首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Seed dispersal is a key process within community dynamics. The spatial and temporal variations of seed dispersal and the interspecific differences are crucial for understanding species coexistence and community dynamics. This might also hold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China, but until now little existing knowledge is available for this question. In 2001, we chose to monitor the seed rain process of our mixed evergreen broad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park, Yichang, Hubei Province, China. The preliminary analyses show obvious variations in seed rain density, species compositions and timing of seed rain among four communities. The average seed rain densities of the four communities are 2.43 ± 5.15, 54.13 ±182.75, 10.05 ±19.30 and 24.91 ± 58.86 inds/m^2, respectively; about one tenth the values in other studies in subtropical forests of China. in each community, the seed production is dominated by a limited number of species, and the contributions from the others are generally minor. Fecundity of evergreen broadleaved tree species is weaker than deciduous species. The seed rain of four communities begins earlier than September, and stops before December, peaking from early September to late October. The beginning date, ending date and peak times of seed rain are extensively varied among the species, indicating different types of dispersal strategies. According to the existing data, the timing of seed rain is not determined by the climate conditions in the same period, while the density of seed rain may be affected by the disturbances of weather variations at a finer temporal resolution.  相似文献   

2.
To explore the composition and spatio-temporal dynamics of seed rain in broad-leaved Korean pine (Pinus koraiensis) mixed forest, 150 seed traps were set up in a 25 hm2 plot in Changbai Mountain. Seeds, fruits, anthotaxy and others in seed traps were collected, identified and divided into 4 types. From 2005 to 2006, we collected 47 different types. Total number of seeds and fruits was 121291, including 23147 mature seeds and fruits (19.1% of the total). Tilia amurensis and Fraxinus mandshurica, with the most seeds and fruits, accounted for 90% of the total. The analysis on seasonal dynamics of seed rain showed that there were the largest number of seeds and fruits between July and October, which were composed of immature seeds and fruits. In mid-October, mature seeds and fruits reached their peak, but immature seeds and fruits still accounted for high proportion. There were 91 traps that contained 100–200 mature seeds and fruits, and one trap without any mature seed or fruit. The largest number of species found in a trap was 7, and usually 3 or 4 species were found in most of the traps. There were obvious relationships between spatial patterns of mature seeds and fruits and their parent trees, indicating that their mature seeds and fruits were not dispersed far from their parent trees.  相似文献   

3.
Zhang J  Hao Z Q  Li B H  Ye J  Wang X G  Yao X L 《农业工程》2008,28(6):2445-2454
To explore the composition and spatio-temporal dynamics of seed rain in broad-leaved Korean pine (Pinus koraiensis) mixed forest, 150 seed traps were set up in a 25 hm2 plot in Changbai Mountain. Seeds, fruits, anthotaxy and others in seed traps were collected, identified and divided into 4 types. From 2005 to 2006, we collected 47 different types. Total number of seeds and fruits was 121291, including 23147 mature seeds and fruits (19.1% of the total). Tilia amurensis and Fraxinus mandshurica, with the most seeds and fruits, accounted for 90% of the total. The analysis on seasonal dynamics of seed rain showed that there were the largest number of seeds and fruits between July and October, which were composed of immature seeds and fruits. In mid-October, mature seeds and fruits reached their peak, but immature seeds and fruits still accounted for high proportion. There were 91 traps that contained 100–200 mature seeds and fruits, and one trap without any mature seed or fruit. The largest number of species found in a trap was 7, and usually 3 or 4 species were found in most of the traps. There were obvious relationships between spatial patterns of mature seeds and fruits and their parent trees, indicating that their mature seeds and fruits were not dispersed far from their parent trees.  相似文献   

4.
Seed dispersal is a key process within community dynamics.The spatial and temporal variations of seed dispersal andthe interspecific differences are crucial for understanding species coexistence and community dynamics.This might alsohold for the mixed evergreen broadleaved and deciduous forests in the mountains of subtropical China,but until now littleexisting knowledge is available for this question.In 2001,we chose to monitor the seed rain process of our mixed evergreenbroad-leaved and deciduous forest communities in Mount Dalaoling National Forest Park,Yichang,Hubei Province,China.The preliminary analyses show obvious variations in seed rain density,species compositions and timing of seed rain amongfour communities.The average seed rain densities of the four communities are 2.43±5.15,54.13±182.75,10.05±19.30and 24.91±58.86 inds./m~2,respectively;about one tenth the values in other studies in subtropical forests of China.In eachcommunity,the seed production is dominated by a limited number of species,and the contributions from the others aregenerally minor.Fecundity of evergreen broadleaved tree species is weaker than deciduous species.The seed rain of fourcommunities begins earlier than September,and stops before December,peaking from early September to late October.The beginning date,ending date and peak times of seed rain are extensively varied among the species,indicating differenttypes of dispersal strategies.According to the existing data,the timing of seed rain is not determined by the climateconditions in the same period,while the density of seed rain may be affected by the disturbances of weather variations ata finer temporal resolution.  相似文献   

5.
This study identifies 'centers of endemism' for typhlocybine leafhoppers in China, revealing diversity patterns and congruence of patterns between total species rich- ness and endemism. Distribution patterns of 774 Typhlocybinae (607 described and 167 undescribed species) were mapped on a 1.5° × 1.5° latitude/longitude grid. Total species richness, endemic species richness and weighted endemism richness were calculated for each grid cell. Grid cells within the top 5% highest values of weighted endemism richness were considered as 'centers of endemism'. Diversity patterns by latitude and altitude were obtained through calculating the gradient richness. A congruence of diversity patterns between total species richness and endemism was confirmed using correlation analysis. To investigate the bioclimatic factors (19 variables) contributing to the congruence be- tween total species richness and endemism, we compared the factor's difference between non-endemic and endemic species using the Kruskal-Wallis test. Eleven centers of en- demism, roughly delineated by mountain ranges, were identified in central and southern China, including the south Yunnan, Hengduan Mountains, Qinling Mountains, Hainan Is- land, Taiwan Island and six mountain areas located in western Sichuan, northwest Fujian, southeast Guizhou, southeast Hunan, central and western Guangdong, and north Zhejiang. Total species richness and endemic species richness decreased with increased latitude and had a consistent unimodal response to altitude. The proportions of endemism decreased with increased latitude and increased with rising altitude. Diversity patterns between total species richness and endemism were highly consistent, and 'Precipitation of Coldest Pe- riod' and 'Temperature of Coldest Period' may contribute to the congruence of pattern. Migration ability may play a role in the relationship of endemism and species richness; climate, environment factors and important geologic isolation events can also play crucial effect  相似文献   

6.
The aim of this research is to investigate the patterns of vascular plant species richness,diversity,and distribution along an elevation gradient in the Abune Yosef mountain range,Ethiopia.Preferential systematic sampling was employed to collect vegetation and environmental data along the elevation gradient.We found that plant species richness declines monotonically from low to high elevations.Specifically,vascular plant species richness and diversity were lower in the Afroalpine grassland(high elevation)than in the Dry evergreen Afromontane forest and Ericaceous forest(low elevations).In contrast,endemic vascular plant richness was significantly higher in the Afroalpine grassland than in the Dry evergreen Afromontane forest and Ericaceous forest.Elevation showed a significant impact on the richness,diversity,and endemism of vascular plants.According to Sorensen's coefficient,the similarity between Dry evergreen Afromontane forest and Ericaceous forest vegetation types is higher(32%)than the similarity between Ericaceous forest and Afroalpine grassland(18%).Only 5%similarity was recorded between the Dry evergreen Afromontane forest and Afroalpine grassland.Growth forms showed different elevationai richness patterns.Trees and liana increased monotonically up to 3300 m.Shrub and herb richness patterns followed a hump-shaped and inverted hump-shaped pattern along the elevation gradient.The elevation patterns of vascular plant species richness,diversity,and growth form in the present study may be attributed to differences in management intensity,spatial heterogeneity,microclimatic variations,and anthropogenic disturbances.  相似文献   

7.
The gap detection paradigm is frequently used in psychoacoustics to characterize the temporal acuity of the auditory system. Neural responses to silent gaps embedded in white-noise carriers, were obtained from mouse inferior colliculus (IC) neurons and the results compared to behavioral estimates of gap detection. Neural correlates of gap detection were obtained from 78 single neurons located in the central nucleus of the IC. Minimal gap thresholds (MGTs) were computed from single-unit gap functions and were found to be comparable, 1–2 ms, to the behavioral gap threshold (2 ms). There was no difference in MGTs for units in which both carrier intensities were collected. Single unit responses were classified based on temporal discharge patterns to steady-state noise bursts. Onset and primary-like units had the shortest mean MGTs (2.0 ms), followed by sustained units (4.0 ms) and phasic-off units (4.2 ms). The longest MGTs were obtained for inhibitory neurons (xˉ = 14 ms). Finally, the time-course of behavioral and neurophysiological gap functions were found to be in good agreement. The results of the present study indicate the neural code necessary for behavioral gap detection is present in the temporal discharge patterns of the majority of IC neurons. Accepted: 6 February 1997  相似文献   

8.
A survey of the seasonal distribution of macroalgae in a stream system in Shanxi Province, north China, was undertaken from July 2004 to April 2005. The relative abundance and percentage cover of macroalgae, and several environmental factors were monitored along a 20-m stretch at each of four sites, at intervals of approximately three months (one sampling per season). Several stream conditions were relatively constant over the sampling period (pH, maximum width and maximum depth), whereas others exhibited a distinct seasonal pattern (water temperature and specific conductance), and some fluctuated with no discernable seasonal pattern (current velocity and dissolved oxygen). Forty-two species of macroalgae were found, with a predominance of Chlorophyta (26 species, 61.9%). Rhodophyts and Charophyta represented the smallest proportion (1 species each, 2.38%). Six macroalgae species were the most widespread, occurring in all four sampling sites. Twelve species were found at only one site each. In terms of seasonality, eight species occurred throughout the year, whereas 16 species were found in only one season each. The macroalgal community at Xin'an Spring was species rich relative to other streams. Species richness per sampling site was negatively correlated with pH. Principal component analysis revealed that no single variable had much influence on the macroalgal seasonal dynamics. We calculated Sorensen similarity indices to compare our study with other continent-wide surveys of stream macroalgae, but the similarity indices were all very low. This study also shows that macroalgae in different locations have significant reproductive isolation.  相似文献   

9.
Current global warming is particularly pronounced in the Arctic and arthropods are expected to respond rapidly to these changes. Long-term studies of individual arthropod species from the Arctic are, however, virtually absent. We examined butterfly specimens collected from yellow pitfall traps over 14 years (1996-2009) at Zackenberg in high-arctic, north-east Greenland. Specimens were previously sorted to the family level. We identified them to the species level and examined long-term species-specific phenological responses to recent summer wanning. Two species were rare in the samples (Polaris fritillary Boloria polaris and Arctic blue Plebejus glandon) and statistical analyses of phenological responses were therefore restricted to the two most abundant species (Arctic fritillary, B. chariclea and Northern clouded yellow Colias hecla). Our analyses demonstrated a trend towards earlier flight seasons in B. chariclea, but not in C. hecla. The timing of onset, peak and end of the flight season in B. chariclea were closely related to snowmelt, July temperature and their interaction, whereas onset, peak and end of the flight season in C. hecla were only related to timing of snowmelt. The duration of the butterfly flight season was significantly positively related to the temporal overlap with floral resources in both butterfly species. We further demonstrate that yellow pitfall traps are a useful alternative to transect walks for butterfly recording in tundra habitats. More phenological studies of Arctic arthropods should be carded out at the species level and ideally be analysed in context with interacting species to assess how ongoing climate change will affect Arctic biodiversity in the near future [Current Zoology 60 (2): 243-251, 2014].  相似文献   

10.
Secondary forests and human-made forest gaps are conspicuous features of tropical landscapes.Yet,behavioral responses to these aspects of anthropogenically modified forests remain poorly investigated.Here,we analyze the effects of small human-made clearings and secondary forests on tropical bats by examining the guild-and species-level activity patterns of phyllostomids sampled in the Central Amazon,Brazil.Specifically,we contrast the temporal activity patterns and degree of temporal overlap of 6 frugivorous and 4 gleaning animalivorous species in old-growth forest and second-growth forest and of 4 frugivores in old-growth forest and forest clearings.The activity patterns of frugivores and gleaning animalivores did not change between old-growth forest and second-growth,nor did the activity patterns of frugivores between old-growth forest and clearings.However,at the species level,we detected significant differences for Artibeus obscurus(old-growth forest vs.second-growth)and A.concolor(old-growth forest vs.clearings).The degree of temporal overlap was greater than random in all sampled habitats.However,for frugivorous species,the degree of temporal overlap was similar between old-growth forest and second-growth;whereas for gleaning animalivores,it was lower in second-growth than in old-growth forest.On the contrary,forest clearings were characterized by increased temporal overlap between frugivores.Changes in activity patterns and temporal overlap may result from differential foraging opportunities and dissimilar predation risks.Yet,our analyses suggest that activity patterns of bats in second-growth and small forest clearings,2 of the most prominent habitats in humanized tropical landscapes,varies little from the activity patterns in old-growth forest.  相似文献   

11.
Seed Rain in High-Altitude Restoration Plots in Switzerland   总被引:2,自引:0,他引:2  
Seed rain was studied in restoration plots installed in 1985 and 1987, respectively, on an alpine downhill ski run at circa 2,500 m above sea level. The study was initiated in late autumn 1996 and completed in autumn 1998; it included temporal and spatial variation in density per m2, as well as alpha diversity (species richness), and species composition of the seed rain versus that of the resident vegetation. This is the first report on post-restoration monitoring of seed rain above the timberline. Seed rain density and alpha diversity varied seasonally, with the first peak occurring immediately after spring snowmelt and the second in early autumn. The density of seed rain varied between plots and years (1,528–1,778 seeds per m2 in one plot [RPF] versus 1,096–3,557 seeds per m2 in another plot [RPG]). Total species number per plot was nearly twice as high in RPF as in RPG in both study years. Seed rain totaled 18 species; all but one represented either transplants introduced in restoration or colonizers established in the plots soon after restoration. Distribution of species in seed rain was largely asymmetric and only a few species provided substantial contributions. Composition of species and their respective contribution to seed rain differed between plots and was clearly influenced by performance of some species used in restoration as transplants; together they provided as much as 51% of the total seed rain. The results of the study demonstrate that restoration enhanced increase of species richness as well as seed rain in situ.  相似文献   

12.
Seed Rain and Seed Limitation in a Planted Gallery Forest in Brazil   总被引:1,自引:0,他引:1  
With seeds collected monthly during one year from 53 1‐m2 seed traps, we investigated the seed rain and seed limitation in a gallery forest planted in 1994 in SE Brazil. Contrasting animal‐ (zoochorous) and wind‐dispersed (anemochorous) plants we investigated (1) which aspects of the composition and structure of the vegetation influence the abundance and species richness of the seed rain; (2) if such influences differ between zoochorous and anemochorous seeds; (3) if the abundance and richness of the seed rain sampled under zoochorous and nonzoochorous plant species differ; and (4) if seed limitation (given by the proportion of sites to which seeds were not dispersed) differs between zoochorous and anemochorous plant species, and also between species that have been planted and those that further colonized the area (colonists). Seed rain was intense and dominated by anemochorous species. The overall seed rain was not influenced by the vegetation parameters we analyzed (canopy height and cover, plant size, abundance, and richness) or by the plant species above the seed trap. The abundance and richness of zoochorous seeds in a given spot was influenced by the abundance and richness of zoochorous plants in its immediate vicinity. Seed limitation was higher for anemochorous than zoochorous species and higher for planted than for colonist species. We concluded with recommendations for the initial establishment of a planted forest, including the homogeneous distribution of zoochorous plants to permit a spatially homogeneous zoochorous seedfall, which will likely enhance the chances of survival and successful establishment of seeds.  相似文献   

13.
Most tropical plants produce fleshy fruits that are dispersed primarily by vertebrate frugivores. Behavioral disparities among vertebrate seed dispersers could influence patterns of seed distribution and thus forest structure. This study investigated the relative importance of arboreal seed dispersers and seed predators on the initial stage of forest organization–seed deposition. We asked the following questions: (1) To what degree do arboreal seed dispersers influence the species richness and abundance of the seed rain? and (2) Based on the plant species and strata of the forest for which they provide dispersal services, do arboreal seed dispersers represent similar or distinct functional groups? To answer these questions, seed rain was sampled for 12 months in the Dja Reserve, Cameroon. Seed traps representing five percent of the crown area were erected below the canopies of 90 trees belonging to nine focal tree species: 3 dispersed by monkeys, 3 dispersed by large frugivorous birds, and 3 wind‐dispersed species. Seeds disseminated by arboreal seed dispersers accounted for ca 12 percent of the seeds and 68 percent of the seed species identified in seed traps. Monkeys dispersed more than twice the number of seed species than large frugivorous birds, but birds dispersed more individual seeds. We identified two distinct functional dispersal groups, one composed of large frugivorous birds and one composed of monkeys, drop dispersers, and seed predators. These groups dispersed plants found in different canopy strata and exhibited low overlap in the seed species they disseminated. We conclude it is unlikely that seed dispersal services provided by monkeys could be compensated for by frugivorous birds in the event of their extirpation from Afrotropical forests.  相似文献   

14.
小兴安岭阔叶红松(Pinus koraiensis)林种子雨的时空动态   总被引:2,自引:1,他引:2  
刘双  金光泽 《生态学报》2008,28(11):5731-5740
研究种子散布的时空动态对于揭示群落更新机制和植被斑块分布格局具有重要意义。于2005~2007年在凉水自然保护区的9hm^2阔叶红松林永久样地的中心地带(150m×150m),设置287~319个种子接收器(面积为0.5m^2,网口位于离地面1m处),定期收集并鉴定其中的种子。结果表明:(1)乔木树种的种子雨强度在不同的年份间存在差异,由2005年到2007年逐年递减(分别为(864.2±1084.3)粒·m^-2、(300.9±349.4)粒·m^-2和(144.8±195.5)粒·m^-2)。11个树种均表现出了年际间的差异,一些树种如水曲柳、糠椴、白桦、红皮云杉、冷杉在某一年份结实量很小或几乎不结实,而红松受人为干扰较大。(2)种子散布存在明显的季节变化,从5月份到11月份均收集到了各树种的种子,且种子雨在10月达到高峰,11月中旬基本结束,但不同的树种的时间变化形式不同。高峰期,种子雨以完整种子为主;而在这之前的种子雨主要以未成熟种子为主。(3)种子雨的构成在各年份间保持稳定。(4)变异函数分析表明,在不同的年份种子雨空间异质性不同,而空间异质性与种子雨强度呈正相关。  相似文献   

15.
种子雨是植物种子扩散的起点, 对群落更新及种群动态起着关键作用。该文以三峡大老岭自然保护区内一片面积为1.3 hm 2的光叶水青冈(Fagus lucida)群落固定样地为研究对象, 运用分层随机设计, 在10个不同的地形部位放置了100个种子雨收集框, 自2001年起进行种子雨观测, 对该群落种子雨的数量与物种多样性的年际动态、种子雨和群落物种构成的关系等进行了统计分析。结果表明: 1)过去10年间, 共收集到来自48种木本植物的60 926粒种子, 种子雨的多年平均密度为(82.9 ± 61.5) seeds·m-2·a-1(mean ± SD), 平均物种丰富度为(16.7 ± 5.5) species·a-1(mean ± SD)。2)种子生产的种间差异极为显著, 种子量排名前三的植物贡献了累计种子雨总量的70%。3)群落种子雨的密度和物种丰富度在10年中基本同步, 均呈现显著的周期性波动, 并出现了3个大年。乔木和灌木种子雨密度的年际波动无显著相关性, 但物种数变化显著正相关; 4)种子雨与样地群落共有种为23种, 分别占种子雨和群落中木本植物种数的47.92%和54.76%, 但这些共有种贡献了种子总量的96.22%, 表明扩散限制在研究群落中十分显著。与国内其他森林群落种子雨研究结果相比, 该研究群落的种子雨密度明显较低。  相似文献   

16.
Spatial and temporal patterns of seed bank dynamics In relation to gaps in an old growth tropical montane rainforast of Hainan Island, South China, were studied over two consecutive years. From June 2001 to June 2003, soil seed bank sampling blocks were taken near each of the four sides of each seed trap and immediately put into a nursery for observation of seedling emergence dynamics in four seasons (each experiment in each season). The abundances of seedlings that emerged from seed banks showed the trend of vine functional group (VFG) > shrub functional group (SFG) > tree functional group (TFG) > herb functional group (HFG), but the trend in species richness of seedlings that emerged from the soil seed banks was TFG > VFG > SFG > HFG. The abundances of seedlings that emerged from seed banks in the three gap zones showed no significant differences, but significant differences did exist for the species richness. The time of sampling or seasons of experiments had significant influences on both the species richness and seedling abundances. The seedling emergence processes of each experiment all revealed the unimodal patterns. Few emergences occurred 1 year after each experiment. Compared with those under closed canopies, the recruitment rates from seed to seedlings and from seedlings to saplings in gaps were higher, but the mortality rates from saplings to big trees were also higher in the gaps.  相似文献   

17.
In temperate rainforests on Chiloé Island in southern Chile (42°S), most canopy trees bear fleshy, avian‐dispersed propagules, whereas emergent tree species have dry, wind‐borne propagules. In the present study, the following hypothesis was tested: regardless of species, fleshy propagules are deposited in greater numbers in canopy gaps and in forest margins and hence have a more heterogeneous seed shadow than wind‐dispersed propagules. To test this hypothesis, the seed rains of these two types of propagules were compared in the following forest habitats: (i) tree‐fall gaps (edges and centre); (ii) forest margins with adjacent pastures; and (iii) under closed canopy (forest interior). Seed collectors (30‐cm diameter) were placed in two (15 and 100 ha) remnant forest patches (n = 60–100 seed collectors per patch) distributed in the four habitats. Seeds were retrieved monthly from each collector during two reproductive seasons (1996, 1997). In both years, the seed rain was numerically dominated by two species with dry propagules (Laureliopsis philippiana and Nothofagus nitida) and three species with fleshy fruits (Drimys winteri, Amomyrtus luma, and Amomyrtus meli). The seed shadows of the two species with dry, wind‐dispersed seeds differed markedly. Seeds of L. philippiana were deposited predominantly in canopy openings, whereas N. nitida seeds fell almost entirely in the forest interior. The fleshy‐fruited species, Drimys and Amomyrtus spp., had similar seed deposition patterns in the various habitats studied, but the between‐year differences in seed rain were greater in Drimys winteri than in Amomyrtus spp. Although no more than 10% of fleshy‐fruited propagules reached the margins of the patch, approximately 7% of these were carried there by birds. Every year, canopy gaps (pooling data from edges and centres) concentrated approximately 60% of the total seed rain of both propagule types in both forest patches. Forest margins received less than 20% of the total seed rain, which was largely dominated by fleshy‐fruited species. Seed shadows were a species‐specific attribute rather than a trait associated with propagule type and dispersal mode.  相似文献   

18.
Seasonal tropical forests show rhythms in reproductive activities due to water stress during dry seasons. If both seed dispersal and seed germination occur in the best environmental conditions, mortality will be minimised and forest regeneration will occur. To evaluate whether non-seasonal forests also show rhythms, for 2 years we studied the seed rain and seedling emergence in two sandy coastal forests (flooded and unflooded) in southern Brazil. In each forest, one 100 x 30-m grid was marked and inside it 30 stations comprising two seed traps (0.5 x 0.5 m each) and one plot (2 x 2 m) were established for monthly monitoring of seed rain and a seedling emergence study, respectively. Despite differences in soil moisture and incident light on the understorey, flooded and unflooded forests had similar dispersal and germination patterns. Seed rain was seasonal and bimodal (peaks at the end of the wetter season and in the less wet season) and seedling emergence was seasonal and unimodal (peaking in the wetter season). Approximately 57% of the total species number had seedling emergence 4 or more months after dispersal. Therefore, both seed dormancy and the timing of seed dispersal drive the rhythm of seedling emergence in these forests. The peak in germination occurs in the wetter season, when soil fertility is higher and other phenological events also occur. The strong seasonality in these plant communities, even in this weakly seasonal climate, suggests that factors such as daylength, plant sensitivity to small changes in the environment (e.g. water and nutrient availability) or phylogenetic constraints cause seasonal rhythms in the plants.  相似文献   

19.
本研究于2018—2019年对大兴安岭中部白桦林、针叶林和针阔混交林3种林型的种子雨落种量进行了动态监测,并对3种林型主要树种的种子雨季节动态、落叶动态、种子雨千粒重、种子雨年际变化和种子雨空间格局进行了分析。结果表明: 各林型中兴安落叶松种子雨和白桦种子雨呈现明显的单峰型分布。针阔树种(落叶松、樟子松、云杉、白桦、山杨)的落叶量呈现出明显的季节动态,各林型落叶量大多在9月中上旬达到高峰。在针阔混交林和针叶林中,处于高峰期的兴安落叶松种子雨千粒重明显大于初始期和末尾期的兴安落叶松种子雨千粒重,3种林型下白桦千粒重在季节上未表现出明显的差异。兴安落叶松和白桦的种子雨均呈现出明显的年际变化,2018年为种子散种量的丰年,2019年为歉年。两年时间内,所有种子雨的空间格局在总体上均表现为聚集分布,种子雨和幼苗幼树在空间分布格局上存在一致性。  相似文献   

20.
为探究片段化生境中木本植物种子雨的基本特征,该研究根据2015—2020年(研究期间)在千岛湖样岛上的植物群落长期监测样地内每月收集的种子雨数据,采用Kruskal-Wallis检验对木本植物的种子雨密度进行年际差异分析,对不同传播方式物种的种子雨密度进行月份间差异性分析,并利用线性混合效应模型,探究岛屿空间特征(岛屿面积、距最近岛屿的距离、距大陆的距离)以及气候因子(0 ℃以上积温、降水量)对木本植物以及不同传播方式物种的种子雨密度的影响。结果表明:(1)2015—2020年6年间,在29个样岛用240个收集器共收集到877 178粒木本植物的成熟种子,属于26科40属52种。(2)动物传播是木本植物主要的种子传播方式,不同传播方式物种的种子雨时间动态存在较大差异。(3)木本植物的种子雨年密度与岛屿面积和年积温呈显著正相关,与年降水量呈显著负相关。(4)自主传播物种的种子雨月密度与距最近岛屿的距离呈显著正相关,而动物传播物种的种子雨月密度则与距大陆的距离呈显著正相关,风力传播物种的种子雨月密度与月积温呈极显著正相关。综上表明,生境片段化通过岛屿空间特征影响了木本植物种子雨的时间动态。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号