首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This paper deals with the detailed mechanisms of signal transduction that lead to exocytosis during regulative secretion induced by specific secretagogues in a eukaryotic cell, Paramecium tetraurelia. There are at least three cellular compartments involved in the process: I) the plasma membrane, which contains secretagogue receptors and other transmembrane proteins, II) the cytoplasms, particularly in the region between the cell and secretory vesicle membranes, where molecules may influence interactions of the membranes, and III) the secretory vesicle itself. The ciliated protozoan Paramecium tetraurelia is very well suited for the study of signal transduction events associated with exocytosis because this eukaryotic cell contains thousands of docked secretory vesicles (trichocysts) below the cell membrane which can be induced to release synchronously when triggered with secretagogue. This ensures a high signal-to-noise ratio for events associated with this process. Upon release the trichocyst membrane fuses with the cell membrane and the trichocyst content undergoes a Ca2+-dependent irreversible expansion. Secretory mutants are available which are blocked at different points in the signal transduction pathway. Aspects of the three components mentioned above that will be discussed here include a) the properties of the vesicle content, its pH, and its membrane; b) the role of phosphorylation/dephosphorylation of a cytosolic 63-kilodalton (kDa)Mr protein in membrane fusion; and c) how influx of extracellular Ca2+ required for exocytosis may take place via exocytic Ca2+ channels which may be associated with specific membrane microdomains (fusion rosettes).  相似文献   

2.
A fast and sensitive fluorescence image acquisition system is described which uses an ultra-low-light intensifying camera able to acquire digitised fluorescence images with a time resolution of 3.33 ms/image. Two modes of recording were employed. The synchronisation mode allowed acquisition of six successive 3.33 ms-images synchronised with an external trigger, while the memorisation mode allowed acquisition of twelve successive 3.33 ms images starting after a 20 ms-time lag from the external trigger. Interaction of ethidium bromide (EB) with the membrane of electropermeabilised living cells was studied using this imaging system. We observed enhanced fluorescence of the dye when associated with electropermeabilised cells. Using single cells, 3.33 ms-images of the fluorescence interaction patterns of ethidium bromide showed well-defined membrane labelling. The enhanced fluorescence patterns were shown to represent the electropermeabilised area of the cell membrane. The average level of fluorescence associated with the labelled part of the cell membrane increased linearly during and immediately (less than 7 ms) after the electropermeabilisation pulse. Steady-state EB interaction with the membrane was achieved in a maximum 20 ms-time lag after electropermeabilisation. The membrane labelled parts were always observed in the cell regions facing the electrodes. They were present only when the electric field strength was higher than a threshold value which was different for the two cell sides. An increase in electric field intensity led to an increase in the dimensions of the labelled cell region. Received: 7 August 1997 / Revised version: 14 November 1997 / Accepted: 15 January 1998  相似文献   

3.
The synaptic vesicle protein synaptotagmin I binds Ca2+ and is required for efficient neurotransmitter release. Here, we measure the response time of the C2 domains of synaptotagmin to determine whether synaptotagmin is fast enough to function as a Ca2+ sensor for rapid exocytosis. We report that synaptotagmin is "tuned" to sense Ca2+ concentrations that trigger neuronal exocytosis. The speed of response is unique to synaptotagmin I and readily satisfies the kinetic constraints of synaptic vesicle membrane fusion. We further demonstrate that Ca2+ triggers penetration of synaptotagmin into membranes and simultaneously drives assembly of synaptotagmin onto the base of the ternary SNARE (soluble N-ethylmaleimide-sensitive fusion protein [NSF] attachment receptor) complex, near the transmembrane anchor of syntaxin. These data support a molecular model in which synaptotagmin triggers exocytosis through its interactions with membranes and the SNARE complex.  相似文献   

4.
We have developed a homology model of the GABA(A) receptor, using the subunit combination of alpha1beta2gamma2, the most prevalent type in the mammalian brain. The model is produced in two parts: the membrane-embedded channel domain and the extracellular N-terminal domain. The pentameric transmembrane domain model is built by modeling each subunit by homology with the equivalent subunit of the heteropentameric acetylcholine receptor transmembrane domain. This segment is then joined with the extracellular domain built by homology with the acetylcholine binding protein. The all-atom model forms a wide extracellular vestibule that is connected to an oval chamber near the external surface of the membrane. A narrow, cylindrical transmembrane channel links the outer segment of the pore to a shallow intracellular vestibule. The physiological properties of the model so constructed are examined using electrostatic calculations and Brownian dynamics simulations. A deep energy well of approximately 80 kT accommodates three Cl(-) ions in the narrow transmembrane channel and seven Cl(-) ions in the external vestibule. Inward permeation takes place when one of the ions queued in the external vestibule enters the narrow segment and ejects the innermost ion. The model, when incorporated into Brownian dynamics, reproduces key experimental features, such as the single-channel current-voltage-concentration profiles. Finally, we simulate the gamma2 K289M epilepsy inducing mutation and examine Cl(-) ion permeation through the mutant receptor.  相似文献   

5.
The major component of black widow spider venom, alpha-latrotoxin, triggers massive exocytosis in a variety of neurosecretory cells. An important trigger for exocytosis is the calcium influx via alpha-latrotoxin-induced channels in biological membranes. However, this mechanism fails to explain exocytosis which occurred in the complete absence of extracellular calcium. Recently, sophisticated biochemical and molecular techniques have led to the discovery of novel alpha latrotoxin-binding membrane receptors: neurexins and latrophilin/CIRL (calcium-independent receptor for alpha-latrotoxin). Neurexins are single transmembrane proteins which bind to alpha-latrotoxin in a calcium-dependent manner and also interact with the synaptic vesicle protein, synaptotagmin. On the other hand, latrophilin is a seven-transmembrane protein and belongs to the family of G-protein-coupled receptors. The multitude of effects of alpha-latrotoxin on exocytosis in different cell systems and the nature of its membrane targets are discussed in this article. The molecular details of how alpha-latrotoxin binding is transduced eventually to exocytosis remain to be elucidated.  相似文献   

6.
All parts of motile cells, including the plasma membrane, have to translocate in the direction of locomotion. Both directed intracellular membrane transport coupled with polarized endo- and exocytosis and fluid flow in the plane of the plasma membrane can contribute to this overall plasma membrane translocation. It remains unclear how strong a force is required to generate this flow. We numerically solve Stokes equations for the viscous membrane flow across a flat plasma membrane surface in the presence of transmembrane proteins attached to the cytoskeleton and find the membrane tension gradient associated with this flow. This gradient is sensitive to the size and density of the transmembrane proteins attached to the cytoskeleton and can become significant enough to slow down cell movement. We estimate the influence of intracellular membrane transport and actin growth and contraction on the tension gradient, and discuss possible ‘tank tread’ flow at ventral and dorsal surfaces.  相似文献   

7.
Action of complexin on SNARE complex   总被引:6,自引:0,他引:6  
Calcium-dependent synaptic vesicle exocytosis requires three SNARE (soluble N-ethylmaleimide-sensitive-factor attachment protein receptor) proteins: synaptobrevin/vesicle-associated membrane protein in the vesicular membrane and syntaxin and SNAP-25 in the presynaptic membrane. The SNAREs form a thermodynamically stable complex that is believed to drive fusion of vesicular and presynaptic membranes. Complexin, also known as synaphin, is a neuronal cytosolic protein that acts as a positive regulator of synaptic vesicle exocytosis. Complexin binds selectively to the neuronal SNARE complex, but how this promotes exocytosis remains unknown. Here we used purified full-length and truncated SNARE proteins and a gel shift assay to show that the action of complexin on SNARE complex depends strictly on the transmembrane regions of syntaxin and synaptobrevin. By means of a preparative immunoaffinity procedure to achieve total extraction of SNARE complex from brain, we demonstrated that complexin is the only neuronal protein that tightly associates with it. Our data indicated that, in the presence of complexin, the neuronal SNARE proteins assemble directly into a complex in which the transmembrane regions interact. We propose that complexin facilitates neuronal exocytosis by promoting interaction between the complementary syntaxin and synaptobrevin transmembrane regions that reside in opposing membranes prior to fusion.  相似文献   

8.
Chinese hamster ovary (CHO) cells in suspension were subjected to pulsed electric fields suitable for electrically mediated gene transfer (pulse duration longer than 1 ms). Using the chemiluminescence probe lucigenin, we showed that a generation of reactive-oxygen species (oxidative jump) was present when the cells were electropermeabilised using millisecond pulses. The oxidative jump yield was controlled by the extent of alterations allowing permeabilisation within the electrically affected cell area, but showed a saturating dependence on the pulse duration over 1 ms. Cell electropulsation induced reversible and irreversible alterations of the membrane assembly. The oxidative stress was only present when the membrane permeabilisation was reversible. Irreversible electrical membrane disruption inhibited the oxidative jump. The oxidative jump was not a simple feedback effect of membrane electropermeabilisation. It strongly controlled long-term cell survival. This had to be associated with the cell-damaging action of reactive-oxygen species. However, for millisecond-cumulated pulse duration, an accumulation of a large number of short pulses (microsecond) was extremely lethal for cells, while no correlation with an increased oxidative jump was found. Cell responses, such as the production of free radicals, were present during electropermeabilisation of living cells and controlled partially the long-term behaviour of the pulsed cell.  相似文献   

9.
The interaction with lipids of a synthetic peptide corresponding to the transmembrane domain of influenza hemagglutinin was investigated by means of electron spin resonance. A detailed analysis of the electron spin resonance spectra from spin-labeled phospholipids revealed that the major effect of the peptide on the dynamic membrane structure is to induce highly ordered membrane domains that are associated with electrostatic interactions between the peptide and negatively charged lipids. Two highly conserved residues in the peptide were identified as being important for the membrane ordering effect. Aggregation of large unilamellar vesicles induced by the peptide was also found to be correlated with the membrane ordering effect of the peptide, indicating that an increase in membrane ordering, i.e., membrane dehydration, is important for vesicle aggregation. The possibility that hydrophobic interaction between the highly ordered membrane domains plays a role in vesicle aggregation and viral fusion is discussed.  相似文献   

10.
The thermodynamics of interactions between phloretin and a phosphatidylcholine (PC) vesicle membrane are characterized using equilibrium spectrophotometric titration, stopped-flow, and temperature- jump techniques. Binding of phloretin to a PC vesicle membrane is diffusion limited, with an association rate constant greater than 10(8) M-1s-1, and an interfacial activation free energy of less than 2 kcal/mol. Equilibrium binding of phloretin to a vesicle membrane is characterized by a single class of high-affinity (8 micro M), noninteracting sites. Binding is enthalpy driven (delta H = -4.9 kcal/mol) at 23 degrees C. Analysis of amplitudes of kinetic processes shows that 66 +/- 3% of total phloretin binding sites are exposed at the external vesicle surface. The rate of phloretin movement between binding sites located near the external and internal interfaces is proportional to the concentration of un-ionized phloretin, with a rate constant of 5.7 X 10(4) M-1s-1 at 23 degrees C. The rate of this process is limited by a large enthalpic (9 kcal/mol) and entropic (-31 entropy units) barrier. An analysis of the concentration dependence of the rate of transmembrane movement suggests the presence of multiple intramembrane potential barriers. Permeation of phloretin through a lipid bilayer is modeled quantitatively in terms of discrete steps: binding to a membrane surface, translocation across a series of intramembrane barriers, and dissociation from the opposite membrane surface. The permeability coefficient for phloretin is calculated as 1.9 X 10(-3) cm/s on the basis of the model presented. Structure- function relationships are examined for a number of phloretin analogues.  相似文献   

11.
Regulated exocytosis is thought to occur either by "full fusion," where the secretory vesicle fuses with the plasma membrane (PM) via a fusion pore that then dilates until the secretory vesicle collapses into the PM; or by "kiss-and-run," where the fusion pore does not dilate and instead rapidly reseals such that the secretory vesicle is retrieved almost fully intact. Here, we describe growing evidence for a third form of exocytosis, dubbed "kiss-and-coat," which is characteristic of a broad variety of cell types that undergo regulated exocytosis. Kiss-and-coat exocytosis entails prolonged maintenance of a dilated fusion pore and assembly of actin filament (F-actin) coats around the exocytosing secretory vesicles followed by direct retrieval of some fraction of the emptied vesicle membrane. We propose that assembly of the actin coats results from the union of the secretory vesicle membrane and PM and that this compartment mixing represents a general mechanism for generating local signals via directed membrane fusion.  相似文献   

12.
Tarek M 《Biophysical journal》2005,88(6):4045-4053
We present results of molecular dynamics simulations of lipid bilayers under a high transverse electrical field aimed at investigating their electroporation. Several systems are studied, namely 1), a bare bilayer, 2), a bilayer containing a peptide nanotube channel, and 3), a system with a peripheral DNA double strand. In all systems, the applied transmembrane electric fields (0.5 V.nm(-1) and 1.0 V.nm(-1)) induce an electroporation of the lipid bilayer manifested by the formation of water wires and water channels across the membrane. The internal structures of the peptide nanotube assembly and that of the DNA strand are hardly modified under field. For system 2, no perturbation of the membrane is witnessed at the vicinity of the channel, which indicates that the interactions of the peptide with the nearby lipids stabilize the bilayer. For system 3, the DNA strand migrates to the interior of the membrane only after electroporation. Interestingly enough, switching of the external transmembrane potential in cases 1 and 2 for few nanoseconds is enough to allow for complete resealing and reconstitution of the bilayer. We provide evidence that the electric field induces a significant lateral stress on the bilayer, manifested by surface tensions of magnitudes in the order of 1 mN.m(-1). This study is believed to capture the essence of several dynamical phenomena observed experimentally and provides a framework for further developments and for new applications.  相似文献   

13.
Although it is well established that exocytosis of neurotransmitters and hormones is highly regulated by numerous secretory proteins, such as SNARE proteins, there is an increasing appreciation of the importance of the chemophysical properties and organization of membrane lipids to various aspects of the exocytotic program. Based on amperometric recordings by carbon fiber microelectrodes, we show that deprivation of membrane cholesterol by methyl-β-cyclodextrin not only inhibited the extent of membrane depolarization-induced exocytosis, it also adversely affected the kinetics and quantal size of vesicle fusion in neuroendocrine PC12 cells. In addition, total internal fluorescence microscopy studies revealed that cholesterol depletion impaired vesicle docking and trafficking, which are believed to correlate with the dynamics of exocytosis. Furthermore, we found that free cholesterol is able to directly trigger vesicle fusion, albeit with less potency and slower kinetics as compared to membrane depolarization stimulation. These results underscore the versatile roles of cholesterol in facilitating exocytosis.  相似文献   

14.
Electrochemotherapy is a novel technique to enhance the delivery of chemotherapeutic drugs into tumor cells. In this procedure, electric pulses are delivered to cancerous cells, which induce membrane permeabilization, to facilitate the passage of cytotoxic drugs through the cell membrane. This study examines how electric fields interact with and polarize a system of cells. Specifically, we consider how cell density and organization impact on induced cell transmembrane potential due to an external electric field. First, in an infinite volume of spherical cells, we examined how cell packing density impacts on induced transmembrane potential. With high cell density, we found that maximum induced transmembrane potential is suppressed and that the transmembrane potential distribution is altered. Second, we considered how orientation of cell sheets and strands, relative to the applied field, affects induced transmembrane potential. Cells that are parallel to the field direction suppress induced transmembrane potential, and those that lie perpendicular to the applied field potentiate its effect. Generally, we found that both cell density and cell organization are very important in determining the induced transmembrane potential resulting from an applied electric field.  相似文献   

15.
JR Coorssen  R Zorec 《Cell calcium》2012,52(3-4):191-195
This Special Issue (SI) of Cell Calcium focuses on regulated exocytosis, a recent evolutionary invention of eukaryotic cells. This essential cellular process consists of several stages: (i) the delivery of membrane bound vesicles to specific plasma membrane sites, (ii) where the merger between the vesicle and the plasma membranes occurs, (iii) leading to the formation of an aqueous channel through which vesicle content starts to be discharged to the cell exterior, (iv) after the full incorporation of the vesicle membrane into the plasma membrane, the added vesicle membrane is retrieved back into the cytoplasm by endocytosis. (v) When a fusion pore opens it may close again, a process known as transient fusion pore opening (also kiss-and-run exocytosis). In some cell types these stages are extremely shortlived, as in some neurons, and thus relatively inaccessible to experimentation. In other cell types the transition between these stages is orders of magnitude slower and can be studied in more detail. However, despite the intense investigations of this critical biological process over the last decades, the molecular mechanisms underlying regulated exocytosis have yet to be fully resolved. We thus still lack a comprehensive physiological insight into the nature of the progressive and coupled stages of exocytosis. Such a molecular-level understanding would help to fully reconstruct this process in vitro, as well as identify potential therapeutic targets for a range of diseases and dysfunctions. There are 18 papers in this SI which have been organized into three sections: Rapid regulated exocytosis and calcium homeostasis with an introduction by Erwin Neher, Molecular mechanisms of regulated exocytosis, and Cell models for regulated exocytosis. Here we briefly outline and integrate the messages of these sections.  相似文献   

16.
Neuronal transmission is an integral part of cellular communication within the brain. Depolarization of the presynaptic membrane leads to vesicle fusion known as exocytosis that mediates synaptic transmission. Subsequent retrieval of synaptic vesicles is necessary to generate new neurotransmitter-filled vesicles in a process identified as endocytosis. During exocytosis, fusing vesicle membranes will result in an increase in surface area and subsequent endocytosis results in a decrease in the surface area. Here, our lab demonstrates a basic introduction to cell-attached capacitance recordings of single endocytic events in the mouse adrenal chromaffin cell. This type of electrical recording is useful for high-resolution recordings of exocytosis and endocytosis at the single vesicle level. While this technique can detect both vesicle exocytosis and endocytosis, the focus of our lab is vesicle endocytosis. Moreover, this technique allows us to analyze the kinetics of single endocytic events. Here the methods for mouse adrenal gland tissue dissection, chromaffin cell culture, basic cell-attached techniques, and subsequent examples of individual traces measuring singular endocytic event are described.  相似文献   

17.
Exocytosis in plants   总被引:1,自引:0,他引:1  
Thiel  Gerhard  Battey  Nick 《Plant molecular biology》1998,38(1-2):111-125
Exocytosis is the final event in the secretory pathway and requires the fusion of the secretory vesicle membrane with the plasma membrane. It results in the release to the outside of vesicle cargo from the cell interior and also the delivery of vesicle membrane and proteins to the plasma membrane. An electrophysiological assay that measures changes in membrane capacitance has recently been used to monitor exocytosis in plants. This complements information derived from earlier light and electron microscope studies, and allows both transient and irreversible fusion of single exocytotic vesicles to be followed with high resolution in protoplasts. It also provides a tool to investigate bulk exocytotic activity in single protoplasts under the influence of cytoplasmic modulators. This research highlights the role of intracellular Ca2+, GTP and pressure in the control of exocytosis in plants.In parallel to these functional studies, plant proteins with the potential to regulate exocytosis are being identified by molecular analysis. In this review we describe these electrophysiological and molecular advances, and emphasise the need for parallel biochemical work to provide a complete picture of the mechanisms controlling vesicle fusion at the plasma membrane of plant cells.  相似文献   

18.
Unilamellar vesicles are observed to form spontaneously at planar lipid bilayers agitated by exothermic chemical reactions. The membrane-binding reaction between biotin and streptavidin, two strong transmembrane neutralization reactions, and a weak neutralization reaction involving an "antacid" buffer, all lead to spontaneous vesicle formation. This formation is most dramatic when a viscosity differential exists between the two phases bounding the membrane, in which case vesicles appear exclusively in the more viscous phase. A hydrodynamic analysis explains the phenomenon in terms of a membrane flow driven by liberated reaction energy, leading to vesicle formation. These results suggest that energy liberated by intra- and extracellular chemical reactions near or at cell and internal organelle membranes can play an important role in vesicle formation, membrane agitation, or enhanced transmembrane mass transfer.  相似文献   

19.
真核细胞通过胞吞和胞吐作用将大分子和颗粒性物质运出或运送至质膜,其中包括一些具有重要生物学功能的蛋白质。胞吞和胞吐途径之间的耦合对维持质膜的完整性以及调控质膜蛋白的丰度和活性至关重要。动物中,突触小泡的胞吞和胞吐在时空上紧密耦合已被证明是持续神经传递的必要条件。近年来,随着对植物囊泡运输的深入研究,越来越多的证据表明,植物细胞的胞吞和胞吐间同样存在耦合调控,且在植物生长发育和对外界环境的响应中扮演重要角色。该文综述了植物协同调控胞吞和胞吐的生理学意义,并结合网格蛋白介导囊泡运输的最新研究进展探讨了其可能的耦合机制。  相似文献   

20.
Synaptic vesicle proteins govern all relevant functions of the synaptic vesicle life cycle, including vesicle biogenesis, vesicle transport, uptake and storage of neurotransmitters, and regulated endocytosis and exocytosis. In spite of impressive progress made in the past years, not all known vesicular functions can be assigned to defined protein components, suggesting that the repertoire of synaptic vesicle proteins is still incomplete. We have identified and characterized a novel synaptic vesicle membrane protein of 31 kDa with six putative transmembrane helices that, according to its membrane topology and phylogenetic relation, may function as a vesicular transporter. The vesicular allocation is demonstrated by subcellular fractionation, heterologous expression, immunocytochemical analysis of brain sections and immunoelectron microscopy. The protein is expressed in select brain regions and contained in subpopulations of nerve terminals that immunostain for the vesicular glutamate transporter 1 and the vesicular GABA transporter VGaT (vesicular amino acid transporter) and may attribute specific and as yet undiscovered functions to subsets of glutamatergic and GABAergic synapses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号