irradiance.  相似文献   

9.
Photosynthetic eukaryotes require the proper assembly of photosystem II (PSII) in order to strip electrons from water and fuel carbon fixation reactions. In Arabidopsis thaliana, one of the PSII subunits (CP43/PsbC) was suggested to be assembled into the PSII complex via its interaction with an auxiliary protein called Low PSII Accumulation 2 (LPA2). However, the original articles describing the role of LPA2 in PSII assembly have been retracted. To investigate the function of LPA2 in the model organism for green algae, Chlamydomonas reinhardtii, we generated knockout lpa2 mutants by using the CRISPR-Cas9 target-specific genome editing system. Biochemical analyses revealed the thylakoidal localization of LPA2 protein in the wild type (WT), whereas lpa2 mutants were characterized by a drastic reduction in the levels of D1, D2, CP47 and CP43 proteins. Consequently, reduced PSII supercomplex accumulation, chlorophyll content per cell, PSII quantum yield and photosynthetic oxygen evolution were measured in the lpa2 mutants, leading to the almost complete impairment of photoautotrophic growth. Pulse-chase experiments demonstrated that the absence of LPA2 protein caused reduced PSII assembly and reduced PSII turnover. Taken together, our data indicate that, in C. reinhardtii, LPA2 is required for PSII assembly and proper function.  相似文献   

10.
The effects of introduced chloroplast gene mutations affecting D1 synthesis, turnover and function on photosynthesis, growth and competitive ability were examined in autotrophic cultures of Chlamydomonas reinhardtii (Chlorophyta) adapted to low or high irradiance. Few discernible effects were evident when the mutants were grown in low light (LL, 70 μmol m?2 s?1). The herbicide-resistant psbA mutation Ser264→ Ala (dr) slowed electron transfer and accelerated D1 degradation in cells grown under high light (HL, 600 μmol m?2 s?1). The maximum rate of light-and CO2-saturated photosynthesis, cell growth rate and competitive ability in the dr mutant were reduced compared to wild type under HL. However, the wild-type rate of D1 synthesis in dr was adequate to compensate for accelerated D1 degradation. 16S rRNA mutations conferring resistance to streptomycin and spectinomycin (spr/sr) that altered chloroplast ribosome structure and assembly were used to inhibit chloroplast protein synthesis. In spr/sr cells grown under HL, D1 synthesis was reduced by 40–60% compared to wild type and D1 degradation was accelerated, leading to a 4-fold reduction in D1 pool size. The reduced D1 levels were accompanied by an elevation of Fo and a decline in Fv/Fm, quantum yield and maximum rate of CO2-saturated photosynthesis. Chemostat experiments showed that the growth rate and competitive ability of spr/sr were reduced against both wild type and dr.  相似文献   

11.
Sulfoquinovosyl diacylglycerol is responsible for the structural and functional integrity of the photosystem II complex of a green alga, Chlamydomonas reinhardtii. We cloned a cDNA of C. reinhardtii containing an open reading frame for a protein 36-64% identical in the primary structure to known UDP-sulfoquinovose synthases, which are required for SQDG synthesis, in other organisms. Through the introduction of the cDNA, a cyanobacterial disruptant as to the UDP-sulfoquinovose synthase gene recovered the ability to synthesize sulfoquinovosyl diacylglycerol, thus confirming that the cDNA encodes the UDP-sulfoquinovose synthase. On the genome, the cDNA was divided into 14 exons, and the gene designated as SQD1 was present as one copy. The molecular phylogenetic tree for the UDP-sulfoquinovose synthase showed grouping of C. reinhardtii together with species that require sulfoquinovosyl diacylglycerol for the functioning of the PSII complex, but not with those that do not utilize the lipid for photosynthesis. The role of sulfoquinovosyl diacylglycerol in the functioning of the photosynthetic membranes might evolve in harmony with the system of the membrane lipid synthesis such as UDP-sulfoquinovose synthase gene.  相似文献   

12.
Primary charge separation within Photosystem II (PS II) is much slower (time constant 21 ps) than the equivalent step in the related reaction center (RC) found in purple bacteria ( 3 ps). In the case of the bacterial RC, replacement of a specific tyrosine residue within the M subunit (at position 210 in Rhodobacter sphaeroides), by a leucine residue slows down charge separation to 20 ps. Significantly the analogous residue in PS II, within the D2 polypeptide, is a leucine not a tyrosine (at position D2-205, Chlamydomonas reinhardtii numbering). Consequently, it has been postulated [Hastings et al. (1992) Biochemistry 31: 7638–7647] that the rate of electron transfer could be increased in PS II by replacing this leucine residue with tyrosine. We have tested this hypothesis by constructing the D2-Leu205Tyr mutant in the green alga, Chlamydomonas reinhardtii, through transformation of the chloroplast genome. Primary charge separation was examined in isolated PS II RCs by time-resolved optical spectroscopy and was found to occur with a time constant of 40 ps. We conclude that mutation of D2-Leu205 to Tyr does not increase the rate of charge separation in PS II. The slower kinetics of primary charge separation in wild type PS II are probably not due to a specific difference in primary structure compared with the bacterial RC but rather a consequence of the P680 singlet excited state being a shallower trap for excitation energy within the reaction center.  相似文献   

13.
Recovery from 60 min of photoinhibitory treatment at photosynthetic photon flux densities of 500, 1400 and 2200 μMmol m?2 s? was followed in cells of the green alga Chlamydomonas reinhardtii grown at 125 μMmol m?2 s?1. These light treatments represent photoregulation, moderate photoinhibition and strong photoinhibition, respectively. Treatment in photoregulatory light resulted in an increased maximal rate of oxygen evolution (Pmax) and an increased quantum yield (Φ), but a 15% decrease in Fv/FM. Treatment at moderately photoinhibitory light resulted in a 30% decrease in Fv/FM and an approximately equal decrease in Φ. Recovery in dim light restored Fv/FM within 15 and 45 min after high light treatment at 500 and 1400 μMmol m?2 s?1, respectively. Convexity (Θ), a measure of the extent of co-limitation between PS II turnover and whole-chain electron transport, and Φ approached, but did not reach the control level during recovery after exposure to 1400 μMmol m?2 s?1, whereas Pmax increased above the control. Treatment at 2200 μMmol m?2 s?1 resulted in a strong reduction of the modeled parameters Φ, Θ and Pmax. Subsequent recovery was initially rapid but the rate decreased, and a complete recovery was not reached within 120 min. Based on the results, it is hypothesized that exposure to high light results in two phenomena. The first, expressed at all three light intensities, involves redistribution within the different aspects of PS II heterogeneity rather than a photoinhibitory destruction of PS II reaction centers. The second, most strongly expressed at 2200 μmol m?2 s?1, is a physical damage to PS II shown as an almost total loss of PS IIα and PS II QB-reducing centers. Thus recovery displayed two phase, the first was rapid and the only visible phase in algae exposed to 500 and 1400 μmol m?2 s?1. The second phase was slow and visible only in the later part of recovery in cells exposed to 2200 μmol m?2 s?1.  相似文献   

14.
Chlorophyll-free plasma membranes of the unicellular green alga Chlamydomonas reinhardtii Dangeard were purified from a microsomal fraction using an aqueous polymer two-phase system of 6.5% (w/w) dextran T500, 6·5% (w/w) polyethylene glycol 3350, 60 mM NaCI, 0 33 M sucrose and 5 mM potassium phosphate (pH 7·8). The plasma membrane fraction contained only 2·4% of the microsomal membrane protein. Specific activity of the plasma membrane marker enzyme, K*, Mg2+-ATPase (EC 3.6.1.3). was enriched 9-fold over the microsomal fraction, and 22% of total activity was recovered in the upper, polyethylene glycol-rich phase. Contamination from intracellular membranes was minimal. K*, Mg2+-ATPase showed a pH optimum at about 6·5, and addition of 0·05% (w/v) Triton X-100 stimulated the activity 3-fold. [3H]-Nimodipinc was employed to characterize 1,4-dihydropyridine-specific membrane receptors. Two apparent binding sites with different affinities to nimodipine were found in the crude microsomal fraction. The separation of plasma membranes from intracellular membranes revealed that one binding site with higher affinity (KD= 9 nM) was located on the plasma membrane and a second binding site with lower affinity (KD= 36 nM) on an intracellular membrane The apparent dissociation constants determined from the association and dissociation rate constants in kinetic experiments were comparable to those determined by equilibrium experiments. The maximum number of binding sites of the plasma membrane fraction and the intracellular membrane fraction was Bmax= 440 and 470 fmol (mg protein)-1, respectively. [3H]-Nimodipinc binding was inhibited by (±) verapamil and stimulated by D-cis-diltiazem in both fractions. Moreover, ethyle-neglycol-bis(2-aminoethylcther)-N, N'-tetraacctic acid (EGTA) inhibited [3H]-nimo-dipinc binding in the plasma membrane fraction but not in the intracellular membrane fraction This effect was cancelled by the addition of CaCl2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号